
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 5236–5246,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

5236

On Efficient Retrieval of Top Similarity Vectors

Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, Ping Li
Cognitive Computing Lab

Baidu Research USA
1195 Bordeaux Dr, Sunnyvale, CA 94089, USA

10900 NE 8th St, Bellevue, WA 98004, USA
{shulongtan,zhixinzhou,v xuzhaozhuo,liping11}@baidu.com

Abstract

Retrieval of relevant vectors produced by rep-
resentation learning critically influences the ef-
ficiency in natural language processing (NLP)
tasks. In this paper we demonstrate an efficient
method for searching vectors via a typical non-
metric matching function: inner product. Our
method, which constructs an approximate In-
ner Product Delaunay Graph (IPDG) for top-1
Maximum Inner Product Search (MIPS), trans-
forms retrieving the most suitable latent vec-
tors into a graph search problem with great
benefits of efficiency. Experiments on data
representations learned for different machine
learning tasks verify the outperforming effec-
tiveness and efficiency of the proposed IPDG.

1 Introduction

With the popularity of representation learning meth-
ods, such as Word2vec (Mikolov et al., 2013a),
words are represented as real-valued embedding
vectors in the semantic space. Therefore, retrieval
of similar word embeddings is one of the most ba-
sic operations in natural language processing with
wide applicability in synonym extraction (Yoon
et al., 2017), sentence alignment (Levy et al., 2017),
polysemous word learning (Sun et al., 2017) and
semantic search for documents related to a query.

In this work, we address on efficient retrieval
of similar word embeddings via inner product (dot
product) similarity. Inner product is a general se-
mantic matching function with applications in neu-
ral probabilistic language models (Bengio et al.,
2003), machine translation (Gao et al., 2014), ques-
tion answering (Lee et al., 2015), and attention
mechanisms (Vaswani et al., 2017). For normal-
ized vectors, inner product is equivalent to cosine
similarity, which is a common semantic textual
similarity utilized in semantic classification and
search (Sahami and Heilman, 2006; Ramage et al.,
2009; Agirre et al., 2012; Huang et al., 2013; Liu

et al., 2015; Faruqui et al., 2016; Sultan et al., 2016;
Köper and im Walde, 2018; Gong et al., 2018), Re-
lation Extraction (RE) (Plank and Moschitti, 2013)
and text coherence evaluation (Putra and Toku-
naga, 2017). For un-normalized vectors, although
cosine similarity is still widely applied, the final
matching scores of word embeddings are usually
weighted (Acree et al., 2016; Srinivas et al., 2010)
by ranking-based coefficients (e.g., the side infor-
mation), which transforms the problem back to
search via inner product (see Eq. (2)).

Formally, retrieving the most similar word with
the inner product ranking function is a Maximum
Inner Product Search (MIPS) problem. MIPS is
a continuously addressed topic (Bachrach et al.,
2014; Shrivastava and Li, 2014; Kalantidis and
Avrithis, 2014; Shrivastava and Li, 2015; Guo et al.,
2016; Wu et al., 2017), and it has non-trivial differ-
ences with traditional Approximate Nearest Neigh-
bor Search (ANNS) (Friedman et al., 1975, 1977;
Indyk and Motwani, 1998) problems. ANNS is an
optimization problem of finding the close points to
the query point in a given set. Usually, the “close”
means smaller in metric distances such as cosine or
Euclidean distance, which have obvious geometri-
cal implications. However, inner product is a typi-
cal non-metric measure, which distinguishes MIPS
from traditional ANNS problems. Thus, methods
designed for ANNS may have performance limita-
tions in MIPS. For NLP tasks, such as retrieving
relevant word embeddings by cosine and Euclidean
distances, different ANNS methods have been stud-
ied (Sugawara et al., 2016). To our best knowledge,
there is little literature on MIPS for retrieving word
or language representations.

Currently, search on graph methods, such
as Hierarchical Navigable Small World graphs
(HNSW), is regarded as the state-of-the-art ANNS
method (Malkov and Yashunin, 2018). Perfor-
mance evaluation has demonstrated that HNSW is

5237

able to strongly outperform other methods ANNS
benchmarks for metric distances. Meanwhile, the
graph structure also has the flexibility of defin-
ing measures on edges, making HNSW feasible
for MIPS. Morozov et al (Morozov and Babenko,
2018) conduct HNSW for MIPS and achieve pos-
itive results and also they introduce concepts of
Delaunay Graph to explain similarity graph based
methods for MIPS. Nevertheless, the link between
HNSW and Delaunay Graph is still tenuous. Al-
though global optima of MIPS will be retrieved by
Delaunay Graph, there are little evidence showing
that HNSW approximates proper Delauny Graph
for inner product. How to provide a solid graph-
based MIPS method is still an open question.

In this paper, we propose a new search on graph
method, namely Inner Product Delaunay Graph
(IPDG), for MIPS. Our key contributions can be
summarized as follows:

• Design an edge selection algorithm specifically
for inner product that reduces useless edges on
graph and thus improves the searching efficiency.

• Propose a two rounds graph construction algo-
rithm for effectively approximating Delaunay
Graph under inner product.

• Empirically evaluate the effectiveness and effi-
ciency. Provide a state-of-the-art MIPS method
for similarity search in word embedding datasets.

The organization of this paper is as below: in the
next section, we will introduce the research back-
ground. In Section 3, the approximate Inner Prod-
uct Delaunay Graph (IPDG) will be introduced.
For Section 4, we explore the effectiveness and ef-
ficiency of IPDG in maximum inner product word
retrieval and compare it with state-of-the-art MIPS
methods. Section 5 concludes the whole paper.

2 Background

In this section, we will first introduce the definition
of Maximum Inner Product Search (MIPS) prob-
lem and review state-of-the-art methods for MIPS.
Later a theoretical solution for MIPS by searching
on the Delaunay Graphs will be summarized.

2.1 Problem Statement
In machine learning tasks, embedding methods
such as Word2vec (Mikolov et al., 2013a,b),
Glove (Pennington et al., 2014) or deep collab-
orative filtering (Xu et al., 2018) learn representa-
tions of data as dense distributed real-value vectors.

Formally, for latent space X ⊂ Rd, given an ar-
bitrary query vector q ∈ X and a set of vectors
S = {x1, . . . , xn} ⊂ X , vector similarity is de-
fined as a continuous symmetric matching function,
f : X × X → R. The goal of similar vector
retrieval is to find:

arg max
x∈S

f(x, q). (1)

In our paper, we specially discuss the non-metric
similarity measure, inner product:

f(x, q) = x>q, x, q ∈ X = Rd\{0}.

Without loss of the generality, we can always as-
sume ‖q‖ = 1. We are not interested in the zero
vector since its inner product with any vector is al-
ways zero. The problem in Eq. (1) with respect to
the inner product is often referred to as Maximum
Inner Product Search (MIPS) in literature.

The weighted cosine ANNS problem can also be
viewed as the MIPS problem. We consider a data
set S = {(zi, wi) : i ∈ [n]} where wi is an real
scalar and zi is a vector.

w cos(z, q) = w
z>q

‖z‖‖q‖
=

wz

‖z‖
> q

‖q‖
, (2)

where ‖q‖ = 1. As can be seen, weighted ANNS
w.r.t. cosine similarity is equivalent to MIPS by
letting xi = wizi/‖zi‖.

2.2 Related Works
Previous approaches for Maximum Inner Product
Search (MIPS) can be mainly categorized into: (1)
reducing MIPS to ANNS; (2) non-reduction meth-
ods. Reduction methods add wrappers on indexed
data and queries asymmetrically and reduce the
MIPS problem to ANNS in metric spaces (Shri-
vastava and Li, 2015; Bachrach et al., 2014). For
example, given the query q, the indexed data S =
{x1, ..., xn} and Φ = maxi ||xi||, the wrapper can
be defined as:

P (x) = [x/Φ;
√

1− ||x||2/Φ2], (3)

Q(q) = [q; 0]. (4)

It is not difficult to prove that searching on the new
data by cosine or `2-distance is equal to search
on the original data by inner product. Recently,
researchers found that methods above can be im-
proved further, based on the observation of the long
tail distribution in data norms (Huang et al., 2018;

5238

Yan et al., 2018). New approaches are proposed
by adding wrappers for each norm range, such as
Range-LSH (Yan et al., 2018). With reductions
like the above one, any ANNS methods can be ap-
plied for MIPS. However, it was shown that there
are performance limitations for the reduction MIPS
methods (Morozov and Babenko, 2018).

Recently, more and more non-reduction methods
are proposed, specifically for MIPS. Guo et al. pro-
posed an MIPS method based on Product Quanti-
zation (PQ) (Guo et al., 2016). Yu et al. used an
upper bound of inner product as the approximation
of MIPS and designed a greedy search algorithm to
find this approximation, called Greedy-MIPS (Yu
et al., 2017). Graph-based non-reduction MIPS
method, ip-NSW, was firstly introduced in Moro-
zov and Babenko (2018) and the theoretical basis
for conducting MIPS by similarity graph was also
provided. Continuing of the advantages of sim-
ilarity graph based methods for ANNS, ip-NSW
showed superior performance for MIPS.

2.3 Delaunay Graph

Delaunay Graph plays an important role in the sim-
ilarity search. The properties and construction of
`2-Delaunay Graph have been considered in liter-
ature (Aurenhammer, 1991; Cignoni et al., 1998).
Indeed, one can generalize the definition to any real
binary function, including inner product.

Definition 2.1. The Voronoi cell Ri with respect
to f and xi is the set

Ri := {q ∈ X : f(xi, q) ≥ f(x, q) for all x ∈ S}.

Moreover, x ∈ S is an extreme point if it is associ-
ated with a nonempty Voronoi cell.

Definition 2.2. The Delaunay Graph G with re-
spect to f and S is an undirected graph with ver-
tices S satisfying {xi, xj} ∈ G if and only if
Ri ∩Rj 6= ∅.

An example of Voronoi cells and corresponding
Delaunay Graph in inner product space is shown
in Figure 1. Regions in different colors correspond
to Voronoi cells for extreme points (red ones). De-
launay Graph connects extreme points. Different
from metric similarities (e.g. `2-norm), the Voronoi
cells of some data points with respect to inner prod-
uct are possibly empty. By Definition 2.2, a data
point is isolated (i.e., have no incident edges) if its
Voronoi cell is empty. As we can see in Figure 1,
there are many isolated points (blue ones). The

Figure 1: This shows the relation between Delaunay Graph
and Voronoi cells in inner product space. The red dots are
extreme points of each Voronoi cell. Delaunay Graph con-
nects extreme points with black edges. If we search on this
dataset, every query has a maximum inner product with one
of these extreme points (i.e., red ones).

proportion of extreme points is relatively small in
general. And Theorem 2.1 will show that only ex-
treme points can achieve a maximum inner product
score for any nonzero query.

The definition of an extreme point is equivalent
to the one in (Barber et al., 1996), i.e., x ∈ S is
extreme if and only if x is on the boundary of the
convex hull of S. In the two dimensional cases, the
edges form the boundary of the convex hull, which
is also shown in Figure 1.

2.4 Search on Delaunay Graph
Searching on the Delaunay Graph is demon-
strated effective for similarity search (Morozov and
Babenko, 2018). In the inner product case, given
any query vector q ∈ X , we start from an extreme
point, then move to its neighbor that has a larger in-
ner product with q. We repeat this step until getting
an extreme point has a larger inner product with
q than all its neighbors and then we return it. It
can be demonstrated this returned local optimum
is actually the global optimum.

Generally, for any searching measure f , if the
corresponding Voronoi cells are connected, then
the local optimum returned by the greedy search is
also the global optimum. Formally the statement
can be summarized as below. The proof can be
found in Morozov and Babenko (2018).

Theorem 2.1. Suppose f satisfies that the Voronoi
cells Ri with respect to any subsets of S (including
S itself) are connected on X , and G is the Delaunay
Graph with respect to f and some S, then for q ∈
X , a local maximum in the greedy search starting

5239

from an extreme point, that is, xi ∈ S satisfies

f(xi, q) ≥ max
x∈N(xi)

f(x, q) (5)

where N(xi) = {x ∈ S : {xi, x} ∈ G}

is a global maximum.

Suppose the assumptions (i.e., connected
Voronoi cells) in Theorem 2.1 hold, we say search-
ing on Delaunay Graph can find the global maxi-
mum. It is easy to check that the assumptions hold
for the inner product case since the Voronoi cells
w.r.t. the inner product are either empty or a convex
cone, so they are connected. Then we can claim
that searching on Delaunay Graph in inner product,
the vector in S that has the maximum inner product
with the query vector will be retrieved.

3 Inner Product Delaunay Graph

Although the Delaunay Graph has demonstrated
its potentials in similarity search, the direct con-
struction of the Delaunay Graph in large scale and
high dimensional datasets is unfeasible due to the
exponentially growing number of edges in high
dimension. To remedy this issue, practical algo-
rithms usually approximate Delaunay Graphs. In
this section, we will present the new proposed al-
gorithm for constructing approximate Delaunay
Graph in inner product space, namely Inner Prod-
uct Delaunay Graph (IPDG). Two key features of
our algorithm will be introduced first: i) edge se-
lection specifically for inner product; and ii) the
two rounds graph construction. And then we will
conduct a case study on the toy dataset to show
the effectiveness of IPDG in constructing better
approximate Delaunay Graphs for inner product.

3.1 Edge Selection for Inner Product
To balance the effectiveness (retrieval of the nearest
neighbor) and the efficiency (complete the process
within limit time) of the retrieval, some empirical
tricks are usually applied in previous search on
graph methods: a) use directed edges instead of
undirected edges; b) restrict the degree of outgoing
edges for each node; and c) select more diverse
outgoing edges (Malkov and Yashunin, 2018; Mo-
rozov and Babenko, 2018).

Specifically, for the inner product case, ip-NSW
proposed in (Morozov and Babenko, 2018) applies
all tricks listed above (although the authors did not
mention it in the paper, the implementation did
inherit all features from HNSW). We found that

the edge selection method is vital for the trade-off
of effectiveness and efficiency in searching. How-
ever, the existing edge selection techniques used
in HNSW and ip-NSW are actually designed for
metric distances, which are inapplicable for the
non-metric measure, e.g., inner product.

q

a
b

c Origin

a q

b

(a) (b)

Figure 2: The example of edge selection used in constructing
approximate Delaunay Graph. (a) the selection method for
metric spaces used in HNSW and ip-NSW. c is selected while
b is abandoned since it is not diverse from a. (b) the edge
selection in IPDG. b will be ignored because a is a “super”
point of it, which has been selected.

As shown in Figure 2 (a), the edge selection
for metric spaces works as below: for each new
inserting node (or edge updating node) q and its
nearest neighbor set (candidates) from Algorithm 2,
a directed edge from q to the nearest neighbor a is
constructed first. For other candidates, say b, the
edge selection algorithm will check whether:

dis(q, b) < dis(a, b), (6)

where dis(· , ·) is the distance of two vectors,
such as `2-distance or angular distance. If it is true,
there will be an edge from q to b, otherwise, b will
be abandoned in the selection. By this way, in a
restricted degree, the new inserting node will have
diverse outgoing neighbors. As shown in Figure 2
(a), b is not selected while c is selected.

It is obvious that the edge selection method for
metric spaces is not suitable for inner product. As
presented in Figure 2 (b), although q>b > a>b
(corresponding to dis(q, b) < dis(a, b)), b should
not be selected, since a>b > b>b and for any
query vector q′ with all positive elements, we have
q′>a > q′>b. This means that b is dispensable in
the top-1 MIPS task and the edge from q to b should
not be constructed. To solve this issue, we propose
a new edge selection method by checking whether:

b>b > a>b. (7)

If it is true, we will select b. Otherwise, we will skip
b since a is a “super” point of b and b is dispensable.
In this way, each inserting node will trend to con-
nect with extreme points but not other short norm

5240

vectors. The detailed algorithm is summarized in
Algorithm 1 Lines 17− 28.

Algorithm 1 IPDG Construction
1: Input: dataset S, the size of candidate size N ,

maximum outgoing degree of graph M .
2: Initialize graph G = ∅. round = 0
3: while round < 2 do
4: round = round + 1
5: for each x in S do
6: A← GREEDY SEARCH(x,G,N).
7: B ← EDGE SELECTION(A,M).
8: Add edges −→xy to G for every y ∈ B.
9: for each y in B do . Edge Updating

10: C ← {z ∈ S : −→yz ∈ G} ∪ {x}.
11: D ← EDGE SELECTION(C,M).
12: Remove original outgoing edges of

y, and add edges −→yz to G for z ∈ D.
13: end for
14: end for
15: end while
16: Output: graph G.
17: function EDGE SELECTION(A,M)
18: B = ∅.
19: for y ∈ A do
20: if y>y ≥ maxz∈B y>z then
21: B = B ∪ {y}.
22: end if
23: if |B| ≥M then
24: Break.
25: end if
26: end for
27: Output: B.
28: end function

3.2 Two-Round Construction
Based on the new edge selection method introduced
above (and the reverse edge updating, see Algo-
rithm 1 Lines 9 − 13), nodes with larger norms
will have higher probabilities to be selected as out-
going neighbors. So extreme points of the dataset
will have more incoming edges and non-extremes
points will more likely have no incoming edges in
general. This is consistent with the true Delaunay
Graphs in inner product space as previously shown
in Figure 1.

However, at beginning of the graph construc-
tion, relatively “super” points are not true extreme
points. Vectors coming in later may be better can-
didates (i.e., true extreme points). This issue will
damage the overall graph quality and affect the

final searching performance. A straightforward
method may probably help: inserting data points
with larger norms first. We tried this trick but it
did not work well. The reason is that high norm
points are not necessarily extreme points. Norms
of extreme points for some Voronoi cells may be
relatively small. The top large norm points may be
just from one or a few Voronoi cells. In high dimen-
sional data, it is difficult to find true extreme points.
Alternatively, we design a two rounds construc-
tion algorithm to solve this issue and exploit the
additional round construction to update edges, es-
pecially for nodes inserted in the beginning. In this
way, the graph construction algorithm can detect
extreme points automatically. We tried to conduct
this two rounds construction method for ip-NSW
too, but there are no significant improvements.

We share the graph construction algorithm for
IPDG, including the edge selection function in Al-
gorithm 1. After the graph being constructed, we
perform MIPS via a greedy search algorithm pre-
sented in Algorithm 2. The greedy search algo-
rithm is also used in the graph construction for
candidates collecting.

Algorithm 2 GREEDY SEARCH(q,G,N))

1: Input: The query q, the index graph G, the
size of candidate set N .

2: Randomly choose a node with outgoing edges,
say y. A ← {y}. Mark y as checked and the
rest as unchecked. .
In the practical implementation, A is a priority
queue for efficiency. We note A as a set here
to simplify the expression.

3: while not all nodes in G are checked do
4: A ← A ∪ {z ∈ S : −→yz ∈ G, y ∈

A, z unchecked}
5: Mark nodes in A as checked.
6: A ← top N candidates in A ∪ Z in de-

scending order of inner product with q.
7: if A does not update then
8: Break.
9: end if

10: end while
11: Output: A.

3.3 A Toy Example

To further explain the differences between the pro-
posed method and previous state-of-the-art, ip-
NSW, we conduct a case study on a toy example

5241

4 3 2 1 0 1 2 3

3

2

1

0

1

2

3

4

(a)

4 3 2 1 0 1 2 3

3

2

1

0

1

2

3

4

(b)

4 3 2 1 0 1 2 3

3

2

1

0

1

2

3

4

(c)
Figure 3: This is a toy example for approximate inner product Delaunay Graph construction (green lines are edges here) and red
dots are extreme points too. (a) is the true Delaunay Graph. (b) is an approximation by IPDG. (c) is built by ip-NSW. Note that
IPDG and ip-NSW construct directed edges instead of undirected ones for the efficiency consideration. Only edges for nodes
with incoming edges are shown in (b) and (c).

data which is shown in Figure 3. We randomly
generate 400 two dimensional vectors following
distribution Normal(0, I2). Figure 3 (a) shows the
true Delaunay Graph for inner product. Red nodes
correspond to extreme points of this dataset. Fig-
ure 3 (b) and (c) are graphs built by the proposed
IPDG and ip-NSW, respectively. The parameter N
is set to 10 and M is set to 2 for both algorithms in
this study. Note that graphs built by IPDG and ip-
NSW are directed graphs. To give better showing
out, we only keep edges corresponding to nodes
with incoming edges and other edges are ignored.
Nodes without incoming edges will not be visited
and do not affect the searching process, thus can
be removed after the graph construction. As can be
seen, the graph built by IPDG is more like the true
Delaunay Graph and is more efficient for MIPS,
while the graph built by ip-NSW have too many
useless edges as shown in Figure 3 (c).

4 Experiments

In this section, we evaluate the proposed IPDG by
comparing it with state-of-the-art MIPS methods.

4.1 Datasets
We used the following three pre-trained embed-
dings to investigate the performance of IPDG in
MIPS for similar word searching. For each word
embedding datasets, we random select 10000 vec-
tors as queries and others as the base data.

fastTextEn and fastTextFr are 300 dimensional
English and French word embeddings trained on
Wikipedia using fastText (Joulin et al., 2016).

GloVe50 are 50 dimensional word embeddings
trained on Wikipedia2014 and Gigaword5 using
GloVe (Pennington et al., 2014).

As most state-of-the-art MIPS algorithms evalu-
ate their performance on recommendation datasets,
we also benchmark IPDG on three recommendation
datasets: Amazon Movie (Amovie), Yelp and Net-
flix. We use the Matrix Factorization (MF) method
in (Hu et al., 2008) to obtain latent vectors of user
and item. Then, in the retrieval process, user vec-
tors are regarded as queries and the item vector that
has the highest inner product score with each query
should be returned by the MIPS algorithm.

Datasets Dimension # Base Data
fastTextEn 300 989873
fastTextFr 300 1142501
GloVe 50 1183514
Amovie 64 104708
Yelp 64 25815
Netflix 50 17770

Table 1: Statistics of the datasets.

Statistics of the six datasets are listed in Table 1.
They vary in dimension (300, 64 and 50), sources
(recommendation ratings, word documents) and ex-
traction methods (fastText, GloVe and MF), which
is sufficient for fair comparison. The ground truth
is the top-1 nearest neighbor by inner product.

4.2 Baselines
In this paper, we compare IPDG with state-of-the-
art MIPS methods. Firstly, reduction methods can
be baselines. Some popular ANNS open source
platforms utilize the reduction trick to solve MIPS,
such as Annoy1. As introduced in Section 2.2, with
reductions, any ANNS methods can be applied for

1https://github.com/spotify/annoy

5242

0.6 0.7 0.8 0.9 1

Avg. Recall

0

2

4

6

8
Q

u
e
ri
e
s
 P

e
r

S
e
c
o
n
d

104 fastTextEn

IPDG

HNSW-Wrapper

Greedy-MIPS

ip-NSW

Range-LSH

0.6 0.7 0.8 0.9 1

Avg. Recall

0

2

4

6

8

Q
u
e
ri
e
s
 P

e
r

S
e
c
o
n
d

104 fastTextFr

IPDG

HNSW-Wrapper

Greedy-MIPS

ip-NSW

Range-LSH

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

1

2

3

Q
u
e
ri
e
s
 P

e
r

S
e
c
o
n
d

104 GloVe

IPDG

HNSW-Wrapper

Faiss-PQ

Greedy-MIPS

ip-NSW

Range-LSH

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

5

10

15

Q
u
e
ri
e
s
 P

e
r

S
e
c
o
n
d

104 Amovie

IPDG

HNSW-Wrapper

Faiss-PQ

Greedy-MIPS

ip-NSW

Range-LSH

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

5

10

15

Q
u
e
ri
e
s
 P

e
r

S
e
c
o
n
d

104 Yelp
IPDG

HNSW-Wrapper

Faiss-PQ

Greedy-MIPS

ip-NSW

Range-LSH

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

0.5

1

1.5

2

Q
u
e
ri
e
s
 P

e
r

S
e
c
o
n
d

105 Netflix

IPDG

HNSW-Wrapper

Faiss-PQ

Greedy-MIPS

ip-NSW

Range-LSH

Figure 4: Recall vs. Time curves of for all methods in top-1 MIPS. Results for Faiss-PQ on fastTextEn and fastTextFr are not
shown since they cannot produce recalls greater than 0.6. Best results are in upper right corners.

MIPS. In this line, we choose HNSW (Malkov and
Yashunin, 2018) (referred to as HNSW-Wrapper)
as the baseline and neglect other alternatives since
HNSW is usually regarded as the most promising
method for ANNS in metric spaces. We exploit the
original implementation of HNSW2 and add the
wrapper introduced in Section 2.2.

Range-LSH (Yan et al., 2018) is also an reduc-
tion MIPS method and considers norm distribution
of the data. The original implementation3 is used.

Faiss-PQ4 is a popular open source ANNS plat-
form from Facebook, which is mainly implemented
by Product Quantization (PQ) techniques. It con-
tains MIPS as one component.

Greedy-MIPS is an MIPS algorithm from Yu
et al. (2017). We use the original implementation5.

ip-NSW is a state-of-the-art MIPS algorithm
proposed in (Morozov and Babenko, 2018).6.

4.3 Experimental Settings

There are two popular ways to evaluate
ANNS/MIPS algorithms: i) Recall vs. Time;
ii) Recall vs. Computations. Recall vs. Time
reports the number of queries an algorithm can
process per second at each recall level. Recall vs.
Computations reports the amount/percentage of
pairwise distance/similarity computations that the

2https://github.com/nmslib
3https://github.com/xinyandai/similarity-search
4https://github.com/facebookresearch/faiss
5https://github.com/rofuyu/exp-gmips-nips17
6https://github.com/stanis-morozov/ip-nsw

ANNS/MIPS algorithm costs at each recall level.
Both evaluation indicators have their own pros
and cons. Recall vs. Time is straightforward but
it may introduce bias in implementation. Recall
vs. Computations is beyond implementation
but it does not consider the cost of different
index structures. We will show both of these
perspectives in the following experiments for the
comprehensive evaluation.

All comparing methods have tunable parameters.
In order to present a fair comparison, we vary all
parameters over a fine grid for all methods. For
each algorithm in each experiment, we will have
multiple points scattered on the plane. To plot
curves, we first find out the best result, maxx, along
with the x-axis (i.e., Recall). Then 100 buckets are
produced by splitting the range from 0 to maxx
evenly. For each bucket, the best result along the y-
axis (e.g., the biggest amount of queries per second
or the lowest percentage of computations) is chosen.
If there are no data points in the bucket, the bucket
will be ignored. In this way, we shall have multiple
pairs of data for drawing curves. All time-related
experiments were performed on a 2X 3.00 GHz
8-core i7-5960X CPU server with 32GB memory.

4.4 Experimental Results
We first show experimental results for all compari-
son algorithms from the view of Recall vs. Time,
which are shown in Figure 4. Overall, the proposed
method IPDG performs consistently and signifi-
cantly better than baselines on all six datasets. As

5243

0.6 0.7 0.8 0.9 1

Avg. Recall

0

1

2

3

4
%

 C
o

m
p

u
ta

ti
o

n
s

10-3 fastTextFr

IPDG

ip-NSW

Range-LSH

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Avg. Recall

0

0.002

0.004

0.006

0.008

0.01

%
 C

o
m

p
u
ta

ti
o
n
s

GloVe

IPDG

ip-NSW

Range-LSH

0.6 0.7 0.8 0.9 1

Avg. Recall

0

0.005

0.01

0.015

0.02

%
 C

o
m

p
u

ta
ti
o

n
s

Amovie

IPDG

HNSW-Wrapper

ip-NSW

Range-LSH

Figure 5: Recall vs. Computations curves in top-1 MIPS. Note that it is unable to show results for HNSW-Wrapper on fastTextFr
and Glove in the showing scope. Best results are in lower right corners.

can be seen, some baselines show promising per-
formance on partial datasets but they may work
much worse on other datasets. For example, on
lower dimensional datasets (i.e., the last four fig-
ures of Figure 4), ip-NSW work well but it fails
on high dimensional datasets (i.e., fastTextEn and
fastTextFr). Greedy-MIPS shows advantages on
high dimensional datasets while becomes worse
on some lower dimensional datasets, such as Net-
flix and GloVe. Among all methods, only IPDG
works consistently well on all datasets which shows
its effectiveness and robustness. Range-LSH per-
forms badly in these experiments. The main rea-
son is that Range-LSH does not have a good “bud-
get” setting, similar to the budget in Greedy-MIPS
and the Nsearch parameter in graph-based meth-
ods. HNSW-Wrapper does not work comparably
with IPDG either, especially on word embedding
datasets. On some recall levels, say higher than
0.5, searching by HNSW-Wrapper is extremely
slow (see the first three figures). It is clear that
HNSW-Wrapper is far from state-of-the-art in chal-
lenging MIPS tasks, such as larger or higher di-
mensional vector datasets. The PQ based method,
Faiss-PQ, works badly on all datasets since quanti-
zation codes can speedup the retrieval while may
largely reduce the search performance, especially
for the challenging top-1 MIPS problem. Note that
results for Faiss-PQ on fastTextEn and fastTextFr
are not shown in Figure 4 since they cannot produce
recalls greater than 0.6.

We also show experimental results by Recall
vs. Computations in Figure 5. Greedy-MIPS and
Faiss-PQ cannot be evaluated from this view and
the other four methods are explored here. Due to
the limited space, only results on partial datasets
are represented. As can be seen, only IPDG and ip-
NSW work consistently well on all shown datasets.
HNSW-Wrapper and Range-LSH work compara-
bly with the other two methods on the recommenda-

tion dataset, Amovie, while performs much worse
on the word embedding dataset, fastTextFr and
GloVe. It is even unable to show the result for
HNSW-Wrapper on fastTextFr and Glove in the
showing scope. For IPDG and ip-NSW, they share
similar index structures, it is fair to compare their
computation amount for each query. To get a simi-
lar recall, IPDG requires much less inner product
computation. For example, on fastTextFr, to reach
the recall at 95%, ip-NSW requires about 0.3%
computations while IPDG only needs 0.07% com-
putations. This also demonstrates the efficiency of
vector inner product retrieval by IPDG.

4.5 More Comparison with ip-NSW

Datasets ip-NSW IPDG
fastTextEn 144339 (14.6%) 100138 (10.1%)
fastTextFr 378875 (33.2%) 250750 (21.9%)
GloVe 622080 (52.6%) 437378 (37.0%)
Amovie 32434 (31.0%) 12985 (12.4%)
Yelp 5224 (20.2%) 1871 (7.2%)
Netflix 17154 (96.5%) 14867 (83.7%)

Table 2: Number and percentage of nodes with incoming
edges for graphs built by ip-NSW and IPDG.

In this section, we will conduct a study by com-
paring the proposed IPDG and its closely related
method ip-NSW on the index graph quality. The
evaluation measure is the number of nodes with
incoming edges. Intuitively, only extreme points
of each dataset are useful for top-1 MIPS retrieval.
Non-extreme points could be ignored in graph con-
struction (i.e., without incoming edges so will not
be visited in searching). Results for N = 100 and
M = 16 are shown in Table 2. As can be seen,
the graphs built by IPDG have much fewer nodes
with incoming edges, which is consistent with the
toy example introduced above. The reason can be

5244

explained as below. The finely designed edge selec-
tion method in IPDG trends to select extreme points
as outgoing neighbors for each newly inserted node
or each edge updating node (see Algorithm 1 Lines
9−13). Meanwhile, extreme points will have more
opportunities to keep incoming edges in the edge
updating and the second round graph construction.
While non-extreme points will lose their incoming
edges in these processes.

5 Conclusion and Future Work

Fast similarity search for data representations via
inner product is a crucial and challenging task
since it is one of the basic operations in machine
learning algorithms and recommendation meth-
ods. To remedy this issue, we propose a search
on graph method, namely Inner Product Delaunay
Graph (IPDG), for Maximum Inner Product Search
(MIPS) in embedded latent vectors. IPDG pro-
vides a better approximation to Delaunay Graphs
for inner product than previous methods and is
more efficient for the MIPS task. Experiments on
extensive benchmarks demonstrate that IPDG out-
performs previous state-of-the-art MIPS methods
in retrieving latent vectors under inner product.

In this paper, we improve the top-1 MIPS per-
formance by graph-based index. In the future, we
will try to move the state-of-the-art frontier further,
not only for top-1 MIPS but also for top-n, n > 1,
MIPS results. Besides of metric measures (e.g., `2-
distance and cosine similarity) and inner product,
more complicated measures has been studied, for
example (Tan et al., 2019). It would be interesting
to adopt these measures in NLP tasks. Another
promising direction is to adopt a GPU-based sys-
tem for fast ANNS or MIPS, which has been shown
highly effective for generic ANNS tasks (Li et al.,
2012; Johnson et al., 2017; Zhao et al., 2019). De-
veloping GPU-based algorithms for MIPS is still a
topic which has not been fully explored.

Acknowledgement

The authors would like to sincerely thank the
anonymous reviewers of NAACL 2019 and
EMNLP 2019, for their helpful comments, which
has improved the quality of this paper.

References
Brice Acree, Eric Hansen, Joshua Jansa, and Kelsey

Shoub. 2016. Comparing and evaluating cosine sim-
ilarity scores, weighted cosine similarity scores and
substring matching. Technical report.

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-
lot on semantic textual similarity. In Proceedings of
the First Joint Conference on Lexical and Computa-
tional Semantics-Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Pro-
ceedings of the Sixth International Workshop on Se-
mantic Evaluation, pages 385–393. Association for
Computational Linguistics.

Franz Aurenhammer. 1991. Voronoi diagrams—a sur-
vey of a fundamental geometric data structure. ACM
Computing Surveys (CSUR), 23(3):345–405.

Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-
Bachrach, Liran Katzir, Noam Koenigstein, Nir
Nice, and Ulrich Paquet. 2014. Speeding up the
xbox recommender system using a euclidean trans-
formation for inner-product spaces. In Proceedings
of the 8th ACM Conference on Recommender sys-
tems (RecSys), pages 257–264.

C Bradford Barber, David P Dobkin, and Hannu Huh-
danpaa. 1996. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software
(TOMS), 22(4):469–483.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3(Feb):1137–1155.

Paolo Cignoni, Claudio Montani, and Roberto
Scopigno. 1998. Dewall: A fast divide and conquer
delaunay triangulation algorithm in ed. Computer-
Aided Design, 30(5):333–341.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation of
word embeddings using word similarity tasks. arXiv
preprint arXiv:1605.02276.

Jerome H. Friedman, F. Baskett, and L. Shustek. 1975.
An algorithm for finding nearest neighbors. IEEE
Transactions on Computers, 24:1000–1006.

Jerome H. Friedman, J. Bentley, and R. Finkel. 1977.
An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical
Software, 3:209–226.

Jianfeng Gao, Xiaodong He, Wen-tau Yih, and Li Deng.
2014. Learning continuous phrase representations
for translation modeling. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (ACL), volume 1, pages 699–
709.

5245

Hongyu Gong, Tarek Sakakini, Suma Bhat, and Jinjun
Xiong. 2018. Document similarity for texts of vary-
ing lengths via hidden topics. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), volume 1, pages 2341–
2351.

Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and
David Simcha. 2016. Quantization based fast inner
product search. In Artificial Intelligence and Statis-
tics (AISTATS), pages 482–490.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008.
Collaborative filtering for implicit feedback datasets.
In Proceedings of the Eighth IEEE International
Conference on Data Mining (ICDM), pages 263–
272.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
International Conference on Information Knowl-
edge Management (CIKM), pages 2333–2338.

Qiang Huang, Guihong Ma, Jianlin Feng, Qiong Fang,
and Anthony KH Tung. 2018. Accurate and fast
asymmetric locality-sensitive hashing scheme for
maximum inner product search. In Proceedings of
the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), pages
1561–1570.

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of the Thirtieth An-
nual ACM Symposium on the Theory of Computing
(STOC), pages 604–613, Dallas, TX.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Yannis Kalantidis and Yannis Avrithis. 2014. Lo-
cally optimized product quantization for approxi-
mate nearest neighbor search. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2321–2328.

Maximilian Köper and Sabine Schulte im Walde. 2018.
Analogies in complex verb meaning shifts: the effect
of affect in semantic similarity models. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), volume 2, pages 150–156.

Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng
Gao, Li Deng, and Paul Smolensky. 2015. Reason-
ing in vector space: An exploratory study of ques-
tion answering. arXiv preprint arXiv:1511.06426.

Omer Levy, Anders Søgaard, and Yoav Goldberg. 2017.
A strong baseline for learning cross-lingual word
embeddings from sentence alignments. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
volume 1, pages 765–774.

Ping Li, Anshumali Shrivastava, and Christian A.
Konig. 2012. Gpu-based minwise hashing: Gpu-
based minwise hashing. In Proceedings of the 21st
World Wide Web Conference (WWW), pages 565–
566, Lyon, France.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 912–921.

Yury A Malkov and Dmitry A Yashunin. 2018. Ef-
ficient and robust approximate nearest neighbor
search using hierarchical navigable small world
graphs. IEEE transactions on pattern analysis and
machine intelligence.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems (NIPS), pages 3111–3119.

Stanislav Morozov and Artem Babenko. 2018. Non-
metric similarity graphs for maximum inner product
search. In Advances in Neural Information Process-
ing Systems (NeurIPS), pages 4722–4731.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Barbara Plank and Alessandro Moschitti. 2013. Em-
bedding semantic similarity in tree kernels for do-
main adaptation of relation extraction. In Proceed-
ings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), volume 1,
pages 1498–1507.

Jan Wira Gotama Putra and Takenobu Tokunaga. 2017.
Evaluating text coherence based on semantic simi-
larity graph. In Proceedings of TextGraphs-11: the
Workshop on Graph-based Methods for Natural Lan-
guage Processing, pages 76–85.

Daniel Ramage, Anna N Rafferty, and Christopher D
Manning. 2009. Random walks for text semantic
similarity. In Proceedings of the 2009 workshop on
graph-based methods for natural language process-
ing, pages 23–31.

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

5246

Mehran Sahami and Timothy D Heilman. 2006. A web-
based kernel function for measuring the similarity of
short text snippets. In Proceedings of the 15th In-
ternational Conference on World Wide Web (WWW),
pages 377–386, Edinburgh, Scotland, UK.

Anshumali Shrivastava and Ping Li. 2014. Asymmet-
ric LSH (ALSH) for sublinear time maximum inner
product search (MIPS). In Advances in Neural In-
formation Processing Systems (NIPS), pages 2321–
2329, Montreal, Canada.

Anshumali Shrivastava and Ping Li. 2015. Improved
asymmetric locality sensitive hashing (ALSH) for
maximum inner product search (MIPS). In Proceed-
ings of the Thirty-First Conference on Uncertainty
in Artificial Intelligence (UAI), pages 812–821, Am-
sterdam, The Netherlands.

Gokavarapu Srinivas, Niket Tandon, and Vasudeva
Varma. 2010. A weighted tag similarity measure
based on a collaborative weight model. In Proceed-
ings of the 2nd International Workshop on Search
and Mining User-Generated Contents, pages 79–86.

Kohei Sugawara, Hayato Kobayashi, and Masajiro
Iwasaki. 2016. On approximately searching for simi-
lar word embeddings. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (ACL), volume 1, pages 2265–2275.

Md Arafat Sultan, Jordan Boyd-Graber, and Tamara
Sumner. 2016. Bayesian supervised domain adap-
tation for short text similarity. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pages
927–936.

Yifan Sun, Nikhil Rao, and Weicong Ding. 2017. A
simple approach to learn polysemous word embed-
dings. arXiv preprint arXiv:1707.01793.

Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping
Li. 2019. Fast Item Ranking under Neural Network
based Measures. Technical report, Baidu Research.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 5998–6008.

Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, San-
jiv Kumar, Daniel N Holtmann-Rice, David Simcha,
and Felix Yu. 2017. Multiscale quantization for fast
similarity search. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 5745–5755.

Jun Xu, Xiangnan He, and Hang Li. 2018. Deep learn-
ing for matching in search and recommendation. In
The 41st International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR), pages 1365–1368.

Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, and
James Cheng. 2018. Norm-ranging lsh for maxi-
mum inner product search. In Advances in Neural
Information Processing Systems (NeurIPS), pages
2952–2961, Montreal, Canada.

Seunghyun Yoon, Pablo Estrada, and Kyomin Jung.
2017. Synonym discovery with etymology-based
word embeddings. In 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 1–6.

Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, and Inderjit S
Dhillon. 2017. A greedy approach for budgeted
maximum inner product search. In Advances in Neu-
ral Information Processing Systems (NIPS), pages
5453–5462, Long Beach, CA.

Weijie Zhao, Shulong Tan, and Ping Li. 2019. SONG:
Approximate Nearest Neighbor Search on GPU.
Technical report, Baidu Research.

