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Abstract

Domain-specific training typically makes NLP
systems work better. We show that this ex-
tends to cognitive modeling as well by re-
lating the states of a neural phrase-structure
parser to electrophysiological measures from
human participants. These measures were
recorded as participants listened to a spo-
ken recitation of the same literary text that
was supplied as input to the neural parser.
Given more training data, the system derives
a better cognitive model — but only when the
training examples come from the same tex-
tual genre. This finding is consistent with the
idea that humans adapt syntactic expectations
to particular genres during language compre-
hension (Kaan and Chun, 2018; Branigan and
Pickering, 2017).

1 Introduction

Natural language processing (NLP) systems based
on deep neural networks are sensitive to the
amount and type of training data that they receive.
A “data hungry” method may not work well until
it is supplied with sufficient examples (e.g. Yo-
gatama et al., 2019). Likewise, transfer to a differ-
ent textual genre may be poor (Petrov and McDon-
ald, 2012). This is the classic problem of domain
adaptation1 which arises in many areas of NLP.

This paper revisits domain adaptation in the
context of human-like parsing. With this human-
like aspect in mind, we consider models that use
linguistically-plausible trees (see Frank, 2011 for
a review) and operate incrementally from left to
right (e.g. Steedman, 2000). We quantify the
fit to human language performance using freely-
available electrophysiological data (henceforth:

1 It remains quite difficult to reconcile human-like in-
cremental parsing with high performance out-of-domain;
many researchers take a nonincremental whole-sentence ap-
proach (Gildea, 2001; Baucom et al., 2013; Joshi et al., 2018).

EEG) that was elicited by a pre-existing liter-
ary text (Brennan and Hale, 2019).

These EEG data come from a naturalistic stim-
ulus, and in virtue of their higher temporal resolu-
tion, are more detailed than reading times or plau-
sibility judgments. Hale et al. (2018) were the first
to model them using a neural parser. In that study,
textual training data came from the same book as
did the human participants’ stimuli. While this
yielded a model that was quite well-matched to the
EEG modeling task, its training data was confined
to just 1543 sentences (24K words). In contrast,
recent studies suggest that neural language models
require substantially more data to achieve human-
like linguistic competence (Gulordava et al., 2018;
Futrell et al., 2019; Frank and Hoeks, 2019).

We investigate this question of data size to-
gether with a contrast between textual domains or
“genres”. Modeling human neural signals, we find
that in-domain training leads to a better and better
fit as more examples are added to the training set
whereas with out-of-domain data, more examples
do not help. This is interesting given the consistent
reductions in language modeling perplexity with
more data, which we observe across both domains.
We further find that, across all amounts of train-
ing data, models that incorporate linguistically-
plausible phrase structure achieve a better fit to hu-
man EEG data than models that do not. This sug-
gests that phrase structure should play an impor-
tant role in human-like models of language com-
prehension, even in models that benefit from large
training data.

2 Methodology

We proceed by comparing parsing systems that
are based on Recurrent Neural Network Gram-
mars (Dyer et al., 2016; Wilcox et al., 2019, hence-
forth; RNNG) and trained according to fourteen



5847

complexity metric: surprisal of hypotheses in beam (Hale, 2001; Roark et al., 2009)
amount of training data: 39832,{100, 250, 500, 750}K, 1M and 1437575 sentences

genre: newspaper text (Graff et al., 2005) and lexically-similar literature (Gutenberg)

Table 1: Training regimes

different regimes. These training regimes cross
seven different amounts of training data with two
different genres of writing. The question across
all regimes is: how well does a complexity metric
derived from these parsers improve the modeling
of EEG data from human participants engaged in
language comprehension of the same text? Note
that the dependent variable here is not parsing per-
formance or language modeling perplexity of the
RNNG, but rather the helpfulness, as regards cog-
nitive modeling, of a derived measure based on the
intermediate states that the RNNG visits during
decoding of the stimulus text that the human par-
ticipants heard. Table 1 summarizes these train-
ing regimes.

3 Materials

3.1 Lexically-similar literature

In the first genre, we ranked e-books from the
freely-available Project Gutenberg collection ac-
cording to the CosineTop50 metric from Mc-
Closky et al. (2010). This (dis)similarity metric
compares vectors whose components are attesta-
tion counts from the 50 most frequent words in
a reference text. Here, the reference text is the
one that human EEG study participants listened to
– the first chapter of Alice in Wonderland. Ta-
ble 2 shows some highly-ranked books on this
scheme. It yielded largely juvenile literature from
the 19th century aimed at girls. The average sen-

dissimilarity title author
0.0584 The Admiral’s Caravan Charles E. Carryl
0.0620 The Secret Garden Frances Hodgson Burnett
0.0628 The Lodger Marie Belloc Lowndes

0.0687 The Girls and I:
A Veracious History

Mary Louisa Stewart
Molesworth

0.0689 What Timmy Did Marie Adelaide Belloc
0.0724 Little Miss Peggy Mrs. Molesworth
0.0725 The Girls of St. Olave’sMabel Mackintosh
0.0741 The Celebrity at Home Violet Hunt
0.0750 I’ve Married Marjorie Margaret Widdemer
0.0752 The Forged Note Oscar Micheaux
0.0755 Mary Erskine Jacob Abbott
0.0758 The Bountiful Lady Thomas Cobb
0.0758 Legacy James H Schmitz
0.0763 Some Little People George Kringle
0.0774 In the Wilderness Robert Hichens

Table 2: Alice-like books from Project Gutenberg

tence length in this selection was 17 words.

3.2 Newspaper text

In the second genre, we randomly sampled
news articles from the English Gigaword cor-
pus (Graff et al., 2005). This sampling was made
regardless of the particular national source, i.e.
Agence France-Press, New York Times or Xinhua
News Agency. Sentences in this sample were, on
average, 20 words long. This out-of-domain text
had a CosineTop50 dissimilarity level of 0.56.

3.3 Presumptive Trees

Both genres were parsed using a re-
implementation of the Berkeley parser (Petrov
et al., 2006) to yield presumptively-correct,
“silver-grade” trees. This Berkeley parser was
trained on a diverse set of annotated data. These
include the Penn Treebank’s Wall Street Journal
materials (Marcus et al., 1993), the Question Tree-
bank (Judge et al., 2006), Ontonotes (e.g. Pradhan
and Ramshaw, 2017) and Parsing-the-Web
Corpora (Petrov and McDonald, 2012). In a man-
ual inspection of randomly sampled silver trees,
the only obvious mistakes were tagging errors (1
newspaper, 2 literature), which are not harmful
since RNNGs do not use part of speech tags.
Indeed, the bracketing and phrase labels on these
silver trees appeared to be fully consistent with
the Penn Treebank Bracketing Guidelines (Bies
et al., 1995). Before being passed to the RNNG
as training data, these trees were post-processed
to remove empty elements, punctuation, and
function tags.

4 Training

4.1 Hyperparameters

We tuned RNNG hyperparameters to optimize de-
velopment set perplexity. The development set
comprises the entire Alice in Wonderland book as
obtained from Project Gutenberg.2 To control for

2While the first chapter of Alice in Wonderland that we
use as stimuli is thus a subset of the development set, recall
from section 2 that our evaluation metric is fit to the human
EEG, rather than validation perplexity.
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model capacity, across all training regimes we
used the same hyper-parameter that consistently
achieved good validation perplexities across all
configurations.3

4.2 Vocabulary

Within each of the two genres, we facilitate com-
parison across different training set sizes by run-
ning the RNNGs with a shared vocabulary de-
rived from the largest training configuration. An
attestation frequency cut-off was applied to each
of them to ensure broadly comparable rates of
out-of-vocabulary words on the development set,
Alice in Wonderland. For the lexically-similar lit-
erature, this threshold was 5 attestations, whereas
for the newspaper text this threshold was 20 at-
testations. On the validation set, these cut-offs
yielded out-of-vocabulary rates of 2.3 to 2.4 per-
cent for newspaper text and 0.5 to 1.28 percent for
lexically-similar literature.

4.3 Achieved perplexity

Per-action perplexity levels4 achieved by the
trained RNNG parsing models on the develop-
ment set are shown in Figure 1. Validation per-
plexity consistently improves with more and more
silver-grade training data, even when that data
comes from a different domain.5

5 EEG Regression model

Surprisal values from a beam search parser based
on RNNG are entered as predictors into a regres-
sion model of scalp voltages. Models are fit with
the brm function in R and model fits were com-
pared using Bayesian model comparison (Vehtari
et al., 2017). These regression models include
random intercepts for participant along-side pre-
dictors to account for factors of non-interest that
nevertheless are known to influence sentence pro-
cessing difficulty (see e.g. Goodkind and Bick-

3The RNNG hyperparameters are: 2-layer stack LSTM
(Dyer et al., 2015), 450 hidden units, and an initial SGD
learning rate of 0.3, decayed exponentially with a factor of
0.1 applied after the tenth epoch.

4The per-action perplexity is computed based on the joint
probability of strings (x) and trees (y), denoted as p(x,y),
which therefore aggregate the perplexity of the next-word
prediction with the perplexity of tree-building actions. Ap-
proximate inference methods such as important sampling can
be used to derive an estimate of p(x) (Dyer et al., 2016).

5While relative perplexity levels internal to a genre are
comparable in virtue of a shared vocabulary, absolute per-
plexity values are not directly comparable across the genres
since these vocabularies are different.
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Figure 1: Language modeling perplexity (lower is bet-
ter) on Alice in Wonderland across the two genres of
training data.

nell, 2018). These are: sentence position in the
stimulus text, word position within each sentence,
acoustic sound power, unigram word frequency in
the HAL corpus (Balota et al., 2007). Unigram
predictors are included for the previous word, the
current word and the next word.

The EEG data themselves come from 33
datasets that were collected by Brennan and Hale
(2019) while participants listened to the first chap-
ter of Alice in Wonderland.6 Ocular artifacts and
other noise sources are removed from the raw sig-
nal using ICA and visual inspection. The EEG
data are reduced to a single spatio-temporal re-
gion of interest (ROI) comprising the data from
anterior channels across both hemispheres be-
tween 200 and 400 ms after the onset of content-
words. This anterior ROI has, uniquely, shown
sensitivity to surprisal values from incremen-
tal parsers under a data-driven whole-scalp anal-
ysis in Brennan and Hale (2019). Note that this
ROI is earlier and more anterior than the usual lo-
cus of the N400 component, which typically man-
ifests on central electrodes at or around 400 ms
post-stimulus (for a review see Kaan, 2007).

6 Results

Figure 2 plots the goodness-of-fit of a regres-
sion model that includes RNNG-derived complex-
ity metrics. As the neural phrase structure parser
is trained on increasingly larger corpora, the re-
gression model of EEG amplitudes fits better and
better. However, this pattern only obtains with
in-domain training data that is lexically-similar to
the first chapter of Alice in Wonderland. When
trained on newspaper text from the Gigaword cor-

6These data are available at: https://doi.org/10.
7302/Z29C6VNH.
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Figure 2: Goodness of fit of surprisal predictions from
RNNG at beam size k = 200 syntactic analyses on
anterior electrodes during the time window 200-400ms
after the onset of a spoken word in the first chapter of
Alice in Wonderland. The widely-applicable informa-
tion criterion WAIC is described further in Vehtari et al.
(2017). Lower WAIC indicates a better fit.

pus, the goodness of fit to human EEG data re-
mains about the same no matter how much train-
ing data is supplied. Tukey’s test of additivity indi-
cates an interaction between genre and training set
size, F (1, 5) = 171.3, p < 0.000001. No effect of
surprisal values obtained in electrodes and time-
points corresponding to the N400 component.

Figure 3 compares the RNNG, which explicitly
uses phrase structure representations, to an LSTM
sequence model which does not (Hochreiter and
Schmidhuber, 1997). Here, both models receive
the benefit of in-domain training on the lexically-
similar literature. But regardless of how much in-
domain training data is made available, the explic-
itly phrase-structural RNNG always offers a better
account of the EEG signal.

7 Related Work

The importance of domain adaptation in NLP
has been well-established in earlier work (see
Daumé III, 2007 and footnote 1), including appli-
cations to parsing (Sarkar, 2001; McClosky et al.,
2006; Søgaard and Rishøj, 2010; Weiss et al.,
2015). Our approach to in-domain data selection
is closely related to earlier work in language mod-
eling and machine translation (Keller and Lap-
ata, 2003; Moore and Lewis, 2010; Axelrod et al.,
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Figure 3: Comparison between RNNG with explicit hi-
erarchical representations and LSTM without such rep-
resentations. Lower WAIC indicates a better fit to hu-
man electrophysiological data.

2011). Our focus on large training sets responds to
recent work in language modeling (Devlin et al.,
2019; Radford et al., 2019). The research reported
here differs in two ways from these earlier studies.
First, we consider the interaction between domain
and amount of training data, rather than examining
each variable in isolation. Second, we investigate
the impact of these variables on cognitive model-
ing, which reveals a pattern that is different from
what we observe in the standard perplexity eval-
uation. We focus on text genre, rather than on-
line adaptation as van Schijndel and Linzen (2018)
do. Despite coming at the problem from a dif-
ferent direction (and using EEG rather than self-
paced reading) our results agree with van Schijn-
del and Linzen in suggesting that some kind of
adaptation must be going on in human language
comprehension.

8 Conclusion

These comparisons confirm that genre matters. If
surprisal describes human linguistic expectations,
then we can say that those expectations are better-
modeled by a parsing system that benefits from in-
domain training. This would follow if, as Kaan
and Chun (2018) have suggested, people are able
to very rapidly adjust their syntactic expectations
to match a particular genre.

Indeed, these expectations seems to be phrase-
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structural in nature. Certainly the presence of un-
igram nuisance predictors in the EEG regression
(section 5) and the comparatively worse perfor-
mance of the LSTM sequence model (Figure 3)
render it unlikely that this finding is due to word
frequency or superficial co-occurrence. Rather,
the neural parser has learned something about
19th century children’s literature that can be cap-
tured at the syntactic level. Whatever these syntac-
tic properties are, it could have been the case that
they were equally learnable from newswire text or
Alice-like books. But in fact Alice-like books gen-
eralize better to human EEG data.

This use of moment-by-moment processing dif-
ficulty to adjudicate between trained NLP systems
offers a reminder that the quest for human-level
performance in language technology should al-
ways be understood in relation to a particular kind
of linguistic performance in a particular genre.
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