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Abstract

Previous work on neural noisy channel mod-
eling relied on latent variable models that in-
crementally process the source and target sen-
tence. This makes decoding decisions based
on partial source prefixes even though the
full source is available. We pursue an alter-
native approach based on standard sequence
to sequence models which utilize the entire
source. These models perform remarkably
well as channel models, even though they have
neither been trained on, nor designed to factor
over incomplete target sentences. Experiments
with neural language models trained on bil-
lions of words show that noisy channel mod-
els can outperform a direct model by up to 3.2
BLEU on WMT’17 German-English transla-
tion. We evaluate on four language-pairs and
our channel models consistently outperform
strong alternatives such right-to-left reranking
models and ensembles of direct models.1

1 Introduction

Sequence to sequence models directly estimate the
posterior probability of a target sequence y given
a source sequence x (Sutskever et al., 2014; Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017) and can be trained with pairs of source
and target sequences. Unpaired sequences can be
leveraged by data augmentation schemes such as
back-translation, but direct models cannot natu-
rally take advantage of unpaired data (Sennrich
et al., 2016a; Edunov et al., 2018a).

The noisy channel approach is an alterna-
tive which is used in statistical machine transla-
tion (Brown et al., 1993; Koehn et al., 2003). It
entails a channel model probability p(x|y) that op-
erates in the reverse direction as well as a language

† Work done while at Facebook AI Research.
1We release code and pre-trained models at

https://github.com/pytorch/fairseq

model probability p(y). The language model can
be estimated on unpaired data and can take a sep-
arate form to the channel model. Noisy channel
modeling mitigates explaining away effects that
result in the source being ignored for highly likely
output prefixes (Klein and Manning, 2001).

Previous work on neural noisy channel mod-
eling relied on a complex latent variable model
that incrementally processes source and target pre-
fixes (Yu et al., 2017). This trades efficiency
for accuracy because their model performs sig-
nificantly less well than a vanilla sequence to se-
quence model. For languages with similar word
order, it can be sufficient to predict the first target
token based on a short source prefix, but for lan-
guages where word order differs significantly, we
may need to take the entire source sentence into
account to make a decision.

In this paper, we show that a standard sequence
to sequence model is an effective parameteriza-
tion of the channel probability. We train the model
on full sentences and apply it to score the source
given an incomplete target sentence. This bases
decoding decisions on scoring the entire source
sequence and it is very simple and effective (§2).
We analyze this approach for various target pre-
fix sizes and find that it is most accurate for large
target context sizes. Our simple noisy channel
approach consistently outperforms strong base-
lines such as online ensembles and left-to-right re-
ranking setups (§3).

2 Approach

The noisy channel approach applies Bayes’ rule
to model p(y|x) = p(x|y)p(y)/p(x), that is, the
channel model p(x|y) operating from the target to
the source and a language model p(y). We do not
model p(x) since it is constant for all y. We com-

https://github.com/pytorch/fairseq/tree/master/examples/noisychannel
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pute the channel model probabilities as follows:

p(x|y) =
|x|X

j

log p(xj |x0, x1, ...xj�1, y)

We refer to p(y|x) as the direct model. A crit-
ical choice in our approach is to model p(x|y)
with a standard Transformer architecture (Vaswani
et al., 2017) as opposed to a model which fac-
tors over target prefixes (Yu et al., 2017). This
setup presents a clear train/test mismatch: we train
p(x|y) on complete sentence-pairs and perform in-
ference with incomplete target prefixes of vary-
ing size k, i.e., p(x|y1, . . . , yk). However, we find
standard sequence to sequence models to be very
robust to this mismatch (§3).

Decoding. To generate y given x with
the channel model, we wish to compute
argmaxy log p(x|y) + log p(y). However,
naı̈ve decoding in this way is computationally
expensive because the channel model p(x|y) is
conditional on each candidate target prefix. For
the direct model, it is sufficient to perform a single
forward pass over the network parameterizing
p(y|x) to obtain output word probabilities for
the entire vocabulary. However, the channel
model requires separate forward passes for each
vocabulary word.

Approximation. To mitigate this issue, we per-
form a two-step beam search where the direct
model pre-prunes the vocabulary (Yu et al., 2017).
For beam size k1, and for each beam, we collect
k2 possible next word extensions according to the
direct model. Next, we score the resulting k1 ⇥ k2

partial candidates with the channel model and then
prune this set to size k1. Other approaches to pre-
pruning may be equally beneficial but we adopt
this approach for simplicity.2 A downside of on-
line decoding with the channel model approach is
the high computational overhead: we need to in-
voke the channel model k1 ⇥ k2 times compared
to just k1 times for the direct model.

Complexity. The model of Yu et al. (2017) fac-
torizes over source and target prefixes. During de-
coding, their model alternates between incremen-
tally reading the target prefix and scoring a source
prefix, resulting in a runtime of O(n+m), where

2 Vocabulary selection can prune the vocabulary to a few
hundred types with no loss in accuracy (L’Hostis et al., 2016).

n and m are the source and target lengths, respec-
tively. In comparison, our approach repeatedly
scores the entire source for each target prefix, re-
sulting in O(mn) runtime. Although our approach
has greater time complexity, the practical differ-
ence of scoring the tokens of a single source sen-
tence instead of just one token is likely to be negli-
gible on modern GPUs since all source tokens can
be scored in parallel. Inference is mostly slowed
down by the autoregressive nature of decoding.
Scoring the entire source enables capturing more
dependencies between the source and target, since
the beginning of the target must explain the entire
source, not just the beginning. This is especially
important when the word order between the source
and target language varies considerably, and likely
accounts for the lower performance of the direct
model of Yu et al. (2017) in comparison to a stan-
dard seq2seq model.

Model combinaton. Since the direct model
needs to be evaluated for pre-pruning, we also in-
clude these probabilities in making decoding de-
cisions. We use the following linear combination
of the channel model, the language model and the
direct model for decoding:

1

t
log p(y|x) + �1

s

⇣
log p(x|y) + log p(y)

⌘
(1)

where t is the length of the target prefix y, s is the
source sentence length and � is a tunable weight.
Initially, we used separate weights for p(x|y) and
p(y) but we found that a single weight resulted in
the same accuracy and was easier to tune. Scal-
ing by t and s makes the scores of the direct and
channel model comparable to each other through-
out decoding. In n-best re-ranking, we have com-
plete target sentences which are of roughly equal
length and therefore do not use per word scores.3

3 Experiments

Datasets. For English-German (En-De) we train
on WMT’17 data, validate on news2016 and test
on news2017. For reranking, we train models with
a 40K joint byte pair encoding vocabulary (BPE;
Sennrich et al. 2016b). To be able to use the lan-
guage model during online decoding, we use the
vocabulary of the langauge model on the target
side. For the source vocabulary, we learn a 40K

3Reranking experiments are also based on separate tun-
able weights for the LM and the channel model. However,
results are comparable to a single weight.
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Figure 1: Comparison of two channel models: a stan-
dard seq2seq model trained on full sentence-pairs and
a model trained on all possible target prefixes with the
full source (prefix-model). We measure accuracy of
predicting the full source with increasing target prefixes
for both models. Results are on news2016.

byte pair encoding on the source portion of the
bitext; we find using LM and bitext vocabularies
give similar accuracy. For Chinese-English (Zh-
En), we pre-process WMT’17 data following Has-
san et al. (2018), we develop on dev2017 and test
on news2017. For IWSLT’14 De-En we follow
the setup of Edunov et al. (2018b) and measure
case-sensitive tokenized BLEU. For WMT De-
En, En-De and Zh-En we measure detokenized
BLEU (Post, 2018).

Language Models. We train two big Trans-
former language models with 12 blocks (Baevski
and Auli, 2018): one on the German newscrawl
data distributed by WMT’18 comprising 260M
sentences and another one on the English
newscrawl data comprising 193M sentences. Both
use a BPE vocabulary of 32K types. We train on
32 Nvidia V100 GPUs with 16-bit floating point
operations (Ott et al., 2018) and training took four
days.

Sequence to Sequence Model training. For En-
De, De-En, Zh-En we use big Transformers and
for IWSLT De-En a base Transformer (Vaswani
et al., 2017) as implemented in fairseq (Ott et al.,
2019). For online decoding experiments, we do
not share encoder and decoder embeddings since
the source and target vocabularies were learned
separately. We report average accuracy of three
random initializations of a each configuration. We
generally use k1 = 5 and k2 = 10. We tune �1,
and a length penalty on the validation set.

3.1 Simple Channel Model

We first motivate a standard sequence to sequence
model to parameterize p(x|y) as opposed to a
model that is trained to operate over prefixes. We
train Transformer models to translate from the tar-
get to the source (En-De) and compare two vari-
ants: i) a standard sequence to sequence model
trained to predict full source sentences based on
full targets (seq2seq). ii) a model trained to predict
the full source based on a prefix of the target; we
train on all possible prefixes of a target sentence,
each paired with the full source (prefix-model).

Figure 1 shows that the prefix-model performs
slightly better for short target prefixes but this ad-
vantage disappears after 15 tokens. On full target
sentences seq2seq outperforms the prefix model
by 5.7 BLEU. This is likely because the prefix-
model needs to learn how to process both long and
short prefixes which results in lower accuracy. The
lower performance on long prefixes is even more
problematic considering our subsequent finding
that channel models perform over-proportionally
well on long target prefixes (§3.4). The seq2seq
model has not been trained to process incomplete
targets but empirically it provides a simple and ef-
fective parameterization of p(x|y).

3.2 Effect of Scoring the Entire Source Given

Partial Target Prefixes

The model of (Yu et al., 2017) uses a latent vari-
able to incrementally score the source for prefixes
of the target. Although this results in a faster run
time, the model makes decoding decisions based
on source prefixes even though the full source
is available. In order to quantify the benefit of
scoring the entire source instead of a learned pre-
fix length, we simulate different fractions of the
source and target in an n-best list reranking setup.

The n-best list is generated by the direct model
and we re-rank the list in setups where we only
have a fraction of the candidate hypothesis and the
source sentence. We report BLEU of the selected
full candidate hypothesis.

Figure 2 shows that for any given fraction of the
target, scoring the entire source (src 1) has better
or comparable performance than all other source
prefix lengths. It is therefore beneficial to have a
channel model that scores the entire source sen-
tence.
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Figure 2: For any given target prefix fraction, scoring
the entire source has the best or comparable perfor-
mance compared to other source prefixes. We show
detokenized BLEU on the dev set of WMT17 Zh-En
with beam 50.

news2016 news2017

DIR 39.0 34.3
DIR ENS 40.0 35.3
DIR+LM 39.8 35.2
CH+DIR+LM 41.0 36.2
- per word scores 40.0 35.1

Table 1: Online decoding accuracy for a direct model
(DIR), ensembling two direct models (DIR ENS) and the
channel approach (CH+DIR+LM). We ablate the impact
of using per word scores. Results are on WMT De-En.
Table 4 in the appendix shows standard deviations.

3.3 Online Decoding

Next, we evaluate online decoding with a noisy
channel setup compared to just a direct model
(DIR) as well as an ensemble of two direct mod-
els (DIR ENS). Table 1 shows that adding a lan-
guage model to DIR (DIR+LM) gives a good im-
provement (Gulcehre et al., 2015) over a single
direct model but ensembling two direct models
is slightly more effective (DIR ENS). The noisy
channel approach (CH+DIR+LM) improves by 1.9
BLEU over DIR on news2017 and by 0.9 BLEU
over the ensemble. Without per word scores, ac-
curacy drops because the direct model and the
channel model are not balanced and their weight
shifts throughout decoding. Our simple approach
outperforms strong online ensembles which illus-
trates the advantage over incremental architec-
tures (Yu et al., 2017) that do not match vanilla
seq2seq models by themselves.

0 10 20 30 40 50
39

40

41

42

Target prefix length

B
LE

U
sc

or
e

CH+DIR+LM
DIR+LM
DIR ENS

Figure 3: Impact of target prefix length for the channel
model (CH+DIR+LM), direct model + LM (DIR+LM)
and a direct ensemble (DIR ENS). We show detokenized
BLEU on WMT De-En news2016 with beam 10.

3.4 Analysis

Using the channel model in online decoding en-
ables searching a much larger space compared to
n-best list re-ranking. However, online decoding is
also challenging because the channel model needs
to score the entire source sequence given a par-
tial target which can be hard. To measure this,
we simulate different target prefix lengths in an n-
best list re-ranking setup. The n-best list is gen-
erated by the direct model and we re-rank it for
different target prefixes of the candidate hypothe-
sis. As in 3.2, we measure BLEU of the selected
full candidate hypothesis. Figure 3 shows that the
channel model enjoys much larger benefits from
more target context than re-ranking with just the
direct model and an LM (DIR+LM) or re-ranking
with a direct ensemble (DIR ENS). This experi-
ment shows the importance of large context sizes
for the channel approach to work well. It indicates
that the channel approach may not be able to ef-
fectively exploit the large search space in online
decoding due to the limited conditioning context
provided by partial target prefixes.

3.5 Re-ranking

Next, we switch to n-best re-ranking where we
have the full target sentence available compared
to online decoding. Noisy channel model re-
ranking has been used by the top ranked entries
of the WMT 2019 news translation shared task
for English-German, German-English, Englsh-
Russian and Russian-English (Ng et al., 2019). We
compare to various baselines including right-to-
left sequence to sequence models which are a pop-
ular choice for re-ranking and regularly feature in
successful WMT submissions (Deng et al., 2018;
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5 10 50 100

DIR 39.1 39.2 39.3 39.2
DIR ENS 40.1 40.2 40.3 40.3

DIR+LM 40.0 40.2 40.6 40.7
DIR+RL 39.7 40.1 40.8 40.8
DIR+RL+LM 40.4 40.9 41.6 41.8
CH+DIR 39.7 40.0 40.5 40.5
CH+DIR+LM 40.8 41.5 42.8 43.2

Table 2: Re-ranking BLEU with different n-best list
sizes on news2016 of WMT De-En. We compare to
decoding with a direct model only (DIR) and decoding
with an ensemble of direct models (DIR ENS). Table 5
in the appendix shows standard deviations.

WMT
De-En

WMT
En-De

WMT
Zh-En

IWSLT
De-En

DIR 34.5 28.4 24.4 33.3
DIR ENS 35.5 29.0 25.2 34.5

DIR+LM 36.0 29.4 24.9 34.2
DIR+RL 35.7 29.3 25.3 34.4
DIR+RL+LM 36.8 30.0 25.4 34.9
CH+DIR 35.1 28.3 24.8 34.0
CH+DIR+LM 37.7 30.5 25.6 35.5

Table 3: Re-ranking accuracy with k1 = 50 on four
language directions on the respective test sets. See Ta-
ble 6 in the appendix for standard deviations.

Koehn et al., 2018; Junczys-Dowmunt, 2018).
Table 2 shows that the noisy channel model out-

performs the baseline (DIR) by up to 4.0 BLEU
for very large beams, the ensemble by up to 2.9
BLEU (DIR ENS) and the best right-to-left config-
uration by 1.4 BLEU (DIR+RL+LM). The chan-
nel approach improves more than other methods
with larger n-best lists by adding 2.4 BLEU from
k1 = 5 to k1 = 100. Other methods improve
a lot less with larger beams, e.g., DIR+RL+LM
has the next largest improvement of 1.4 BLEU
when increasing the beam size but this is still sig-
nificantly lower than for the noisy channel ap-
proach. Adding a language model benefits all set-
tings (DIR+LM, DIR+RL+LM, CH+DIR+LM) but
the channel approach benefits most (CH+DIR vs
CH+DIR+LM). The direct model with a language
model (DIR+LM) performs better than for on-
line decoding, likely because the constrained re-
ranking setup mitigates explaining away effects
(cf. Table 1).

Interestingly, both CH+DIR or DIR+LM
give only modest improvements compared to
CH+DIR+LM. Although previous work demon-
strated that reranking with CH+DIR can improve
over DIR, we show that the channel model is
important to properly leverage the language
model without suffering from explaining away
effects (Xu and Carpuat, 2018; Wang et al., 2017).
Test results on all language directions confirm that
CH+DIR+LM performs best (Table 3).

4 Conclusion

Previous work relied on incremental channel mod-
els which do not make use of the entire source
even though it is available and, as we demonstrate,
beneficial. Standard sequence to sequence mod-
els are a simple parameterization for the chan-
nel probability that naturally exploits the entire
source. This parameterization outperforms strong
baselines such as ensembles of direct models and
right-to-left models. Channel models are particu-
larly effective with large context sizes and an in-
teresting future direction is to iteratively refine the
output while conditioning on previous contexts.
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