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Abstract

Link prediction is an important way to

complete knowledge graphs (KGs), while

embedding-based methods, effective for link

prediction in KGs, perform poorly on relations

that only have a few associative triples. In this

work, we propose a Meta Relational Learn-

ing (MetaR) framework to do the common but

challenging few-shot link prediction in KGs,

namely predicting new triples about a relation

by only observing a few associative triples.

We solve few-shot link prediction by focusing

on transferring relation-specific meta informa-

tion to make model learn the most important

knowledge and learn faster, corresponding to

relation meta and gradient meta respectively in

MetaR. Empirically, our model achieves state-

of-the-art results on few-shot link prediction

KG benchmarks.

1 Introduction

A knowledge graph is composed by a

large amount of triples in the form of

(head entity, relation, tail entity) ((h, r, t)
in short), encoding knowledge and facts in

the world. Many KGs have been proposed

(Vrandei and Krtzsch, 2014; Bollacker et al.,

2008; Carlson et al., 2010) and applied to various

applications (Bordes et al., 2014; Zhang et al.,

2016, 2019a).

Although with huge amount of entities, re-

lations and triples, many KGs still suffer from

incompleteness, thus knowledge graph comple-

tion is vital for the development of KGs. One

of knowledge graph completion tasks is link

prediction, predicting new triples based on ex-

isting ones. For link prediction, KG embed-

ding methods (Bordes et al., 2013; Nickel et al.,

2011; Trouillon et al., 2016; Yang et al., 2015) are

* Equal contribution.
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Figure 1: An example of 3-shot link prediction in KGs.

One task represents observing only three instances of

one specific relation and conducting link prediction on

this relation. Our model focuses on extracting relation-

specific meta information by a kind of relational learner

which is shared across tasks and transferring this meta

information to do link prediction within one task.

promising ways. They learn latent representations,

called embeddings, for entities and relations in

continuous vector space and accomplish link pre-

diction via calculation with embeddings.

The effectiveness of KG embedding methods

is promised by sufficient training examples, thus

results are much worse for elements with a few

instances during training (Zhang et al., 2019c).

However, few-shot problem widely exists in KGs.

For example, about 10% of relations in Wiki-

data (Vrandei and Krtzsch, 2014) have no more

than 10 triples. Relations with a few instances are

called few-shot relations. In this paper, we devote

to discuss few-shot link prediction in knowledge

graphs, predicting tail entity t given head entity h
and relation r by only observing K triples about

r, usually K is small. Figure 1 depicts an example

of 3-shot link prediction in KGs.

To do few-shot link prediction, Xiong et al.
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(2018) made the first trial and proposed GMatch-

ing, learning a matching metric by considering

both learned embeddings and one-hop graph struc-

tures, while we try to accomplish few-shot link

prediction from another perspective based on the

intuition that the most important information to

be transferred from a few existing instances to in-

complete triples should be the common and shared

knowledge within one task. We call such infor-

mation relation-specific meta information and pro-

pose a new framework Meta Relational Learning

(MetaR) for few-shot link prediction. For exam-

ple, in Figure 1, relation-specific meta information

related to the relation CEOof or CountryCapital

will be extracted and transferred by MetaR from a

few existing instances to incomplete triples.

The relation-specific meta information is help-

ful in the following two perspectives: 1) transfer-

ring common relation information from observed

triples to incomplete triples, 2) accelerating the

learning process within one task by observing only

a few instances. Thus we propose two kinds of

relation-specific meta information: relation meta

and gradient meta corresponding to afore men-

tioned two perspectives respectively. In our pro-

posed framework MetaR, relation meta is the high-

order representation of a relation connecting head

and tail entities. Gradient meta is the loss gradi-

ent of relation meta which will be used to make

a rapid update before transferring relation meta to

incomplete triples during prediction.

Compared with GMatching (Xiong et al., 2018)

which relies on a background knowledge graph,

our MetaR is independent with them, thus is more

robust as background knowledge graphs might not

be available for few-shot link prediction in real

scenarios.

We evaluate MetaR with different settings on

few-shot link prediction datasets. MetaR achieves

state-of-the-art results, indicating the success of

transferring relation-specific meta information in

few-shot link prediction tasks. In summary, main

contributions of our work are three-folds:

• Firstly, we propose a novel meta relational

learning framework (MetaR) to address few-

shot link prediction in knowledge graphs.

• Secondly, we highlight the critical role of

relation-specific meta information for few-

shot link prediction, and propose two kinds of

relation-specific meta information, relation

meta and gradient meta. Experiments show

that both of them contribute significantly.

• Thirdly, our MetaR achieves state-of-the-art

results on few-shot link prediction tasks and

we also analyze the facts that affect MetaR’s

performance.

2 Related Work

One target of MetaR is to learn the representation

of entities fitting the few-shot link prediction task

and the learning framework is inspired by knowl-

edge graph embedding methods. Furthermore, us-

ing loss gradient as one kind of meta informa-

tion is inspired by MetaNet (Munkhdalai and Yu,

2017) and MAML (Finn et al., 2017) which ex-

plore methods for few-shot learning by meta-

learning. From these two points, we regard knowl-

edge graph embedding and meta-learning as two

main kinds of related work.

2.1 Knowledge Graph Embedding

Knowledge graph embedding models map rela-

tions and entities into continuous vector space.

They use a score function to measure the truth

value of each triple (h, r, t). Same as knowledge

graph embedding, our MetaR also need a score

function, and the main difference is that represen-

tation for r is the learned relation meta in MetaR

rather than embedding of r as in normal knowl-

edge graph embedding methods.

One line of work is started by TransE

(Bordes et al., 2013) with distance score function.

TransH (Wang et al., 2014) and TransR (Lin et al.,

2015b) are two typical models using different

methods to connect head, tail entities and their re-

lations. DistMult (Yang et al., 2015) and Com-

plEx (Trouillon et al., 2016) are derived from

RESCAL (Nickel et al., 2011), trying to mine

latent semantics in different ways. There are

also some others like ConvE (Dettmers et al.,

2018) using convolutional structure to score triples

and models using additional information such

as entity types (Xie et al., 2016) and relation

paths (Lin et al., 2015a). Wang et al. (2017)

comprehensively summarize the current popular

knowledge graph embedding methods.

Traditional embedding models are heavily rely

on rich training instances (Zhang et al., 2019b;

Xiong et al., 2018), thus are limited to do few-shot

link prediction. Our MetaR is designed to fill this

vulnerability of existing embedding models.
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2.2 Meta-Learning

Meta-learning seeks for the ability of learning

quickly from only a few instances within the same

concept and adapting continuously to more con-

cepts, which are actually the rapid and incremental

learning that humans are very good at.

Several meta-learning models have been pro-

posed recently. Generally, there are three kinds

of meta-learning methods so far: (1) Metric-based

meta-learning (Koch et al., 2015; Vinyals et al.,

2016; Snell et al., 2017; Xiong et al., 2018), which

tries to learn a matching metric between query

and support set generalized to all tasks, where

the idea of matching is similar to some near-

est neighbors algorithms. Siamese Neural Net-

work (Koch et al., 2015) is a typical method us-

ing symmetric twin networks to compute the

metric of two inputs. GMatching (Xiong et al.,

2018), the first trial on one-shot link predic-

tion in knowledge graphs, learns a matching

metric based on entity embeddings and local

graph structures which also can be regarded

as a metric-based method. (2) Model-based

method (Santoro et al., 2016; Munkhdalai and Yu,

2017; Mishra et al., 2018), which uses a spe-

cially designed part like memory to achieve the

ability of learning rapidly by only a few train-

ing instances. MetaNet (Munkhdalai and Yu,

2017), a kind of memory augmented neural net-

work (MANN), acquires meta information from

loss gradient and generalizes rapidly via its fast

parameterization. (3) Optimization-based ap-

proach (Finn et al., 2017; Lee and Choi, 2018),

which gains the idea of learning faster by chang-

ing the optimization algorithm. Model-Agnostic

Meta-Learning (Finn et al., 2017) abbreviated as

MAML is a model-agnostic algorithm. It firstly

updates parameters of task-specific learner, and

meta-optimization across tasks is performed over

parameters by using above updated parameters,

it’s like “a gradient through a gradient”.

As far as we know, work proposed by

Xiong et al. (2018) is the first research on few-shot

learning for knowledge graphs. It’s a metric-based

model which consists of a neighbor encoder and a

matching processor. Neighbor encoder enhances

the embedding of entities by their one-hop neigh-

bors, and matching processor performs a multi-

step matching by a LSTM block.

Training

Task #1 (CountryCapital)

Support (China, CountryCapital, Beijing)

Query (France, CountryCapital, Paris)

Task #2 (CEOof)

Support (Satya Nadella, CEOof, Microsoft)

Query (Jack Dorsey, CEOof, Twitter)

Testing

Task #1 (OfficialLanguage)

Support (Japan, OfficialLanguage, Japanese)

Query (Spain, OfficialLanguage, Spanish)

Table 1: The training and testing examples of 1-shot

link prediction in KGs.

3 Task Formulation

In this section, we present the formal definition of

a knowledge graph and few-shot link prediction

task. A knowledge graph is defined as follows:

Definition 3.1 (Knowledge Graph G) A knowl-

edge graph G = {E ,R,T P}. E is the entity set.

R is the relation set. And T P = {(h, r, t) ∈
E ×R× E} is the triple set.

And a few-shot link prediction task in knowledge

graphs is defined as:

Definition 3.2 (Few-shot link prediction task T )

With a knowledge graph G = {E ,R,T P}, given

a support set Sr = {(hi, ti) ∈ E × E|(hi, r, ti) ∈
T P} about relation r ∈ R, where |Sr| = K , pre-

dicting the tail entity linked with relation r to head

entity hj , formulated as r : (hj , ?), is called K-

shot link prediction.

As defined above, a few-shot link prediction

task is always defined for a specific relation. Dur-

ing prediction, there usually is more than one triple

to be predicted, and with support set Sr , we call

the set of all triples to be predicted as query set

Qr = {r : (hj , ?)}.

The goal of a few-shot link prediction method

is to gain the capability of predicting new triples

about a relation r with only observing a few triples

about r. Thus its training process is based on a

set of tasks Ttrain = {Ti}
M
i=1 where each task

Ti = {Si,Qi} corresponds to an individual few-

shot link prediction task with its own support and

query set. Its testing process is conducted on a set

of new tasks Ttest = {Tj}
N
j=1 which is similar to

Ttrain, other than that Tj ∈ Ttest should be about

relations that have never been seen in Ttrain.
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Figure 2: Overview of MetaR. Tr = {Sr,Qr}, RTr
and R′

Tr

represent relation meta and updated relation meta,

and GTr
represents gradient meta.

Table 1 gives a concrete example of the data

during learning and testing for few-shot link pre-

diction.

4 Method

To make one model gain the few-shot link predic-

tion capability, the most important thing is trans-

ferring information from support set to query set

and there are two questions for us to think about:

(1) what is the most transferable and common in-

formation between support set and query set and

(2) how to learn faster by only observing a few in-

stances within one task. For question (1), within

one task, all triples in support set and query set are

about the same relation, thus it is naturally to sup-

pose that relation is the key common part between

support and query set. For question (2), the learn-

ing process is usually conducted by minimizing a

loss function via gradient descending, thus gradi-

ents reveal how the model’s parameters should be

changed. Intuitively, we believe that gradients are

valuable source to accelerate learning process.

Based on these thoughts, we propose two kinds

of meta information which are shared between

support set and query set to deal with above prob-

lems:

• Relation Meta represents the relation con-

necting head and tail entities in both support

and query set and we extract relation meta for

each task, represented as a vector, from sup-

port set and transfer it to query set.

• Gradient Meta is the loss gradient of rela-

tion meta in support set. As gradient meta

shows how relation meta should be changed

in order to reach a loss minima, thus to ac-

celerate the learning process, relation meta is

updated through gradient meta before being

transferred to query set. This update can be

viewed as the rapid learning of relation meta.

In order to extract relation meta and gradient

mate and incorporate them with knowledge graph

embedding to solve few-shot link prediction, our

proposal, MetaR, mainly contains two modules:

• Relation-Meta Learner generates relation

meta from heads’ and tails’ embeddings in

the support set.

• Embedding Learner calculates the truth val-

ues of triples in support set and query set via

entity embeddings and relation meta. Based

on the loss function in embedding learner,

gradient meta is calculated and a rapid update

for relation meta will be implemented before

transferring relation meta to query set.

The overview and algorithm of MetaR are

shown in Figure 2 and Algorithm 1. Next, we in-

troduce each module of MetaR via one few-shot

link prediction task Tr = {Sr,Qr}.

4.1 Relation-Meta Learner

To extract the relation meta from support set, we

design a relation-meta learner to learn a mapping

from head and tail entities in support set to relation

meta. The structure of this relation-meta learner

can be implemented as a simple neural network.

In task Tr, the input of relation-meta learner is

head and tail entity pairs in support set {(hi, ti) ∈
Sr}. We firstly extract entity-pair specific relation
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Algorithm 1 Learning of MetaR

Require: Training tasks Ttrain
Require: Embedding layer emb; Parameter of

relation-meta learner φ
1: while not done do

2: Sample a task Tr = {Sr,Qr} from Ttrain
3: Get R from Sr (Equ. 1, Equ. 2)

4: Compute loss in Sr (Equ. 4)

5: Get G by gradient of R (Equ. 5)

6: Update R by G (Equ. 6)

7: Compute loss in Qr (Equ. 8)

8: Update φ and emb by loss in Qr

9: end while

meta via a L-layers fully connected neural net-

work,

x0 = hi ⊕ ti

xl = σ(Wlxl−1 + bl)

R(hi,ti) = WLxL−1 + bL
(1)

where hi ∈ R
d and ti ∈ R

d are embeddings of

head entity hi and tail entity ti with dimension d
respectively. L is the number of layers in neural

network, and l ∈ {1, . . . , L − 1}. Wl and bl are

weights and bias in layer l. We use LeakyReLU

for activation σ. x⊕y represents the concatenation

of vector x and y. Finally, R(hi,ti) represent the

relation meta from specific entity pare hi and ti.
With multiple entity-pair specific relation meta,

we generate the final relation meta in current task

via averaging all entity-pair specific relation meta

in current task,

RTr =

∑K
i=1 R(hi,ti)

K
(2)

4.2 Embedding Learner

As we want to get gradient meta to make a rapid

update on relation meta, we need a score func-

tion to evaluate the truth value of entity pairs un-

der specific relations and also the loss function for

current task. We apply the key idea of knowl-

edge graph embedding methods in our embedding

learner, as they are proved to be effective on eval-

uating truth value of triples in knowledge graphs.

In task Tr, we firstly calculate the score for each

entity pairs (hi, ti) in support set Sr as follows:

s(hi,ti) = ‖hi + RTr − ti‖ (3)

where ‖x‖ represents the L2 norm of vector x.

We design the score function inspired by TransE

(Bordes et al., 2013) which assumes the head en-

tity embedding h, relation embedding r and tail

entity embedding t for a true triple (h, r, t) satis-

fying h+r = t. Thus the score function is defined

according to the distance between h + r and t.

Transferring to our few-show link prediction task,

we replace the relation embedding r with relation

meta RTr as there is no direct general relation em-

beddings in our task and RTr can be regarded as

the relation embedding for current task Tr.

With score function for each triple, we set the

following loss,

L(Sr) =
∑

(hi,ti)∈Sr

[γ + s(hi,ti) − s(hi,t
′
i
)]+ (4)

where [x]+ represents the positive part of x and

γ represents margin which is a hyperparameter.

s(hi,t
′
i
) is the score for negative sample (hi, t

′
i) cor-

responding to current positive entity pair (hi, ti) ∈
Sr, where (hi, r, t

′
i) /∈ G.

L(Sr) should be small for task Tr which repre-

sents the model can properly encode truth values

of triples. Thus gradients of parameters indicate

how should the parameters be updated. Thus we

regard the gradient of RTr based on L(Sr) as gra-

dient meta GTr :

GTr = ∇RTr
L(Sr) (5)

Following the gradient update rule, we make a

rapid update on relation meta as follows:

R
′
Tr = RTr − βGTr (6)

where β indicates the step size of gradient meta

when operating on relation meta.

When scoring the query set by embedding

learner, we use updated relation meta. After get-

ting the updated relation meta R′, we transfer it to

samples in query set Qr = {(hj , tj)} and calcu-

late their scores and loss of query set, following

the same way in support set:

s(hj ,tj) = ‖hj + R
′
Tr − tj‖ (7)

L(Qr) =
∑

(hj ,tj)∈Qr

[γ + s(hj ,tj) − s(hj ,t
′
j
)]+ (8)

where L(Qr) is our training objective to be mini-

mized. We use this loss to update the whole model.
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Dataset Fit # Train # Dev # Test

NELL-One Y 321 5 11

Wiki-One Y 589 16 34

NELL-One N 51 5 11

Wiki-One N 133 16 34

Table 2: Statistic of datasets. Fit denotes fitting back-

ground into training tasks (Y) or not (N), # Train, # Dev

and # Test denote the number of relations in training,

validation and test set.

4.3 Training Objective

During training, our objective is to minimize the

following loss L which is the sum of query loss

for all tasks in one minibatch:

L =
∑

(Sr ,Qr)∈Ttrain

L(Qr) (9)

5 Experiments

With MetaR, we want to figure out following

things: 1) can MetaR accomplish few-shot link

prediction task and even perform better than pre-

vious model? 2) how much relation-specific meta

information contributes to few-shot link predic-

tion? 3) is there any requirement for MetaR to

work on few-shot link prediction? To do these,

we conduct the experiments on two few-shot link

prediction datasets and deeply analyze the experi-

ment results 1.

5.1 Datasets and Evaluation Metrics

We use two datasets, NELL-One and Wiki-

One which are constructed by Xiong et al.

(2018). NELL-One and Wiki-One are derived

from NELL (Carlson et al., 2010) and Wiki-

data (Vrandei and Krtzsch, 2014) respectively.

Furthermore, because these two benchmarks are

firstly tested on GMatching which consider both

learned embeddings and one-hop graph structures,

a background graph is constructed with relations

out of training/validation/test sets for obtaining the

pre-train entity embeddings and providing the lo-

cal graph for GMatching.

Unlike GMatching using background graph to

enhance the representations of entities, our MetaR

can be trained without background graph. For

NELL-One and Wiki-One which have background

1The source code of experiments is available at
https://github.com/AnselCmy/MetaR

Background Conf. Description

BG:Pre-Train Use background to train

entity embedding in ad-

vance.

BG:In-Train Fit background graph

into training tasks.

BG:Discard Discard the background

graph.

Table 3: Three forms of datasets in our experiments.

graph originally, we can make use of such back-

ground graph by fitting it into training tasks or

using it to train embeddings to initialize entity

representations. Overall, we have three kinds of

dataset settings, shown in Table 3. For setting of

BG:In-Train, in order to make background graph

included in training tasks, we sample tasks from

triples in background graph and original training

set, rather than sampling from only original train-

ing set.

Note that these three settings don’t violate the

task formulation of few-shot link prediction in

KGs. The statistics of NELL-One and Wiki-One

are shown in Table 2.

We use two traditional metrics to evaluate

different methods on these datasets, MRR and

Hits@N. MRR is the mean reciprocal rank and

Hits@N is the proportion of correct entities ranked

in the top N in link prediction.

5.2 Implementation

During training, mini-batch gradient descent is

applied with batch size set as 64 and 128 for

NELL-One and Wiki-One respectively. We use

Adam (Kingma and Ba, 2015) with the initial

learning rate as 0.001 to update parameters. We set

γ = 1 and β = 1. The number of positive and neg-

ative triples in query set is 3 and 10 in NELL-One

and Wiki-One. Trained model will be applied on

validation tasks each 1000 epochs, and the current

model parameters and corresponding performance

will be recorded, after stopping, the model that has

the best performance on Hits@10 will be treated

as final model. For number of training epoch, we

use early stopping with 30 patient epochs, which

means that we stop the training when the perfor-

mance on Hits@10 drops 30 times continuously.

Following GMatching, the embedding dimension

of NELL-One is 100 and Wiki-One is 50. The

https://github.com/AnselCmy/MetaR
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MRR Hits@10 Hits@5 Hits@1

NELL-One 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

GMatching RESCAL .188 – .305 – .243 – .133 –

GMatching TransE .171 – .255 – .210 – .122 –

GMatching DistMult .171 – .301 – .221 – .114 –

GMatching ComplEx .185 .201 .313 .311 .260 .264 .119 .143

GMatching Random .151 – .252 – .186 – .103 –

MetaR (BG:Pre-Train) .164 .209 .331 .355 .238 .280 .093 .141

MetaR (BG:In-Train) .250 .261 .401 .437 .336 .350 .170 .168

Wiki-One 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

GMatching RESCAL .139 – .305 – .228 – .061 –

GMatching TransE .219 – .328 – .269 – .163 –

GMatching DistMult .222 – .340 – .271 – .164 –

GMatching ComplEx .200 – .336 – .272 – .120 –

GMatching Random .198 – .299 – .260 – .133 –

MetaR (BG:Pre-Train) .314 .323 .404 .418 .375 .385 .266 .270

MetaR (BG:In-Train) .193 .221 .280 .302 .233 .264 .152 .178

Table 4: Results of few-shot link prediction in NELL-One and Wiki-One. Bold numbers are the best results of all

and underline numbers are the best results of GMatching. The contents of (bracket) after MetaR illustrate the form

of datasets we use for MetaR.

sizes of two hidden layers in relation-meta learner

are 500, 200 and 250, 100 for NELL-One and

Wiki-One.

5.3 Results

The results of two few-shot link prediction tasks,

including 1-shot and 5-shot, on NELL-One and

Wiki-One are shown in Table 4. The baseline in

our experiment is GMatching (Xiong et al., 2018),

which made the first trial on few-shot link predic-

tion task and is the only method that we can find as

baseline. In this table, results of GMatching with

different KG embedding initialization are copied

from the original paper. Our MetaR is tested on

different settings of datasets introduced in Table 3.

In Table 4, our model performs better with

all evaluation metrics on both datasets. Specifi-

cally, for 1-shot link prediction, MetaR increases

by 33%, 28.1%, 29.2% and 27.8% on MRR,

Hits@10, Hits@5 and Hits@1 on NELL-One,

and 41.4%, 18.8%, 37.9% and 62.2% on Wiki-

One, with average improvement of 29.53% and

40.08% respectively. For 5-shot, MetaR increases

by 29.9%, 40.5%, 32.6% and 17.5% on MRR,

Hits@10, Hits@5 and Hits@1 on NELL-One with

average improvement of 30.13%.

Thus for the first question we want to ex-

Ablation Conf. BG:Pre-Train BG:In-Train

standard .331 .401

-g .234 .341

-g -r .052 .052

Table 5: Results of ablation study on Hits@10 of 1-shot

link prediction in NELL-One.

plore, the results of MetaR are no worse than

GMatching, indicating that MetaR has the capa-

bility of accomplishing few-shot link prediction.

In parallel, the impressive improvement compared

with GMatching demonstrates that the key idea of

MetaR, transferring relation-specific meta infor-

mation from support set to query set, works well

on few-shot link prediction task.

Furthermore, compared with GMatching, our

MetaR is independent with background knowl-

edge graphs. We test MetaR on 1-shot link pre-

diction in partial NELL-One and Wiki-One which

discard the background graph, and get the results

of 0.279 and 0.348 on Hits@10 respectively. Such

results are still comparable with GMatching in

fully datasets with background.
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5.4 Ablation Study

We have proved that relation-specific meta infor-

mation, the key point of MetaR, successfully con-

tributes to few-shot link prediction in previous sec-

tion. As there are two kinds of relation-specific

meta information in this paper, relation meta and

gradient meta, we want to figure out how these

two kinds of meta information contribute to the

performance. Thus, we conduct an ablation study

with three settings. The first one is our complete

MetaR method denoted as standard. The second

one is removing the gradient meta by transferring

un-updated relation meta directly from support set

to query set without updating it via gradient meta,

denoted as -g. The third one is removing the rela-

tion meta further which makes the model rebase to

a simple TransE embedding model, denoted as -g

-r. The result under the third setting is copied from

Xiong et al. (2018). It uses the triples from back-

ground graph, training tasks and one-shot train-

ing triples from validation/test set, so it’s neither

BG:Pre-Train nor BG:In-Train. We conduct the

ablation study on NELL-one with metric Hit@10

and results are shown in Table 5.

Table 5 shows that removing gradient meta de-

creases 29.3% and 15% on two dataset settings,

and further removing relation meta continuous de-

creases the performance with 55% and 72% com-

pared to the standard results. Thus both rela-

tion meta and gradient meta contribute signifi-

cantly and relation meta contributes more than

gradient meta. Without gradient meta and rela-

tion meta, there is no relation-specific meta in-

formation transferred in the model and it almost

doesn’t work. This also illustrates that relation-

specific meta information is important and effec-

tive for few-shot link prediction task.

5.5 Facts That Affect MetaR’s Performance

We have proved that both relation meta and gra-

dient meta surely contribute to few-shot link pre-

diction. But is there any requirement for MetaR to

ensure the performance on few-shot link predic-

tion? We analyze this from two points based on

the results, one is the sparsity of entities and the

other is the number of tasks in training set.

The sparsity of entities We notice that the

best result of NELL-One and Wiki-One appears

in different dataset settings. With NELL-One,

MetaR performs better on BG:In-Train dataset set-

ting, while with Wiki-One, it performs better on

BG:Pre-Train. Performance difference between

two dataset settings is more significant on Wiki-

One.

Most datasets for few-shot task are sparse and

the same with NELL-One and Wiki-One, but the

entity sparsity in these two datasets are still signif-

icantly different, which is especially reflected in

the proportion of entities that only appear in one

triple in training set, 82.8% and 37.1% in Wiki-

One and NELL-One respectively. Entities only

have one triple during training will make MetaR

unable to learn good representations for them, be-

cause entity embeddings heavily rely on triples re-

lated to them in MetaR. Only based on one triple,

the learned entity embeddings will include a lot

of bias. Knowledge graph embedding method can

learn better embeddings than MetaR for those one-

shot entities, because entity embeddings can be

corrected by embeddings of relations that connect

to it, while they can’t in MetaR. This is why the

best performance occurs in BG:Pre-train setting

on Wiki-One, pre-train entity embeddings help

MetaR overcome the low-quality on one-shot en-

tities.

The number of tasks From the comparison

of MetaR’s performance between with and with-

out background dataset setting on NELL-One, we

find that the number of tasks will affect MetaR’s

performance significantly. With BG:In-Train,

there are 321 tasks during training and MetaR

achieves 0.401 on Hits@10, while without back-

ground knowledge, there are 51, with 270 less,

and MetaR achieves 0.279. This makes it reason-

able that why MetaR achieves best performance

on BG:In-Train with NELL-One. Even NELL-

One has 37.1% one-shot entities, adding back-

ground knowledge into dataset increases the num-

ber of training tasks significantly, which comple-

ments the sparsity problem and contributes more

to the task.

Thus we conclude that both the sparsity of enti-

ties and number of tasks will affect performance

of MetaR. Generally, with more training tasks,

MetaR performs better and for extremely sparse

dataset, pre-train entity embeddings are preferred.

6 Conclusion

We propose a meta relational learning framework

to do few-shot link prediction in KGs, and we de-

sign our model to transfer relation-specific meta

information from support set to query set. Specif-
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ically, using relation meta to transfer common and

important information, and using gradient meta

to accelerate learning. Compared to GMatching

which is the only method in this task, our method

MetaR gets better performance and it is also in-

dependent with background knowledge graphs.

Based on experimental results, we analyze that

the performance of MetaR will be affected by the

number of training tasks and sparsity of entities.

We may consider obtaining more valuable infor-

mation about sparse entities in few-shot link pre-

diction in KGs in the future.
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