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Abstract

Language models are generally trained on data
spanning a wide range of topics (e.g., news,
reviews, fiction), but they might be applied to
an a priori unknown target distribution (e.g.,
restaurant reviews). In this paper, we first
show that training on text outside the test dis-
tribution can degrade test performance when
using standard maximum likelihood (MLE)
training. To remedy this without the knowl-
edge of the test distribution, we propose an ap-
proach which trains a model that performs well
over a wide range of potential test distribu-
tions. In particular, we derive a new distribu-
tionally robust optimization (DRO) procedure
which minimizes the loss of the model over
the worst-case mixture of topics with sufficient
overlap with the training distribution. Our ap-
proach, called topic conditional value at risk
(topic CVaR), obtains a 5.5 point perplexity re-
duction over MLE when the language models
are trained on a mixture of Yelp reviews and
news and tested only on reviews.

1 Introduction

Large-scale language modeling plays a central role
in both text generation (Sordoni et al., 2015; Nal-
lapati et al., 2016) and unsupervised pre-training
(Vaswani et al., 2013; Dai and Le, 2015; McCann
et al., 2017; Peters et al., 2018; Devlin et al., 2018;
Radford et al., 2018). In both settings, a sin-
gle language model is trained on a large corpus
containing a range of topics (e.g. news, fiction,
and reviews). This language model is then ap-
plied in many different tasks, each with a specific
test distribution (e.g., analyzing the sentiment of
restaurant reviews). Can we train a single general-
purpose language model that works across a wide
range of potential test distributions?

In this work, we first demonstrate that stan-
dard maximum likelihood training on a large, het-
erogeneous dataset can fail to achieve this goal.
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Figure 1. Illustration of a training corpus as a
density (black) with mostly news stories (red) and
a small number of restaurant reviews (blue). The
standard MLE model (gray) reflects the underlying
data and assigns little weight to reviews, and thus
performs poorly on reviews. A more robust model
should try to equalize the weight across all topics so
that it can perform well regardless of which topics
appear at test time.

While more data is generally better, the presence
of text outside the target distribution actually de-
grades performance on a target test distribution.
For example, a language model trained on Yelp
reviews achieves a perplexity of 32, and this per-
plexity increases to 43 when trained on a mix-
ture of 10% Yelp and 90% newswire sentences
from the One Billion Word Benchmark (Chelba
et al., 2013). Performance degrades because ex-
isting maximum likelihood estimation (MLE) ob-
jectives tend to emphasize model performance on
more common sentences and topics at the expense
of infrequent ones (Figure 1).

While the above performance degradation can
be mitigated by fine-tuning and domain adapta-
tion techniques (Shimodaira, 2000; Quiñonero-
Candela et al., 2009; Daume III, 2007; Ben-David
et al., 2010; Blitzer et al., 2011; Pryzant et al.,
2017; Ganin and Lempitsky, 2015; Tzeng et al.,
2014), these methods require knowing the test dis-
tribution and training a separate model specific to
each target distribution. Instead, we aim to train a
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single model that performs well across many un-
known test distributions.

In order to do this, we will train a model that
performs uniformly well over an entire family of
potential test distributions. Since we cannot ex-
pect to do well on all possible test distributions,
we consider the subpopulation shift setting, in
which the test distribution is a subpopulation of the
training distribution, and seek good performance
across all such test distributions (e.g. Yelp re-
views in a Yelp-newswire mixture). 1 In other
words, adding data from topics outside the test
topics should not hurt. It seems reasonable to pro-
tect against subpopulation shifts, intuitively be-
cause large-scale data collection schemes are de-
signed to cover a diverse array of topics as a way
to generalize to potential test distributions.

We train a model that performs well over
all subpopulations by minimizing the risk for
the worst-case subpopulation, following the dis-
tributionally robust optimization (DRO) litera-
ture (Ben-Tal et al., 2013). While an existing
DRO framework called the conditional value at
risk (CVaR) ensures uniformly good performance
across subpopulations (Rockafellar and Uryasev,
2000; Duchi and Namkoong, 2018), we demon-
strate that naı̈vely applying this approach to lan-
guage modeling fails due to three challenges.
First, the existing CVaR approach is too conser-
vative because it considers robustness to arbitrary
subpopulations. Such worst-case subpopulations
are attained by adversarially choosing the hard-
est, most unusual sentences. Instead, we propose
to consider meaningful subpopulations, defined by
topics in a corpus (Hu et al., 2018). Second, ap-
plying CVaR directly to log loss results in a loss
which is biased towards topics with high entropy,
instead of those for which the model performs
poorly relative to what is possible. We correct
this by introducing a new baselined loss function
which measures losses relative to the entropy of
each topic. Finally, existing optimization algo-
rithms for CVaR are either inapplicable to topic-
based robustness sets or unscalable because they
require batch optimization. We develop a scal-
able online algorithm which identifies the worst-
performing topics at each iteration and upweights
examples from those topics.

With these methodological improvements, we
1The subpopulation assumption refers to overlaps in dis-

tributions, rather than individual examples. Our assumptions
do not require overlap in the training and test data.

demonstrate that our approach, topic CVaR, im-
proves robustness against subpopulation shifts.
Topic CVaR reduces perplexity on the Yelp re-
view corpus by 5.5 points compared to MLE when
trained on the Yelp-One Billion Word Benchmark
mixture from before. We also show improved ro-
bustness even when the shift is not strictly a sub-
population shift. Topic CVaR also achieves a 4
point perplexity reduction on a test distribution
(TripAdvisor hotel reviews) that is similar to, but
not strictly a subpopulation of the training distri-
bution (Yelp and newswire text).

2 Problem Statement

Our goal is to learn a language model pθ based on
sentences sampled from the training distribution
x ∼ ptrain

x , such that pθ performs well on unknown
test distributions ptest

x .
Language models pθ are generally trained to ap-

proximate ptrain
x by minimizing the KL divergence

KL
(
ptrain

x
∥∥ pθ) via maximum likelihood estima-

tion (MLE),

inf
θ
E [− log pθ(x)] . (1)

When ptest
x = ptrain

x , classical statistical theory
guarantees that a model trained via MLE performs
well on the test distribution given sufficient data.
However, when ptest

x is not identical to ptrain
x , MLE

can perform poorly no matter how much data is
observed. This is because the test set might consist
solely of sentences from topics that are infrequent
during training, to which MLE would assign low
probabilities.

To illustrate this point, consider the toy exam-
ple drawn in Figure 2. In this example, the train-
ing distribution ptrain

x is a multinomial distribution
over six possible sentences A–F, with two from re-
views and four from news. Sentence F is ungram-
matical and thus has an extremely low probabil-
ity. The training distribution includes 10% reviews
and 90% news, whereas the test distribution could
be all reviews, all news, or a mixture. MLE as-
signs low probabilities to any review and thus per-
forms poorly when evaluated solely on reviews.
To be robust, we intuitively need a more conser-
vative objective that encourages models to assign
higher probabilities to rare but valid sentences.

In order to achieve this, we want to learn a
model pθ which performs well in situations where
ptrain

x 6= ptest
x for a large set of potential test distri-

butions P , termed the uncertainty set. By training
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Figure 2. Toy example of a multinomial distribu-
tion over six sentences (top). Different panels il-
lustrate models learned by different training proce-
dures. MLE fits common topics (news) at the ex-
pense of rare ones (reviews). Sentence CVaR is
too conservative, overemphasizing the ungrammati-
cal sentence. Topic CVaR with log loss overempha-
sizes difficult topics (news) over easy ones (review).
Topic CVaR (with baselining) balances the weight
assigned to each topics, as desired.

a model that performs well on all distributions in
the uncertainty set P , we can ensure good test per-
formance as long as ptest

x ∈ P .
More formally, this approach falls under the

framework of distributionally robust optimization
(DRO) (Ben-Tal et al., 2013). With DRO, we op-
timize a model for loss ` and a set of potential test
distributions P by minimizing the risk under the
worst-case distribution in P ,

sup
px∈P

Epx [`(x; θ)]. (2)

Observe that the above worst-case objective does
not depend on the unknown quantity ptest

x . The
objective also upper bounds the test risk for all
ptest

x ∈ P as

Eptest
x
[`(x; θ)] ≤ sup

px∈P
Epx [`(x; θ)], (3)

so optimizing the above objective gives guarantees
on test performance whenever ptest

x ∈ P .
DRO provides a conceptually appealing frame-

work for learning under train-test mismatch. How-
ever, it crucially depends on both the choice of
uncertainty set P and loss `, and we will discuss
these choices in the next section.

3 Robust Language Modeling

We will begin by applying standard distribution-
ally robust optimization approaches to the log loss
(Section 3.1), and showing that this naı̈ve ap-
proach suffers from two drawbacks:

1. Existing DRO uncertainty sets P are too con-
servative.

2. The log loss overemphasizes topics with in-
herently high entropy.

These drawbacks will motivate our development
of a new approach we call topic CVaR, which ad-
dresses these two problems (Sections 3.2 and 3.3).

3.1 Robustness to arbitrary subpopulations
Observing that MLE is not robust because it as-
signs low probabilities (i.e. incurs high losses) on
rare sentences, we might initially try to define P
as individual training examples to ensure low loss
on all data points. However, this is far too con-
servative, since the worst-case distribution would
consist of exactly one data point. Therefore, we
may want to optimize a slightly more realistic un-
certainty set consisting of all sufficiently large sub-
populations of the training distribution.

Minimizing losses over all subpopulations of
the training distribution can be formulated as a
type of distributionally robust optimization (DRO)
problem (Duchi and Namkoong, 2018), which
has been used to regularize models (Duchi and
Namkoong, 2016), defend against adversarial ex-
amples (Sinha et al., 2018), and improve the fair-
ness of models (Hashimoto et al., 2018).

One type of distributionally robust loss is
known as conditional value at risk (CVaR) which
guarantees low losses on all α-fraction subpopula-
tions of the training distribution (Rockafellar and
Uryasev, 2000). This corresponds to defining the
uncertainty set P as all sentence distributions that
are α-covered by ptrain

x ,

Pαx := {px : αpx(x) ≤ ptrain
x (x) ∀x}. (4)

This is equivalent to defining Pαx as the set of px
which fulfills ptrain

x = αpx+(1−α)pother
x for some

distribution pother
x .

To achieve low loss on all possible test distribu-
tions in Pαx , we minimize the expected loss under
the worst-case distribution,

sup
px∈Pαx

Ex∼px [`(x; θ)]. (5)

For the remainder of the paper, we will refer to this
approach as sentence CVaR, highlighting the fact
that it considers robustness over arbitrary sets of
sentences. It intuitively encourages uniform per-
formance across all subpopulations of sentences
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by downweighting sentences with low loss, and
upweighting sentences with high loss.

Because sentence CVaR considers arbitrary
groups of examples, it can be too conservative in
our problem setting. While sentence CVaR can
prevent modeling common sentences at the cost
of rare ones, it can also encourage modeling in-
valid sentences at the expense of valid ones. Re-
turning to our example in Figure 2 with `(x; θ) =
− log pθ(x) , sentence CVaR with for sufficiently
low α achieves perfectly uniform performance. It
equalizes likelihoods across all sentences, which
unfortunately also results in high probabilities as-
signed to the ungrammatical sentence F.

3.2 Robustness over Topics

Sentence CVaR is too conservative since it allows
for arbitrary groups — including ones consisting
of purely invalid sentences. To remedy this, we
will optimize models for all meaningful subpopu-
lations instead of arbitrary ones.

One way to achieve this is through robustness
over topics, rather than individual examples. For
example, a news corpus often contains a variety
of topics (politics, business, opinion, food) and a
test corpus may contain these topics with differ-
ent proportions. A robust language model should
perform well on a wide range of topic mixtures
without taking the topic identity as an input.

Formally, we posit that each sentence x belongs
to some latent topic z, which has a sentence dis-
tribution px|z . We want our models to be robust
to shifts in the topic distribution, where we have
z ∼ ptrain

z and z ∼ ptest
z . In this case, we can define

a natural uncertainty set for CVaR, defined over
latent topics rather than individual examples. Ex-
tending the definition of α-covered distributions to
topics, we have the set

Pαz := {pz : αpz(z) ≤ ptrain
z (z) ∀z} (6)

and the objective is the expected loss under the
worst-case topic distribution,

sup
pz∈Pαz

Ez∼pz

[
Ex∼px|z [`(x; θ)]

]
. (7)

This objective intuitively encourages uniform loss
across topics by upweighting topics incurring high
losses and downweighting topics with low losses,
while keeping the conditional distribution of sen-
tences given a topic constant.

3.3 Baselined Loss Function
Recall that DRO depends critically on the choice
of uncertainty set and loss function. Having spec-
ified the uncertainty set, we now turn to the choice
of loss `(x; θ). While the log loss `(x; θ) =
− log pθ(x) is the standard choice in language
modeling, we show that this approach has a flaw
in the robust setting and propose a corrected loss.

Log Loss. Using log loss on CVaR encour-
ages uniform absolute log-likelihoods across top-
ics even if some topics are much harder than
others. For example, consider a model which
performs nearly optimally on difficult topics and
highly suboptimally on easy topics. Since log loss
measures absolute performance, it would force the
model to focus on the difficult topic even if the
model can’t improve further on this topic. In the
example in Figure 2, news is emphasized over re-
views because news has higher entropy and thus
higher difficulty. Empirically, we observe that log
loss with CVaR forces the models to focus almost
entirely on the difficult topics such as long news
stories.

Baselined Loss. We now propose a new base-
lined loss, which encourages uniform relative per-
formance across topics. We refer to our approach
with the baselined loss as topic CVaR.

The baselined loss function `(x, z; θ) =
log px|z (x | z) − log pθ(x) evaluates the perfor-
mance of the model relative to the best possible
model for the topic, log px|z (x | z). Although we
do not observe log px|z (x | z), we will show later
in section 4.2 that we can estimate sufficient statis-
tics of log px|z (x | z) that allow us to compute the
baselined loss. By using baselined loss, we intu-
itively encourage models to perform as well as it
can on each topic while making optimal trade-offs
among topics.

Plugging the baselined loss into the robust ob-
jective (7), the optimization problem is

sup
pz∈Pαz

Ez∼pz

[
Ex∼px|z

[
log px|z (x | z)− log pθ(x)

]]
,

(8)

which can be simplified to

sup
pz∈Pαz

Ez∼pz

[
KL
(
px|z

∥∥ pθ)] . (9)

Topic CVaR thus minimizes the per-topic KL di-
vergences, and this interpretation fits nicely with



4231

a general goal of training pθ that matches the test
distribution. Unlike in the MLE case, minimiz-
ing the KL is not equivalent to minimizing the
log loss. In MLE, minimizing KL(ptrain

x ‖pθ) =
E
[
log ptrain

x (x)− log pθ(x)
]

is equivalent to min-
imizing the log loss because log ptrain

x (x) can be
treated as a constant. However, in topic CVaR, the
analogous baseline entropy term log px|z (x | z)
depends on z and thus is not a constant with re-
spect to the outer supremum.

In the running toy example (Figure 2), topic
CVaR results in robust models that perform rela-
tively well on both news and reviews. The result-
ing model is a mixture of news and review distri-
bution with equal weights on the two topics.

In summary, topic CVaR contains two improve-
ments over existing DRO approaches: using the
latent topic distribution ptrain

z to specify the uncer-
tainty set and defining the baselined loss. In the
following section, we will describe an algorithm
which optimizes this topic CVaR objective.

4 Algorithm

We now operationalize the principles in the pre-
vious section, specifying (i) how we choose top-
ics (Section 4.1), (ii) how we estimate the baseline
(Section 4.2), and (iii) how to efficiently optimize
the robust objective (7) (Section 4.3).

4.1 Identifying Topics

The topic CVaR objective requires topic assign-
ments z for each sentence in order to define the
uncertainty set P . Since the topics determine the
set of ptest

x distribution for which the model per-
forms well, we seek topics whose subpopulation
shifts capture realistic potential test settings.

We use latent Dirichlet allocation (LDA) (Blei
et al., 2003) to cluster the sentences into latent
topics. LDA assigns each word in a sentence to
a topic, and we assign each sentence to the topic
with highest total posterior probability.

4.2 Estimating Baselined Losses

Recall that topic CVaR uses KL-divergence as the
loss term (Eq. (9)),

KL
(
px|z

∥∥ pθ) := Epx|z [log px|z (x | z)]
− Epx|z [log pθ(x)].

While we can estimate the log loss term
E[log pθ(x)] from samples, the entropy term

H(X | Z = z) := Epx|z [− log px|z (x | z)] is not
something we can easily estimate.

We thus propose to estimate the entropies
H(X | Z = z) by fitting a baseline model pβ
for each topic, and computing Hβ(X | Z = z) :=
Epx|z [− log pβ(x | z)].2 In practice, we use a bi-
gram model, which was fast enough to scale and
worked sufficiently well in experiments.

4.3 Online Optimization of topic CVaR

No scalable, online algorithm exists for opti-
mizing the topic CVaR objective. Many DRO
problems admit efficient batch optimization pro-
cedures based on Lagrangian duality (Duchi
et al., 2016). However, this approach fails for
topic CVaR, since the dual form requires exact
computations rather than stochastic estimates of
Epx|z [− log pθ(x)]. Online algorithms for DRO
exist (Namkoong and Duchi, 2016), but do not
handle the nested maximization-expectation struc-
ture arising in topic CVaR (Eq. (7)).

Because of this, we develop an online optimiza-
tion procedure for topic CVaR compatible with
stochastic gradient descent methods. The topic
CVaR problem is a two-player minimax game be-
tween the model parameter θ and the potential test
distribution pz. Intuitively, pz attempts to be the
worst-case distribution and maximize the robust
objective, while θ attempts to minimize the robust
objective. The precise two-player minimax game
is

inf
θ

sup
pz∈Pαz

Ez∼pz [L(z; θ)] , (10)

where the expected loss for each z (inner expecta-
tion) is L(z; θ) := Ex∼px|z [`(x; θ)].

In the above two-player game, the game pro-
ceeds in multiple rounds t = 1, 2, . . . . At each
round, the players select pz

(t) and θ(t). It is stan-
dard to interleave parameter updates between the
two players in minimax optimization, and we de-
scribe the precise update rules in subsequent para-
graphs. To carry out these updates, we keep track
of an empirical estimate of the probability ptrain

z (z)
at each iteration t, which we refer to as p̂train

z
(t)(z).

We also keep track of the historical average of
losses incurred for each topic so far, up to the cur-
rent round t, which we call L̂(t)(z; θ(1:t)). Con-

2Hβ yields accurate solutions to the topic CVaR prob-
lem as long as they capture the entropy up to a constant (i.e.
Hβ(X | Z = z) ≈ H(X | Z = z) + c)
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cretely, L̂(t)(z; θ(1:t)) is computed as an average
of {`(x(t′); θ(t′)) : t′ ∈ [t], z(t

′) = z}.
At each iteration t, pz is updated by selecting

an optimal value with respect to historical losses
up to the current iteration, loosely inspired by the
“Be The Leader” algorithm. This results in the
following update rule to pz,

pz
(t) = argmax

pz∈Pαz
Ez∼pz

[
L̂(t)(z; θ(1:t))

]
. (11)

The above argmax can computed efficiently by
ordering topics in the order of decreasing aver-
age loss, and assigning each topic either p̂train

z (z)
α

or the probability left to be assigned, whichever is
lower.3

We update θ with online gradient descent,

θ(t) = θ(t−1) − ε pz
(t)(z(t))

p̂train
z

(t)(z(t))
∇`(x(t); θ(t−1)),

where ε is the learning rate.
To give intuition for the two updates, first note

that pz
(t)(z)

ptrain
z

(t)(z)
= 1

α on approximately α fraction of
the data and this ratio acts as an indicator func-
tion which determines if an example is part of the
worst-case set or not. If it is, we update the model
and otherwise we ignore it.

5 Experiments

We demonstrate that topic CVaR improves max-
imum likelihood language models when ptrain

x 6=
ptest

x . Section 5.1 outlines the experimental setup
while Section 5.2 shows the robustness improve-
ments and analysis of topic CVaR.

5.1 Evaluation Details

Datasets. We use the following three corpora:
the Yelp review corpus (YELP, (2017)), One Bil-
lion Word benchmark corpus (ONEBWORD), and
the TripAdvisor Annotated Dataset (TRIPADV,
Marcheggiani et al. (2014)).

We preprocess the corpora using SPACY (Hon-
nibal and Johnson (2015)) by removing sentences
with fewer than 10 characters, segmenting sen-
tences, tagging named-entities, and replacing each
entity with its corresponding OntoNotes tag.

3For example with α = 0.2, L̂(t) = [40, 30, 60], and
p̂train

z = [0.2, 0.8, 0.1], then pz
(t) = [0.5, 0, 0.5].

Vocabulary. Our experiments will evaluate
models using perplexity, which depends on the
choice of vocabulary. To make perplexity compa-
rable for models trained on different datasets, we
use a single, fixed vocabulary formed by combin-
ing the most frequently occurring 10, 000 words in
each corpus. All words in the mixtures which are
not in the vocabulary (1−3% in our experiments)
are replaced with a special unk token.

Clustering. To cluster sentences in the training
set, we ran LightLDA (Yuan et al. (2015)) for 100
iterations with prior hyperparameters α = 0.1,
β = 1.0 and 2 Metropolis-Hastings steps. We set
the model to find 10 topics, as this resulted in sta-
ble clusters consisting of semantically similar sen-
tences.

Models. Our models are Transformer (Vaswani
et al., 2017) based language models trained us-
ing the FAIRSEQ sequence-to-sequence toolkit
(2017). We use the same model architecture, op-
timizers, and hyperparameters for both MLE and
CVaR. For both models, we use Nesterov’s accel-
erated gradient descent, a fixed learning rate of
0.01, minibatch size of 500 sentences, and 30k
minibatches (corresponding to 100 epochs on the
YELP corpus). These values were derived by tun-
ing a MLE model trained on the YELP data and
tested on the YELP dev set.

Hyperparameters Topic CVaR can be unstable
at small α values due to the fact that we are op-
timizing for worst-case errors. Because of this,
we make three small but important modifications
to the algorithm. (i) We use α = 0.2 to es-
timate models for α∗ < 0.2, as small αs can
cause gradients to become unstable; (ii) we set
a minimum pz(z)/p

train
z (z) value of 0.1; and (iii)

we compute historical losses using exponentially
weighted moving averages. With these modifica-
tions, the model reliably converges to similar vali-
dation losses.

5.2 Language Model Robustness

We seek to assess the performance of MLE and
CVaR models under subpopulation shift. In order
to do this, we train language models on various
mixtures of YELP and ONEBWORD corpora and
evaluate the models on a held-out set of YELP sen-
tences.

We will construct a training corpus, whose dis-
tribution α∗-covers the test distribution (i.e. α∗
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fraction of the training distribution corresponds to
the Yelp distribution). In this case, we expect that
topic CVaR with α = α∗ to perform well since
the test set exactly fulfills the subpopulation shift
assumption.

To form a training corpus, whose distribution
α∗-covers the YELP distribution, we mix a fixed
set of 500,000 sentences from YELP training sub-
set with 500, 000(1 − α∗)/α∗ sentences from
ONEBWORD. This results in a dataset where
α∗ of the training data comes from YELP. The
test corpus is composed of sentences from the
YELP test subset, with no sentence overlap with
the training corpora. Since the absolute number of
YELP samples in the training corpora remains con-
stant across different values of α∗, we expect that a
model which is robust to added nuisance data will
perform equally well on a YELP-only test set, even
as the mixture proportion of ONEBWORD sam-
ples in the training corpus increases.

Oracle model. We estimate the oracle perfor-
mance of a robust language model as running topic
CVaR where the topic z = {YELP,ONEBWORD}
and the topic assignments use the ground truth cor-
pus identities rather than a clustering algorithm.
In this case, when α∗ = α we are directly mini-
mizing the worst-case baselined test loss over both
YELP and ONEBWORD.
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Figure 3. Topic CVaR (green) provides substan-
tial improvements in perplexity compared to MLE
(black and blue) as the amount of train-test mis-
match increases (α∗ → 0). This performance is
close to the oracle performance which uses ground
truth corpus labels and early stopping (orange).

Topic CVaR improves robustness over MLE.
Using the YELP-ONEBWORD mixtures, we eval-
uate the robustness of topic CVaR and MLE to
added nuisance data. We find that with no nui-
sance data, the MLE model matches the topic
CVaR model (Figure 3 α∗ = 1.0). As we add
data from ONEBWORD and α∗ decreases to 0.7,

we find some positive transfer effects where the
increased data from the ONEBWORD corpus im-
proves the performance on Yelp. However, as the
fraction of nuisance data grows further and α∗

drops below 0.4 the MLE models suffer large in-
creases in perplexity, incurring up to 10 additional
points of perplexity. Early stopping according to
validation perplexity on YELP does not improve
this substantially beyond the basic MLE model
(blue star). On the other hand, applying topic
CVaR with α∗ = α provides substantial boosts
to language model performance for small α∗, with
nearly no loss of performance for large α∗ (green
triangle). Finally, we find that the topic CVaR
method we propose is close to the best possible
oracle performance.
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Figure 4. The robustness improvements from topic
CVaR (black vs green and orange) apply even when
the test set (TRIPADV reviews) is not a subpopula-
tion shift from the training set (YELP and ONEB-
WORD).

Topic CVaR robustness beyond subpopulation
shift. The prior YELP-ONEBWORD experiment
showed that topic CVaR is more robust than MLE
under subpopulation shift.

We now explore the more realistic setting in
which the test distribution is not a subpopulation
shift, but merely “similar” to the training distri-
bution. We do this by testing the same model
on the TRIPADV hotel review corpus. The hotel
and restaurant review distributions are similar (i.e.
they both frequently mention service) but differ in
that hotels reviews often mention the location and
room, while restaurant reviews often mention food
items.

We find a similar result consistent with the
earlier subpopulation shift experiment (Figure 4).
The MLE model performance degrades rapidly be-
tween α∗ = 0.7 and 0.1, while topic CVaR sub-
stantially reduces this degradation. This suggests
that topic CVaR models provide robustness bene-



4234

fits in real-world settings where the topic overlaps
are not exact, and the subpopulation shift assump-
tion no longer holds.

Ablations. Topic CVaR extends the standard
CVaR objective in two ways: the use of topics
and the use of a baseline. We investigate the ef-
fect of these choices via an ablation experiment.
Removing the topic structure results in dramatic
loss of performance for our models: the perplexity
exceeds 80 with α = 0.2 for all α∗. This is be-
cause the worst case group can consist of solely of
disfluent sentences that do not match any real test
distribution. If we remove the baseline, the result-
ing model is not completely degenerate, but it is
not as robust as α∗ decreases (Figure 5, teal). This
is because ONEBWORD is a higher entropy cor-
pus than YELP, and forcing the model to achieve
equal absolute losses causes the model to focus
nearly entirely on ONEBWORD, resulting in low
YELP performance.
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Figure 5. The robustness of topic CVaR degrades
when the baseline is removed (teal), but is resistant
to being over-conservative in choosing α (yellow).

Choice of α. Since the true train-test overlap α∗

is not always known, we cannot always set our
hyperparameter α equal to α∗. We find that se-
lecting suboptimal values of α degrades perplex-
ity between 2–3 points depending on α∗. Fig-
ure 5 shows that setting α to the most conserva-
tive choice of 0.2 outperforms MLE on small α∗

while incurring only 2 points of perplexity loss
over MLE at α∗ = 1.0. Figure 6 further demon-
strates that when α∗ = 0.1, any choice of α out-
performs MLE, and incorrectly selecting α seems
to incur a linear penalty in perplexity.

Error analysis and examples. Evaluating both
models trained with α∗ = 0.1 on both the YELP

and ONEBWORD test sets, we find that topic
CVaR assigns higher probabilities (and therefore
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Figure 6. Topic CVaR outperforms MLE in the
ptrain

x 6= ptest
x setting (α∗ = 0.1) for any small α

(x-axis). The performance degradation is linear, im-
plying topic CVaR is robust to small errors in the
choice of α.

incurs lower losses) on sentences from Yelp (Fig-
ure 7, top right). We also see that MLE does par-
ticularly well on low loss examples (bottom left)
while topic CVaR does well on high-loss ones
(top right) as we might expect from optimizing the
worst-case losses.

Examining examples from the YELP test set
(Table 1), we identify examples which have sub-
stantially higher probabilities under MLE than
topic CVaR (left column) and vice versa (right
column). These examples show that topic CVaR
performs well by assigning high probabilities to
stereotypical YELP sentences that discuss food
and service, while MLE performs better on sen-
tences about accidents and locations. These ex-
amples are consistent with the observation that
topic CVaR assigns higher probabilities to typi-
cal YELP sentences and thus has lower perplexity,
while the MLE model has high perplexity since it
assigns probabilities to YELP sentences primarily
based on their similarity to examples from ONEB-
WORD.
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Figure 7. Log losses for sentences (points) from
YELP (blue) and ONEBWORD (red) under topic
CVaR (y-axis) and MLE (x-axis). Topic CVaR per-
forms well on YELP and infrequent sentences (top
right). MLE performs better on frequent sentences
from ONEBWORD (bottom left).
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pMLE > pCVaR pCVaR > pMLE

my girlfriend had an awful accident that hurt her leg & ankle which
resulted in a fire and rescue ride

huge servings, so plenty for leftovers.

the address [PERSON] has listed is their old address it tastes the way food should taste!
wonderful location in a up and coming part of [GPE]. every single person we spoke to on staff was absolutely incredible.

Table 1. Examples from the YELP corpus for which MLE outperforms topic CVaR (left column) and vice versa.
Brackets indicate ONTONOTES named-entity tags. The examples preferred by topic CVaR are stereotypical Yelp
sentences, while those preferred by MLE refer to locations and accidents.

6 Related Work

Domain Adaptation: In the case of known
source (train) and target (test) domains, there exist
a variety of techniques to learn robust models (Shi-
modaira, 2000; Quiñonero-Candela et al., 2009;
Daume III, 2007; Ben-David et al., 2010; Blitzer
et al., 2011; Pryzant et al., 2017) or domain-
invariant features (Ganin and Lempitsky, 2015;
Tzeng et al., 2014). However, such methods re-
quire accurate domain membership annotations.

In the absence of domain membership annota-
tions, prior multi-source domain adaptation (Man-
sour et al., 2009) approaches propose the use of
clustering to identify candidate domains. For in-
stance, Hoffman et al. (2012) and Xiong et al.
(2014) discover latent domains in classification by
clustering data using class labels. Gong et al.
(2013) extend this work by identifying subsets
which are distinct and learnable. More recent
work consider errors in estimating the target do-
main (Hoffman et al., 2018) and derive learning
bounds with respect to such errors. While these
approaches make use of cluster and topic struc-
tures as prior, they still require some knowledge
of the target distribution and train a model tailored
to the target distribution. Instead, we assume no
knowledge on the target distribution and train a
single model by considering the worst case.

In conditional settings such as machine trans-
lation, prior works connect topic modeling and
domain adaptation (Hu et al., 2014; Eidelman
et al., 2012). However, unlike our work, these ap-
proaches use topics at test time by inferring the do-
main from the input variable x. In language mod-
eling, we have no inputs and thus must find models
robust to unknown domain shifts at test time. In
addition, it can be difficult to infer the test distribu-
tion as the distribution can rapidly change across
users and time.

Distributional Robustness: Our approach is
based upon existing work in the distributionally
robust optimization (DRO) literature. Optimiz-
ing on a ball of distributions around the em-

pirical distribution has been considered in prior
work (Ben-Tal et al., 2013; Namkoong and Duchi,
2017; Duchi and Namkoong, 2016; Sinha et al.,
2018). Using DRO to minimize losses over sub-
populations was proposed earlier in Hashimoto
et al. (2018) and Duchi and Namkoong (2018),
and Hu et al. (2018) proposed incorporating prob-
lem structure via class labels. Our work derives
an efficient optimization procedure for DRO with
topic-based uncertainty sets, and demonstrates
that naively applying DRO to log losses fails to
provide robustness due to the lack of baselining.

7 Discussion

In this work, we show that the performance of lan-
guage models degrade as the amount of text from
outside the test distribution grows. We hypothe-
size that this problem arises from the tendency of
MLE to optimize for common sentences in the cor-
pus, and we propose a solution based on distribu-
tionally robust optimization.

Empirically, we demonstrate that the DRO-
based topic CVaR is more robust than MLE to
subpopulation shifts and similar shifts. While
this work focuses on DRO for language modeling,
train-test mismatches under subpopulation shifts
are more broadly applicable to any task where
there are trade-offs between potential test distri-
butions, and potential test distributions can be de-
scribed with topics. Our work shows that topics
are an effective way to encode prior information
about test distributions, and baselines can properly
normalize for the difficulty across these topics.
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