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Abstract

Memory neurons of long short-term mem-
ory (LSTM) networks encode and process in-
formation in powerful yet mysterious ways.
While there has been work to analyze their be-
havior in carrying low-level information such
as linguistic properties, how they directly con-
tribute to label prediction remains unclear. We
find inspiration from biologists and study the
affinity between individual neurons and labels,
propose a novel metric to quantify the sensi-
tivity of neurons to each label, and conduct
experiments to show the validity of our pro-
posed metric. We discover that some neu-
rons are trained to specialize on a subset of
labels, and while dropping an arbitrary neu-
ron has little effect on the overall accuracy of
the model, dropping label-specialized neurons
predictably and significantly degrades predic-
tion accuracy on the associated label. We fur-
ther examine the consistency of neuron-label
affinity across different models. These obser-
vations provide insight into the inner mecha-
nisms of LSTMs.

1 Introduction

In recent years, the application of deep learning
to natural language processing (NLP) has been
a success. Many consider the employment of
distributed representations to be one of the rea-
sons for deep learning’s success (LeCun et al.,
2015; Young et al., 2018). However, how these
distributed representations encode information in
deep neural networks, especially long short-term
memory (LSTM) networks that are prevalent in
NLP, still remains unclear (Feng et al., 2018). One
of the potential ways to understand how neural
networks function is to analyze the behavior of
individual neurons that carry the distributed rep-
resentation. While there have been a number of
works that analyze low-level information stored in

individual LSTM neurons, such as linguistic prop-
erties (Bau et al., 2019; Qian et al., 2016), syntax
of source code (Karpathy et al., 2015), and senti-
ment (Radford et al., 2017), how each neuron con-
tributes directly to the final classification layer re-
mains unclear.

We find inspiration to analyze individual neu-
rons of LSTMs from how biologists analyze neu-
rons of roundworms (White et al., 1986). Biolog-
ical neural systems consist of a huge number of
neurons, and can react to the environment in com-
plicated ways. Biologists start with analyzing ba-
sic components of reactions, what stimuli trigger
them, and which neurons are excited during the
process. To verify the relationship between stim-
uli, neurons, and reactions, biologists further dis-
sect neurons which are correlated with specific ba-
sic reactions, and see if the reaction still occurs for
the same stimuli.

We adopt the same methodology to study
LSTMs, using a representative task in NLP:
named-entity recognition (NER) (Ratinov and
Roth, 2009; Lample et al., 2016). Even though
the output of a neural network may be compli-
cated, we focus on basic components of the out-
put: whether a label is predicted or not. We feed
into the neural model various input instances, and
analyze the relationship between the value of each
LSTM neuron and the predicted label. We quan-
tify the sensitivity of neurons to each label, and
study how label-specific information is distributed
among all neurons. We discover that each individ-
ual neuron is specialized to carry information for
a subset of labels, and the information of each la-
bel is only carried by a subset of all neurons. We
further conduct experiments to gradually drop out
individual neurons. This significantly lowers the
accuracy of labels that the neuron is specialized
on, while having little effect on the overall per-
formance of the model. We also study the corre-
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lation between labels, and discover some patterns
that are shared among different models.

Our contributions are as follows: (1) To the best
of our knowledge, we are the first to have taken
this neuron-label affinity focused approach to un-
derstanding the inner workings of LSTMs. (2) We
propose a novel metric to quantify such affinity,
and conduct experiments to verify the validity and
consistency of this metric.

2 Related Work

Recently, work has been done to analyze contin-
uous representations in NLP. Shi et al. (2016) and
Qian et al. (2016) analyze linguistic properties car-
ried by representation vectors using external su-
pervision. Bau et al. (2019) and Dalvi et al. (2019)
further analyze linguistic information in individual
neurons from neural machine translation represen-
tations in an unsupervised manner. For LSTMs of
language models, Karpathy et al. (2015) identify
individual neurons that trigger for specific infor-
mation, such as bracket and sequence length, and
Radford et al. (2017) discover neurons that encode
sentiment information.

In computer vision, Zhou et al. (2018) analyze
the relationship between individual units of a CNN
and label prediction. To the best of our knowledge,
however, in the field of NLP, there has been little
work on analyzing the affinity between labels and
neurons of recurrent networks. This paper aims to
address this problem.

3 Model and Experiments

3.1 Model Selection
Named-entity recognition is a sequence labeling
task. The input of the model is a sequence of
words x(t), t = 1, 2, · · · . Each input word has a
corresponding label z(t) ∈ L, where L is the set
of all labels {lj}, j = 1, 2, · · · ,m. The label in-
dicates whether the word is an entity or not, and if
yes, which kind of entity it is.

A typical modern NER model consists of a bi-
directional LSTM and a conditional random field
(CRF) on top of the LSTM (Collobert et al., 2011;
Huang et al., 2015). Sometimes there is also a con-
volutional neural network (CNN) (Ma and Hovy,
2016; Chiu and Nichols, 2016). However, the goal
of this paper is not to achieve state-of-the-art per-
formance on this task, but rather we are trying to
understand the mechanisms of LSTMs. Therefore,
we choose a relatively simple model (see Figure 1)
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Figure 1: The model we use for this task: a single layer
uni-directional LSTM with a fully-connect layer on top
of the LSTM.

for the experiments: a single layer uni-directional
LSTM with a fully-connected layer on top of it.

We denote h(t) ∈ Rn as the LSTM’s hidden
state at timestep t, and h

(t)
i its i-th entry. W ∈

Rn×m is the weight matrix of the fully-connected
layer. The output of the entire model at timestep t
is therefore the vector

y(t) = Softmax(W>h(t)), (1)

where y(t) ∈ Rm and each entry is the predicted
probability of a label in L:

Pr(z(t) = lj) = y
(t)
j (2)

=
exp (W>

:,jh
(t))∑

j′
exp (W>

:,j′h
(t))

, (3)

where W>
:,j is the transpose of the j-th column

vector of the matrix W. The final prediction z̃(t)

is chosen as the label with greatest probability.

3.2 Experiment Setup
The model is trained on the CoNLL2003 (Sang
and De Meulder, 2003) training dataset. Develop-
ment and test sets of CoNLL2003 will be used in
experiments in Section 4. In this dataset there are
nine labels in total, under the BIO tagging schema.
See the first row of Figure 3 for the complete set
of labels.

Code for this paper is adopted from the toolkit
by Yang and Zhang (2018). We set the hidden size
of the LSTM to 50, since a larger hidden size does
not significantly improve the results. Other hyper-
parameters, such as learning rate, batch size, and
drop out rate, are kept unchanged. The model is
trained for 10 epochs, and we pick the checkpoint
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cell B-PER I-PER B-LOC I-LOC B-ORG I-ORG B-MISC I-MISC O
7 0.10 -0.01 0.02 0.01 0.08 0.01 -0.08 0.00 0.10
10 0.10 0.18 0.06 0.02 0.07 0.13 1.05 -0.01 -0.01
13 0.72 1.81 0.09 0.00 0.00 0.05 -0.01 0.00 -0.03
17 0.03 0.08 1.17 0.13 0.08 0.15 -0.01 1.29 0.09
19 0.07 0.25 0.27 -0.19 0.85 -0.09 0.50 0.08 2.40
24 -0.04 0.00 0.03 0.06 -0.04 -0.03 0.02 0.17 -0.03
27 -0.23 0.06 0.21 -0.23 -0.11 0.11 1.29 0.05 1.35
34 -0.04 0.26 0.24 0.02 0.04 -0.05 1.39 0.12 0.13
37 1.23 0.11 -0.02 -0.04 0.74 -0.08 0.01 0.04 0.56
48 0.17 0.30 0.00 -0.05 -0.02 0.14 1.09 0.25 0.57

Figure 2: Sensitivity of the top ten neurons for all la-
bels; red for positive values, blue for negative ones, and
deeper colors stand for larger absolute values.

based on the best F1 score on the development set.
The chosen checkpoint has an F1 score of 86.4.
For comparison, the F1 score obtained by the same
toolkit using a bi-directional LSTM and a CRF is
89.5 (Yang et al., 2018).

4 Analyzing Neuron-Label Affinity

In this section, we first identify important neurons
by quantifying the sensitivity of a neuron to a la-
bel, and then verify the quantification by neuron
ablation experiments.

4.1 Identifying Important Neurons
A neuron of an LSTM corresponds to an entry (di-
mension) of h(t). For a certain label lj , we try to
identify neurons that are important for its predic-
tion in the following way.

We define the contribution of the i-th neuron to
the j-th label at timestep t as

u
(t)
i,j = Wi,jh

(t)
i . (4)

Note that contribution is defined with the number
after multiplied by W in the fully-connected layer.
Therefore the contribution value itself is what mat-
ters, not its absolute value.

The sensitivity of the i-th neuron to the j-th la-
bel is further defined as

si,j = E(u(t)i,j |z̃
(t) = lj)− E(u(t)i,j |z̃

(t) 6= lj), (5)

where E stands for taking average over t. This
is the difference of the mean contribution over lj
entity words versus other words. The higher si,j is,
the more sensitive the i-th neuron is for predicting
the label lj .

We compute si,j for all i and j pairs, and the
average is done over the entire development set. A
part of the results is shown in Figure 2, and the full
results are shown in the appendix.

From the figure we can see that information
is distributed across different neurons in a highly
non-uniform way:

B-PER I-PER B-LOC I-LOC B-ORG I-ORG B-MISC I-MISC O
11 13 45 28 1 28 34 28 19
44 9 29 14 19 44 27 17 42
37 44 17 3 37 16 48 30 32
9 14 2 30 28 38 10 16 39
13 31 39 31 9 36 29 29 23
42 11 32 44 47 3 45 42 27
29 30 38 45 44 12 28 45 22
46 36 21 25 32 43 30 26 46
14 16 9 41 6 33 19 14 38
2 40 23 2 21 47 21 1 20

Figure 3: Top ten neurons in terms of importance rank-
ings for all labels. The green and yellow labels are the
ones used in the experiments described in Section 4.2.

• Each neuron has a different sensitivity to differ-
ent labels. Some neurons are only sensitive to
one label, e.g., neuron #10 for B-MISC; some
are sensitive to multiple labels, e.g., neuron #17
for B-LOC and I-MISC; some are even not sen-
sitive to any, e.g., neuron #7.

• For each label, there are multiple neurons that
are sensitive to it, as well as multiple neurons
that are not.

From these, we can come to the conclusion that
the prediction of each label is based on informa-
tion that is distributed among multiple, but not all,
neurons. Furthermore, different types of informa-
tion are distributed differently.

For each label, we further rank all neurons
based on their sensitivity, and obtain an impor-
tance ranking for the label. The top ten neurons
for each label are shown in Figure 3, and the full
results are shown in the appendix.

4.2 Verifying the Importance of Neurons

We try to verify whether the sensitivity we define
in the previous subsection is a valid and consistent
indicator of a neuron’s importance for a label.

The way to do this is to perform model evalua-
tion on the test set,1 while incrementally ablating
neurons2 from the model, in a certain order. If the
sensitivity of neurons we obtain is valid and con-
sistent, when we ablate neurons in the order of im-
portance ranking of the label lj , the performance
on the test set should drop fastest for predicting lj ,
and slower for other labels.

We choose two pairs of labels: (B-PER, B-
MISC) and (B-LOC, I-ORG). In each pair, we
conduct neuron ablation according to each label’s

1Recall that we obtain the value of sensitivity only from
the development set.

2Ablating a neuron here means setting h
(t)
i to 0.
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Figure 4: Ablation according to importance ranking of B-PER and B-MISC (yellow columns in Figure 3).
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Figure 5: Ablation according to importance ranking of B-LOC and I-ORG (green columns in Figure 3).

importance ranking, and compare the model’s per-
formance for predicting each label. The results are
shown in Figures 4 and 5. We only show the first
half of the importance ranking, since the latter half
not only is less important, but also has more over-
lap between different labels.

From the figures we can see that when ablating
neurons according to a certain label’s importance
ranking, the accuracy of the label drops much
faster than the other labels. The overall perfor-
mance, however, remains more or less unaffected.
This shows that while a single neuron can be im-
portant for a subset of labels, the overall perfor-
mance is more robust to neuron ablation. This
further verifies our observations from the previous
subsection: information is distributed among mul-
tiple neurons in various ways. A neuron may have
encoded important information for a certain label,
but it is unlikely that all important information is
concentrated in one neuron.

It is worth noting that a neuron can be impor-
tant for multiple labels. Therefore, when ablating
neurons according to one label’s importance rank-
ing, the performance for other labels may also de-

grade. This can be seen in the left plot of Figure 5.
Neuron #38 appears in both the top ten lists of B-
LOC and I-ORG (shaded boxes in Figure 3), and
when it is ablated (the seventh ablated neuron), not
only the performance of B-LOC, but also that of I-
ORG, is compromised. The fourth ablated neuron
in the right plot of Figure 5 has a similar behav-
ior, but it is less significant, probably because this
neuron is ranked seventh for B-LOC and is there-
fore less important than it is for I-ORG. This phe-
nomenon is less significant in Figure 4, since the
top neurons from importance rankings of B-PER
and B-MISC have fewer overlaps.

4.3 Correlation Between Labels

Even though the distribution of information in
neurons may seem arbitrary, we want to see if
multiple, independently-trained models share any
common traits.

In addition to the model we have used in previ-
ous sections, we train three more models with the
same model architecture and hyperparameters but
different random seeds. We compute neuron-label
sensitivity for all four models using both develop-
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Figure 6: Correlation between all labels for four differ-
ent models.

ment set and test set. For each of the models, we
compute the correlation between all labels among
different neurons. The sensitivity matrix for each
model has 50 rows (neurons) and 9 columns (la-
bels); see Figure 7 in the appendix for example.
Correlation is computed among all rows in the ma-
trix. The results are shown in Figure 6.

While there are differences among the four cor-
relation plots, they share the following patterns:

• Label pairs of the form B-x and I-x (where x
is PER/LOC/ORG/MISC) are generally posi-
tively correlated. We can observe some dark-
red 2 × 2 blocks on the diagonal. Although for
each trained model, it might be different neu-
rons (i.e., neuron #) that encode information
about B-x, these neurons typically also carry in-
formation about I-x.

• The label triples I-LOC, I-ORG, and I-MISC are
also positively correlated.

• Label pairs of the form B-x and I-y (where x and
y are different entities) are generally negatively
correlated, e.g., I-PER with any of B-LOC, B-
ORG, and B-MISC.

• The label O is negatively correlated with all I-x
labels.

Although it remains unclear what information the
neurons exactly encode, we speculate that there
are at least two kinds of information, based on the
observed patterns:

• Coarse-grain types of the current word. For ex-
ample, whether the word is related to PER, or
LOC/ORG/MISC, or O.

• Entity boundary location. If the previous pre-
diction is O, it means the current word should
be either another O or the left boundary of an
entity, and thus the model should only predict O
or B-x, but never I-x. Hence, I-x is negatively
correlated with B-y and O.

5 Conclusion

In this paper, we try to understand the mechanisms
of LSTMs by measuring and dissecting LSTM
neurons. We discover that the prediction of each
label is based on label-specific information, which
is distributed among different groups of neurons.
We propose a method to quantify and rank the im-
portance of each neuron for each label, and further
conduct ablation experiments to verify the validity
and consistency of such importance rankings. Re-
sults show that the importance of a neuron is very
different for different labels.

Future work. We consider the following three
directions as future work. (1) While we now
know how label-specific information is distributed
among neurons and how important each neuron
is to different labels, we can only make specula-
tions about what the information is. It would be
meaningful to study how the neurons are trained
to encode label-specific information and what ex-
actly the information is. (2) From the sensitivity
figures, some neurons do not seem important to
any label. It would be interesting to see what will
happen if they are removed, and furthermore, how
this can help model compression and hidden size
selection. (3) Transformers (Vaswani et al., 2017;
Devlin et al., 2019) have been increasingly popu-
lar in NLP, and it would be important to extend our
work to understanding these architecture.
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1 -0.04 0.41 0.04 0.01 1.40 0.21 -0.05 0.36 0.09
2 0.37 0.03 0.92 0.62 -0.08 0.12 0.19 0.17 0.43
3 -0.13 0.37 -0.01 0.83 -0.03 0.64 -0.04 0.11 0.52
4 0.02 -0.01 0.01 0.02 0.03 0.35 0.05 0.02 0.10
5 0.22 0.26 0.07 0.38 0.11 -0.03 -0.02 0.27 0.21
6 0.14 0.08 0.06 0.00 0.45 0.04 -0.02 -0.02 0.51
7 0.10 -0.01 0.02 0.01 0.08 0.01 -0.08 0.00 0.10
8 -0.04 0.17 0.00 0.03 0.25 0.00 0.00 0.03 0.05
9 0.89 1.50 0.63 0.05 0.61 0.01 0.06 -0.01 0.00
10 0.10 0.18 0.06 0.02 0.07 0.13 1.05 -0.01 -0.01
11 1.93 0.94 -0.01 0.00 0.40 0.03 0.10 0.25 0.01
12 0.06 0.10 0.15 0.19 0.40 0.49 -0.05 -0.10 0.23
13 0.72 1.81 0.09 0.00 0.00 0.05 -0.01 0.00 -0.03
14 0.39 0.95 -0.06 1.30 -0.04 0.39 -0.04 0.36 0.04
15 0.29 -0.02 -0.01 0.20 0.36 0.19 0.01 0.01 -0.13
16 0.27 0.58 0.00 0.61 -0.07 0.75 0.02 0.84 0.01
17 0.03 0.08 1.17 0.13 0.08 0.15 -0.01 1.29 0.09
18 0.00 0.03 0.55 0.32 -0.01 0.15 0.11 -0.22 0.10
19 0.07 0.25 0.27 -0.19 0.85 -0.09 0.50 0.08 2.40
20 0.28 0.36 0.22 0.04 -0.10 -0.03 0.00 0.00 0.59
21 0.03 0.03 0.65 0.43 0.41 0.25 0.44 0.14 0.13
22 0.29 -0.04 0.00 0.01 0.13 0.00 0.25 0.00 0.83
23 0.12 0.13 0.59 -0.02 0.16 0.16 -0.03 -0.01 1.36
24 -0.04 0.00 0.03 0.06 -0.04 -0.03 0.02 0.17 -0.03
25 0.00 0.04 0.05 0.71 0.07 0.32 0.03 0.21 0.01
26 -0.01 0.17 0.03 0.23 0.00 0.27 0.04 0.37 0.05
27 -0.23 0.06 0.21 -0.23 -0.11 0.11 1.29 0.05 1.35
28 0.13 0.20 0.52 1.71 0.62 1.48 0.68 1.73 -0.04
29 0.65 0.19 1.34 0.49 0.02 0.11 0.81 0.56 0.02
30 0.19 0.75 0.25 0.80 0.03 0.40 0.52 1.05 0.03
31 0.04 0.94 0.11 0.80 0.15 0.13 0.39 0.27 -0.22
32 0.22 0.46 0.77 0.08 0.48 0.09 0.02 -0.13 1.88
33 0.20 -0.02 -0.02 0.00 0.24 0.47 -0.03 -0.03 -0.05
34 -0.04 0.26 0.24 0.02 0.04 -0.05 1.39 0.12 0.13
35 0.03 0.26 0.02 0.00 0.16 0.20 -0.01 -0.07 0.03
36 0.19 0.72 -0.02 0.50 0.04 0.69 0.05 0.11 0.02
37 1.23 0.11 -0.02 -0.04 0.74 -0.08 0.01 0.04 0.56
38 0.07 0.01 0.67 0.26 0.25 0.73 0.20 0.00 0.60
39 0.29 0.22 0.90 0.23 0.38 0.13 -0.15 0.01 1.74
40 0.01 0.47 0.00 0.01 0.01 0.00 0.21 0.01 -0.02
41 -0.02 0.17 -0.12 0.71 0.17 -0.02 0.39 -0.07 0.03
42 0.69 0.36 0.11 0.13 0.28 -0.26 0.08 0.51 1.93
43 0.07 0.14 0.38 -0.06 0.40 0.49 0.05 0.14 0.29
44 1.37 1.12 0.42 0.74 0.53 0.89 -0.05 -0.04 -0.02
45 0.00 0.06 1.50 0.72 0.00 0.36 0.73 0.49 0.12
46 0.65 0.41 0.00 0.00 0.09 0.05 0.01 0.00 0.69
47 0.18 0.00 0.00 0.02 0.54 0.47 0.01 0.00 -0.10
48 0.17 0.30 0.00 -0.05 -0.02 0.14 1.09 0.25 0.57
49 0.07 0.45 0.01 0.01 0.03 0.01 -0.03 -0.02 -0.10

Figure 7: Sensitivity of all neurons. This is the full result of Figure 2.
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B-PER I-PER B-LOC I-LOC B-ORG I-ORG B-MISC I-MISC O

11 13 45 28 1 28 34 28 19
44 9 29 14 19 44 27 17 42
37 44 17 3 37 16 48 30 32
9 14 2 30 28 38 10 16 39
13 31 39 31 9 36 29 29 23
42 11 32 44 47 3 45 42 27
29 30 38 45 44 12 28 45 22
46 36 21 25 32 43 30 26 46
14 16 9 41 6 33 19 14 38
2 40 23 2 21 47 21 1 20
39 32 18 16 43 0 41 5 48
22 49 28 36 12 30 31 31 37
15 46 44 29 11 14 22 0 3
20 1 43 21 39 45 40 48 6
16 3 19 5 15 4 38 11 2
5 20 30 18 42 25 2 25 43
32 42 34 38 8 26 18 2 12
33 48 20 39 38 21 11 24 5
30 0 27 26 33 1 42 21 34
36 35 12 15 41 35 9 43 21
47 5 31 12 23 15 4 34 45
48 34 42 42 35 23 43 3 7
6 19 13 17 31 18 36 36 18
28 39 5 32 22 17 26 19 4
23 28 6 24 5 48 25 27 1
10 29 10 9 46 39 16 37 17
7 10 25 20 17 31 32 8 8
38 41 1 8 7 10 24 4 26
19 26 26 47 25 2 37 40 14
43 8 24 10 10 29 46 15 41
49 43 7 4 34 27 47 39 30
12 23 35 34 36 32 15 20 35
31 37 4 0 49 46 20 7 0
21 12 49 7 4 13 0 47 36
17 17 0 22 30 6 8 13 29
35 6 8 49 29 11 17 38 11
4 45 48 40 40 49 13 46 16
40 27 46 1 26 9 35 22 25
18 25 47 46 45 7 6 10 9
0 2 22 6 13 8 5 9 10
25 21 16 33 18 40 49 23 44
45 18 40 13 48 22 23 49 40
26 38 15 11 3 41 33 6 24
41 24 11 35 24 5 3 33 13
24 47 3 23 14 24 14 44 28
8 4 37 37 0 20 1 41 33
1 7 36 48 16 34 12 35 47
34 15 33 43 2 37 44 12 49
3 33 14 19 20 19 7 32 15
27 22 41 27 27 42 39 18 31

Figure 8: Importance rankings for all labels. This is the full result of Figure 3.


