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Abstract

Current neural query auto-completion (QAC)
systems rely on character-level language mod-
els, but they slow down when queries are long.
We present how to utilize subword language
models for the fast and accurate generation
of query completion candidates. Represent-
ing queries with subwords shorten a decod-
ing length significantly. To deal with issues
coming from introducing subword language
model, we develop a retrace algorithm and a
reranking method by approximate marginal-
ization. As a result, our model achieves up
to 2.5 times faster while maintaining a sim-
ilar quality of generated results compared to
the character-level baseline. Also, we pro-
pose a new evaluation metric, mean recover-
able length (MRL), measuring how many up-
coming characters the model could complete
correctly. It provides more explicit meaning
and eliminates the need for prefix length sam-
pling for existing rank-based metrics. More-
over, we performed a comprehensive analysis
with ablation study to figure out the impor-
tance of each component1.

1 Introduction

Query auto-completion (QAC) is one of the es-
sential features for search engines. When a user
types a query in the search box, QAC systems sug-
gest most likely completion candidates (Cai et al.,
2016). It not only saves time for users to enter
search terms but also provides new information
more than what was initially expected.

Recent neural QAC models in the literature em-
ploy character-level language models (Park and
Chiba, 2017). It is a natural choice in that QAC
systems need to respond whenever a user enters a
query as input character-by-character. In addition
to the accuracy, speed in terms of latency is also an

1Code is available at https://github.com/
clovaai/subword-qac.

indispensable prerequisite for practical QAC sys-
tems. The generation process is auto-regressive,
and the size of the search space is exponential to
the sequence length. Long character sequences
make prediction slow and inaccurate in the con-
straints of limited computation. Also, character-
level models are prone to errors due to long-range
dependency (Sennrich, 2016). Therefore, these
limitations arouse to consider alternatives to rep-
resent a query in a shorter sequence.

In this paper, we apply a subword language
model for query auto-completion. Compared
to character language models, subword language
models reduce sequence length and the number
of decoding steps significantly, thus resulting in
much faster decoding. For subword-level model-
ing, a segmentation algorithm is necessary. Byte
pair encoding (BPE) (Sennrich et al., 2015) is
widely used, but noise in the data makes segmen-
tation ambiguous and degrades BPE output. To
address this issue, as well as BPE, we use subword
regularization (SR) algorithm proposed by Kudo
(2018) that stochastically samples multiple seg-
mentations by utilizing a unigram language model.
To our knowledge, we are the first to apply SR to
language modeling.

Interestingly, language models for QAC should
take care of the last token that may be incom-
plete. Like character language models, subword
language models can represent incomplete tokens
because it can generate any subsequence of sen-
tences, whereas word language models cannot. If
we segment prefix as given to encode it using neu-
ral networks, the segmentation of prefix may not
match with that of ground truth query because the
prefix is an incomplete substring of the original
desired query. In that case, this enforced segmen-
tation is less likely to appear in training, especially
for deterministic segmentation such as BPE. As a
result, the model starting from this segmentation

https://github.com/clovaai/subword-qac
https://github.com/clovaai/subword-qac
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is unlikely to generate ground truth query. To con-
sider every possible segmentation of target com-
pletion, we propose retrace algorithm that is going
a few characters back from the end and generat-
ing candidates with the restriction that they should
match with retraced characters. For the case of
SR models, due to the stochasticity of segmenta-
tion, we should marginalize over all possible seg-
mentations to calculate the likelihood of a query.
For better approximation than just argmax, we
perform reranking with approximated marginal-
ization using the output of beam search. Experi-
mental results show that these techniques improve
the robustness of the decoding process of the sub-
word language model to achieve close generation
quality compared to the character baseline.

We propose a novel metric for query auto-
completion evaluation, called mean recoverable
length (MRL). This metric remedies shortcom-
ings of common QAC evaluation metrics, mean
reciprocal rank (MRR) and partial-matching MRR
(PMRR), which require sampling of a prefix
length and are favorable to short queries. We con-
duct comprehensive ablation study and analysis of
our models on these three metrics.

2 Related Work

One of the successful traditional QAC approaches
is most popular completion (MPC) (Bar-Yossef
and Kraus, 2011), which returns the most frequent
candidates among all previously observed queries
that match the prefix. After extracting candi-
dates, reranking algorithms (e.g., LambdaMART
(Burges, 2010)) with additional features are used
to align final candidates. These methods can-
not generate previously unseen queries by nature.
Contrary to traditional approaches based on infor-
mation retrieval, neural approaches can generalize
to unseen prefixes.

Choosing an appropriate granularity level for
text segmentation has been long studied over the
variety of natural language processing problems.
It can be a character, subword, word, phrase, sen-
tence, and even paragraph. A trade-off between
them exists, and the best performing granular-
ity often varies depending on tasks and datasets.
Character models are widely used to address nat-
ural language processing tasks including text clas-
sification (Kim, 2014; Zhang et al., 2015; Con-
neau et al., 2016), language modeling (Hwang and
Sung, 2017; Al-Rfou et al., 2018), machine trans-

lation (Chung et al., 2016; Lee et al., 2017), etc.

Currently, neural machine translation systems
widely use subword segmentation as de facto.
Mikolov et al. (2012) observed that a subword lan-
guage model is advantageous in that it achieves
better performance compared to character-level
models with zero out-of-vocabulary rate and
smaller model size. BERT (Devlin et al., 2018)
uses a subword as the unit token for their (masked)
language models.

Word-level segmentation can easily shorten se-
quence length compared to character-level. How-
ever, word-level models require larger vocabulary
size and the number of parameters to learn. Also,
it causes data sparsity issue. Because the vocab-
ulary of words is usually fixed before training, it
cannot generate out-of-vocabulary words by itself.
Search systems are especially in an open vocab-
ulary setting. For word-level models, it is hard
to deal with the last incomplete token because it
may not be in the vocabulary, unlike character-
level naturally handle it. Even if the vocabulary
contains this token, the decoding process may be
somewhat different from expected.

Word-character hybrid models were proposed
to overcome the out-of-vocabulary problem (Lu-
ong and Manning, 2016; Wu et al., 2016). A
word-level decoder generates a word sequence,
and when it generates a special <UNK> token, a
character-level decoder generates a character se-
quence on top of it. These two decoders are
connected hierarchically. Word models assume
whitespace as the boundary of words. In some
languages including Japanese and Chinese, seg-
mentation of sentences into words is unknown in
advance and sometimes vague. Moreover, input
queries usually include much noise such as typos,
grammatical errors and spacing errors. The prob-
lems mentioned above hinder word-level process-
ing for QAC.

Park and Chiba (2017) and Fiorini and Lu
(2018) incorporate word information by concate-
nating its embedding with character embedding
only at the word boundary and use a special
<INC> token embedding for non-boundary posi-
tions. This mechanism is inefficient in that the
word signal is sparse. Most of the word-character
hybrid models focus on input representation rather
than generation. Usually, their representations
are concatenated, or composition functions are
learned (Kim et al., 2016; Miyamoto and Cho,
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2016). Even though they use word information to
the input, the decoding process of their models is
still in the character-level.

We can interpret generating a subword which
is a concatenation of characters as parallel de-
coding of characters (Stern et al., 2018). In this
sense, non-autoregressive neural machine transla-
tion (Gu et al., 2017; Lee et al., 2018) is related
to our work. They also aim to improve decoding
speed with minimal performance degradation. Our
model and decoding method can be used for non-
autoregressive NMT in place of a character-level
decoder, and in the opposite direction, we can ap-
ply their approaches to QAC vice versa.

3 Subword Language Model

Let Σ be the set of all possible characters and V
be the vocabulary of tokens. Each token is a char-
acter or a concatenation of characters, and it is a
subword in our case. A language model estimates
the probability of a token sequence t where the
probability distribution of token ti at each step i is
conditioned on the previous tokens t<i:

p(t; θ) =

|t|∏
i=1

p(ti|t<i; θ)

where ti ∈ V and θ is a set of model parame-
ters. For a token sequence t, we can map it to a
query q = concat(t)(= t1 ⊕ t2 ⊕ · · · ⊕ t|t|) by
concatenating itself sequentially. Then, the prob-
ability of a given query q is the sum of the prob-
ability over the set of all possible segmentation t,
S(q) = {t : concat(t) = q}:

p(q; θ) =
∑

t∈S(q)

p(t; θ).

Similar to (Chan et al., 2016), segmentation t can
be interpretable as a latent decomposition of the
query q.

3.1 Segmentation

In character-level language modeling, token vo-
cabulary V is equal to Σ, and segmentation is per-
formed by merely splitting every character. We ex-
clude word-level language modeling which splits
a sentence by whitespace from consideration due
to its limitations mentioned in Section 2.

In the case of subword language modeling, we
use two widely used segmentation algorithms: (1)

byte pair encoding (BPE) and (2) subword regular-
ization (SR). Formally, a segmentation algorithm
defines a probability distribution over a token se-
quence t conditioned on given query q: pseg(t|q).

The BPE algorithm is deterministic because it
segments greedily from left to right. On the
other hand, SR can sample multiple segmentations
stochastically. The number of possible segmenta-
tions is exponentially large. It is hard to calculate
the likelihood of a given sentence using dynamic
programming because even with the same prefix,
hidden states vary upon different previous tok-
enization. Marginalization over all possible seg-
mentations of very long sequences is intractable.
In sum, we compare character-level and subword-
level (BPE, SR) language modeling.

3.2 Training
We can derive an unbiased gradient estima-
tor of the log-likelihood of a query by using
Bayes’ theorem and the identity of ∇θf(x; θ) =
f(x; θ)∇θ log f(x; θ) assuming f(x; θ) 6= 0 for
all x (Williams, 1992):

∇θ log p(q; θ) = E
t∼p(t|q;θ)

∇θ log p(t; θ).

However, since sampling t from p(t|q; θ) is
computationally expensive, we heuristically use
pseg(t|q) instead. Regardless of the language
model parameters θ, segmentation model pseg is
learned before the language model training and
can be used to sample t easily. The better way
to approximate the distribution p(t|q; θ) will be
explored in the future.

Our training objective becomes equivalent to
maximizing the average log-likelihood of the seg-
mentation of sentences:

L(θ) =
1

|Q|
∑
q∈Q

log p(t; θ)

=
1

|Q|
∑
q∈Q

∑
i

log p(ti|t<i; θ),

where Q is the training set of all queries, and t
is the segmentation of a query q sampled from
pseg(t|q) which depends on the segmentation al-
gorithm. This objective is equal to the average
negative log-likelihood of sentences if and only
if the segmentation is deterministic. The gradi-
ents of the loss function are computed using the
back-propagation through time (BPTT) (Rumel-
hart et al., 1986).
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4 Decoding

Given prefix p, let the set of its completions
be Q+(p) and the set of their tokenizations be
S+(p) = {t : concat(t) ∈ Q+(p)}. We want
to find the most likely completion q̂:

q̂ = argmax
q

log p(q|p)

= argmax
q∈Q+(p)

log p(q)

= argmax
q∈Q+(p)

log
∑

t∈S(q)

p(t) (1)

however, this is obviously intractable to search
in the infinitely large token sequence space. We
approximate this by decoding for the best token
sequence t̂ and then returning its corresponding
query q̃ by concatenating its token sequentially:

t̂ = argmax
t∈S+(p)

log p(t)

q̃ = concat(t̂)

Basic practice is segmenting p, feeding it into
language model to encode p, and using it for the
decoding. Since finding t̂ is also intractable, beam
search decoding is used but only results in subop-
timal predictions. We will improve this incremen-
tally with techniques following.

4.1 Retrace Algorithm
There is no guarantee that the end of given pre-
fix matches the tokenization boundary of the com-
pleted query. To address this possibility of the in-
completeness at the end of a prefix, we can retrace
a few characters and generate from there. For the
case (call it Rr) where the last token that overlaps
with the prefix finishes r characters before the end
of the prefix, first starting from a token sequence
of p1:|p|−r, we can perform beam search decoding
on the restriction that the next token should cover
the remaining part of the prefix and the next new
character. Figure 1 illustrates this algorithm.

This process is unnecessary for a character-level
model since every token is a single character. On
the other hand, the retrace algorithm is helpful for
subword models, especially BPE models which
have deterministic segmentation algorithm.

We can limit the maximum step of retrace by L
to only consider Rr where 0 ≤ r ≤ L because
of the computational issue. We will denote this
limitation as RL. R0 is the usual case without the
retrace algorithm, and R∞ counts every possible
retrace steps.

r e s t a u r a n t s

r e s t a u r a n t s

r e s t a u r a n t s

r e s t a u r a n t s

r e s t a u r a n t s

GT

R0

R1

R2

R3

Figure 1: Illustration of retrace algorithm with the ex-
ample of “restaurants.” The gray area means given pre-
fix (“res”) of the query. The solid line indicates the
boundary of the segmentation. GT is the segmentation
of ground truth query. Possible examples of the gener-
ated sequence of tokens belonging to the case Rr are
visualized. Blue boxes indicate a fixed segmentation
with retrace algorithm at the end of the prefix.

4.2 Reranking Method by Approximate
Marginalization

QAC system has to suggest N completion can-
didates sorted in order of likelihood rather than
finding only the best completion candidate. We
can extract a set of top B(≥ N) candidates us-
ing beam search with beam size B, namely TB =
{t1, · · · , tB} in the descending order of likeli-
hood. In the case of deterministic segmentation,
qi = concat(ti) are mutually different. i.e.
|QB| = B for QB = {q1, · · · ,qB}. Then, triv-
ially our prediction would be (q1, · · · ,qN ).

On the other hand, in the case of stochastic seg-
mentation, same query qi,qj(i 6= j) with differ-
ent token sequence ti, tj may exist. The obvious
way is merely removing duplicates.

On the assumption that log p(t)� log p(t′) for
all t ∈ TB and t′ /∈ TB , Equation (1) implies
that marginalization over the final beam outputs
can provide better approximation:

q̂ ≈ argmax
q∈Q+(p)

log
∑
t∈TB

p(t)

= argmax
q∈QB

log
∑
t∈TB

p(t)

In other words, reranking after summing out the
probability of duplicates can give better ordered
list of candidates.
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5 Evaluation Metric

5.1 MRR and PMRR
One of the most standard QAC evaluation metrics
is the mean reciprocal rank (MRR). The MRR for
the QAC system m is calculated with test dataset
Qtest as follows:

MRR(m) =
1

|Qtest|
∑

q∈Qtest

RR(q,m(p)),

where p is a prefix of a query q and m(p) is the
ranked list of candidate completions of p from m.
RR is reciprocal rank of q if q is in m(p), other-
wise 0.

Since it is hard to get a pair of the desired query
and its prefix in a real situation, we should synthet-
ically select a prefix by cutting off a given query
for the evaluation. Common practice is to uni-
formly sample from all possible prefixes within
minimal length constraint in characters (or words)
However, real distribution of the prefix length may
differ to the uniform distribution. For example,
users tend to engage with QAC at the position
close to the boundary of words, and after typ-
ing half of query characters (Mitra et al., 2014).
Due to the stochastic characteristic of prefix sam-
pling processes or their difference among distinct
QAC systems, evaluation results are inconsistent
even with the same test dataset. To prevent this
problem, a sampling function should be concretely
specified.

Park and Chiba (2017) introduced a new metric,
partial-matching MRR (PMRR):

PMRR(m) =
1

|Qtest|
∑

q∈Qtest

PRR(q,m(p)),

where partial-matching reciprocal rank PRR is
the reciprocal of the index of the first candidate
such that the original query is the same as it or
starts with it plus whitespace. If there is no such
candidate, PRR equals to 0.

PMRR also requires sampling of the prefix
length. PMRR values are often omitted in the liter-
ature because of the similar tendency to MRR. In
other words, PMRR does not give much additional
information about the quality of the generated re-
sults.

5.2 Recoverable Length
To avoid the synthetic sampling process and length
dependency, we propose a new evaluation metric

for query auto-completion, namely mean recover-
able length (MRL). We define recoverable length
RL as the number of characters right before the
first position where candidates do not have the
query. When all characters of a query are known,
we can readily suggest itself. If we delete chars
from right to left one-by-one, the ground truth
query will disappear in the list of candidate com-
pletions. For example, if q ∈ m(q1:|q|−l) for
l = 1, 2, 3 but not 4, recoverable length of this
query with respect to the QAC system m is 3.
MRL is mean of recoverable length:

MRL(m) =
1

|Qtest|
∑

q∈Qtest

RLm(q)

MRL is a useful metric for additive QAC which
suggests one word at a time instead of a whole-
query completion (Vargas et al., 2016) in that it
measures how many characters the system can pre-
dict correctly at once. MRL does not care about
the order of candidates and check whether they
contain the target query or not. Lastly, it elimi-
nates the need to choose a prefix length in the test
data.

6 Experiments

6.1 Data
We use the public AOL query log dataset (Pass
et al., 2006) for the experiments. We split data
based on time. Among three months of the entire
span, we use last one week as test data and one
week right before the test data as validation data.
It is close to a real scenario where future queries
are unseen during the training.

We perform Unicode NFKC normalization and
remove non-ASCII characters. For simplicity, we
change uppercase alphabets to lowercase. Af-
ter normalization and changing to lowercase, only
43 unique characters including special symbols
<BOS>, <EOS> and <UNK> remain. We substi-
tuted multiple adjacent spaces to a single one and
removed leading or trailing spaces. We merged
duplicates which appear adjacently by the same
user and the same query. Queries of a length
shorter than three characters are filtered out.

In total, the training, validation, test data
contain 17,521,031, 1,521,971, and 1,317,632
queries, respectively. Among the test data,
670,810 queries are seen, and 646,822 queries are
unseen in the training data. Almost half of the test
data are unseen.
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Model
MRR PMRR MRL Execution Speed

(QPS)
Decode
Length

Seen Unseen All Seen Unseen All Seen Unseen All CPU GPU

MPC .570 .000 .290 .616 .095 .360 8.06 0.00 4.10 >100 N/A
Char .458 .160 .311 .552 .372 .464 5.77 4.24 5.02 11.0 (1.0x) 16.5 (1.0x) 14.5
BPE .242 .085 .164 .305 .232 .269 0.49 0.54 0.51 24.2 (2.2x) 37.4 (2.3x) 7.1
BPE+R1 .427 .156 .294 .517 .368 .444 5.28 3.98 4.64 15.8 (1.4x) 27.3 (1.7x) 11.8
BPE+R2 .430 .157 .296 .520 .369 .446 5.44 4.01 4.74 15.5 (1.4x) 27.2 (1.6x) 12.2
BPE+R∞ .431 .157 .296 .520 .369 .446 5.50 4.01 4.76 15.3 (1.4x) 26.9 (1.6x) 12.2
SR .422 .148 .288 .541 .379 .461 5.11 3.82 4.48 20.8 (1.9x) 40.1 (2.4x) 6.8
SR+M .424 .149 .289 .535 .373 .455 5.14 3.85 4.50 19.6 (1.8x) 40.0 (2.4x) 6.8
SR+R∞ .423 .148 .289 .541 .378 .461 5.14 3.83 4.50 16.3 (1.5x) 29.6 (1.8x) 7.4
SR+R∞+M .427 .150 .291 .538 .375 .458 5.19 3.88 4.54 16.2 (1.5x) 28.7 (1.7x) 7.4

Table 1: Results of completion generation. We group MPC, character language model baseline, and two subword
language models separately. +R implies the retrace algorithm. +M implies reranking with approximate marginal-
ization. QPS stands for query per seconds. The higher the QPS, the better. The best results for each column related
to accuracy are shown in bold for each segmentation algorithm (BPE and SR). SR model shows higher unseen
PMRR scores (underlined). Our models are faster than the character baseline.

6.2 Implementation Details

The language model used in the experiments con-
sists of an input layer, a single LSTM layer, a pro-
jection layer, and an output layer. For the LSTM
layer, following Melis et al. (2017) and Jaech and
Ostendorf (2018), we apply layer normalization
(Ba et al., 2016) to each gate and couple input and
forget gates. We tie input and output embeddings
for better generalization (Press and Wolf, 2016;
Inan et al., 2016). We set the LSTM hidden size to
600 and the input embedding size to 100.

We train three individual language models:
namely Char, BPE, SR. The only difference
among models is how to segment a given sentence
into tokens. We believe that increasing model size
(number of LSTM layers, input size, and hidden
size) would improve the performance. Also, the
best set of a combination may differ depending on
models. However, we use the same model size for
the character baseline and our variants for the fair-
ness since our goal is proposing a new method and
comparing between baseline and ours rather than
achieving the best performance with the restriction
of having a similar number of parameters.

We use the off-the-shelf SentencePiece (Kudo
and Richardson, 2018) library for vocabulary
learning and segmentation of the vocabulary size
256 using BPE, SR algorithms. For the subword
regularization, we use sampling parameters l =

∞, α = 0.2 for the training. We choose this value
by the generation accuracy on the validation data.
Increase of model size and computation due to
larger vocabulary size are not substantial. By set-
ting a manageable amount of vocabulary size, we
can balance performance and computational cost.

For the computational efficiency, we truncated
queries in the training data to a length of 40. Only
less than 3% of queries in the training data are
longer than 40 characters. We train models for
thirty epochs by the Adam (Kingma and Ba, 2014)
optimizer with a learning rate 5e-3 and batch size
1024. Following Smith (2018), we use a large
learning rate and batch size. We use recurrent
dropout (Semeniuta et al., 2016) with probability
of 0.25 for regularization. The best model is cho-
sen using validation data.

Using QAC models, we generate N = 10 com-
pletion candidates using beam search decoding of
a beam width B = 30.

For the SR models, the segmentation of p (or
retraced p1:|p|−r) is not deterministic and gener-
ated completions may differ depending on its seg-
mented token sequences with their different en-
coded representation. By following (Kudo, 2018),
we can find the most likely segmentation sequence
t starting from all of the n-best segmentations
t̃1, · · · , t̃n of S(p) rather than from only t̃1. How-
ever, we observe that this n-best decoding per-
forms worse than one-best decoding. One possi-
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ble reason is that segmentations which are not the
best have a smaller probability as itself and so less
likely to appear in training and less competitive in
the process of beam search. For this reason, we set
n to 1.

We used a trie (Fredkin, 1960) data structure to
implement most popular completion baseline.

All experiments were performed on NAVER
Smart Machine Learning (NSML) platform (Sung
et al., 2017; Kim et al., 2018).

6.3 Decoding Results

We performed comprehensive experiments to an-
alyze the performance of query auto-completion.
Table 1 shows the generation result of MPC, the
character baseline, and our model variants. For
BPE models, we varied the maximum retrace step
to 0 (without retrace algorithm), 1, 2, and ∞ (no
limitation on retracing step size). For SR models,
we compare decoding results without any tech-
niques, with marginalization only, with retrace al-
gorithm only, and with both.

MPC is a very fast and remarkably strong base-
line. It is worse than language models in the over-
all score (MRR, PMRR, and MRL), but better
for previously seen queries. However, it is un-
able to predict unseen queries. Even with effi-
cient data structures, MPC requires huge memory
to keep statistics of all previous queries. As a prac-
tical view, combining frequency-based traditional
method and neural language model approach can
boost the accuracy and meet trade-off between the
performance and computational costs.

MRRs and PMRRs of our best methods are
close to that of the character model with less than
0.02 point drop. Notably, the SR model has bet-
ter generalization ability in that their PMRR for
unseen queries is higher than that of the character
model. In a real scenario, it is more critical be-
cause unseen queries come in increasingly as time
goes by.

We measure execution time with Tesla P40
GPU and Xeon CPU. Subword-level models are
up to 2.5 times faster than the character baseline
with minimal loss in performance both in CPU and
GPU. Decoding length which is maximum suf-
fix length until beam search ends correlates with
the number of floating-point operations. Subword
models significantly reduce the decoding length
from the character baseline more than two times
shorter by generating multiple characters at once.

re nat
Char SR Char SR

realtor.com recipes national city bank national bank
recipes rentals nationalcity.com national city
real estate real estate national city nationwide
remax restaurants national geographic national parks
realtor resources national car rental national park

Table 2: Examples of top 5 candidates of completions
given ”re” and ”nat” as prefixes generaed by the char-
acter baseline and SR model.

Models with additional techniques perform bet-
ter than without them. Especially, retrace al-
gorithm gives huge improvement for BPE case.
Without retrace algorithm, BPE models do not
work well. On the other hand, SR models only
obtain small improvement. Because retrace algo-
rithm goes back, it increases the decoding length
and slows down the speed. Although current re-
trace algorithm is implemented straightforwardly,
it can be improved by merging beams efficiently.
Most of the subword lengths are equal or shorter
than 3, so retrace of step 2 is quite enough, and R2

get a close result with R∞.
The reranking method by approximate

marginalization gives a small amount of im-
provement and is orthogonal to retrace algorithm.
Marginalization method increases MRR but
decreases PMRR. It is plausible in that it changes
the order of candidates by reranking. The effect of
marginalization would be better if we use a bigger
beam size. Because the reranking process is done
after beam search decoding which takes most of
the decoding time and only consists of summation
and sorting the final beam outputs, it does not take
a long time.

We also had experimented by increasing the vo-
cabulary size. The accuracy of BPE models de-
grades fast as the vocabulary size increases. On
the other hand, the performance of SR models is
quite stable due to the regularization effect during
training. As desired, the larger the dictionary size,
the shorter the decoding length. Whereas compu-
tations run in parallel in GPU, the number of oper-
ations for the output layer in the language model is
proportional to the vocabulary size in CPU. There-
fore, a larger vocabulary size does not always
guarantee speedup for execution in the CPU. More
thorough investigation about the correlation be-
tween QAC performance and the vocabulary size
of subword language models remains for future
work.
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Figure 2: Comparison of the character-level baseline model and our best models by changing query length and
prefix length in terms of three evaluation metrics: MRR, PMRR, and MRL. MRL is only varied by query length
because it does not require prefix length sampling.

Table 2 shows examples of decoding results.
Our model generates more concise and realistic
examples.

6.4 Analysis on Evaluation Metrics

As shown in Figure 2, we compared our best mod-
els on three evaluation metrics (MRR, PMRR, and
MRL) by changing the query length and prefix
length. MRR and PMRR are more favorable to
shorter queries. They drop very fast as the query
becomes longer. For a longer query, the suffix
length after sampling prefix has more chance to be
longer. The search space increases exponentially
with its suffix length. Even though QAC systems
could generate realistic candidates, it is quite hard
to match a long sequence with the ground truth.
As the prefix length becomes longer which means
that much information for determining the query
has been given, the completion performance im-
proves.

Interestingly, MRR and MRL of BPE are higher
than those of SR, although BPE is worse in terms
of PMRR than SR. For short queries, SR outper-
forms the character baseline. On the other hand,
BPE is poor when the query length (or prefix
length) is short. However, for a longer case, its

MRR is almost close to that of the character base-
line.

MRR and PMRR are highly dependent on the
length distribution of test data. In contrast, MRL
keeps the order between different methods as the
query length changes. MRL is more reliable in the
respect that it could provide consistent order be-
tween methods regardless of query length distri-
bution. For long queries lengths, MRL stays in the
flat area. Normalizing recoverable length based on
the query length might be necessary.

7 Future Work

Approximation in training (Section 3.2) and de-
coding (Section 4) deteriorate the accuracy of sub-
word language modeling. One possible solution to
reduce the accuracy gap between the character lan-
guage model baseline and the subword language
model is knowledge distillation (Hinton et al.,
2015; Kim and Rush, 2016; Liu et al., 2018) from
character-level language models. A student model
can learn to match an estimation of query proba-
bility with that of a teacher model.

Another interesting research direction is learn-
ing segmentation jointly with language model
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(Kawakami et al., 2019; Grave et al., 2019) rather
than using fixed pretrained segmentation algo-
rithms. A conditional semi-Markov assumption
allows exact marginalization using dynamic pro-
gramming (Ling et al., 2016; Wang et al., 2017).
Nevertheless, beam search decoding on those lan-
guage models, especially faster decoding, is non-
trivial.

Proposed method can be extended to wide range
of tasks. Query suggestion (Sordoni et al., 2015;
Dehghani et al., 2017) and query reformulation
(Nogueira and Cho, 2017) are related to QAC and
well-established problems. They both are also
possible applications of the subword-level model-
ing. (Drexler and Glass, 2019) used subword reg-
ularization and beam search decoding for end-to-
end automatic speech recognition.

Lastly, implementation with more advanced
data structure (Hsu and Ottaviano, 2013) and par-
allel algorithms to speed up and meet memory
limitation are necessary for the real deployment
(Wang et al., 2018). It would be helpful if the
computation is adaptively controllable on-the-fly
(Graves, 2016) at the runtime depending on the sit-
uation.

8 Conclusion

In this paper, we propose subword language mod-
els for query auto-completion with additional
techniques, retrace algorithm and reranking with
approximate marginalization. We observed sub-
word language models significant speedup com-
pared to the character-level baseline while main-
taining the generation quality. Our best models
achieve up to 2.5 times faster decoding speed with
less than 0.02 point drop of MRR and PMRR.

Using a subword language model, we build an
accurate and much faster QAC system compared
to the character-level language model baseline.
Although there is still much room for improve-
ment on hyperparameter optimization, decoding
search, and neural architectures like Transformer
(Vaswani et al., 2017; Dai et al., 2019), the goal
of this work is to prove that the subword language
model is an attractive choice for QAC as an alter-
native to the character-level language model, espe-
cially if latency is considered.

We believe that our newly proposed metric,
mean recoverable length (MRL), provides fruitful
information for the QAC research in addition to
conventional evaluation metric based on ranks.
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