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Abstract

Obtaining large-scale annotated data for NLP
tasks in the scientific domain is challenging
and expensive. We release SCIBERT, a pre-
trained language model based on BERT (De-
vlin et al., 2019) to address the lack of high-
quality, large-scale labeled scientific data.
SCIBERT leverages unsupervised pretraining
on a large multi-domain corpus of scien-
tific publications to improve performance on
downstream scientific NLP tasks. We eval-
uate on a suite of tasks including sequence
tagging, sentence classification and depen-
dency parsing, with datasets from a variety
of scientific domains. We demonstrate sta-
tistically significant improvements over BERT
and achieve new state-of-the-art results on sev-
eral of these tasks. The code and pretrained
models are available at https://github.
com/allenai/scibert/.

1 Introduction

The exponential increase in the volume of scien-
tific publications in the past decades has made
NLP an essential tool for large-scale knowledge
extraction and machine reading of these docu-
ments. Recent progress in NLP has been driven
by the adoption of deep neural models, but train-
ing such models often requires large amounts of
labeled data. In general domains, large-scale train-
ing data is often possible to obtain through crowd-
sourcing, but in scientific domains, annotated data
is difficult and expensive to collect due to the ex-
pertise required for quality annotation.

As shown through ELMo (Peters et al., 2018),
GPT (Radford et al., 2018) and BERT (Devlin
et al., 2019), unsupervised pretraining of language
models on large corpora significantly improves
performance on many NLP tasks. These models
return contextualized embeddings for each token
which can be passed into minimal task-specific

neural architectures. Leveraging the success of un-
supervised pretraining has become especially im-
portant especially when task-specific annotations
are difficult to obtain, like in scientific NLP. Yet
while both BERT and ELMo have released pre-
trained models, they are still trained on general do-
main corpora such as news articles and Wikipedia.

In this work, we make the following contribu-
tions:

(i) We release SCIBERT, a new resource demon-
strated to improve performance on a range of NLP
tasks in the scientific domain. SCIBERT is a pre-
trained language model based on BERT but trained
on a large corpus of scientific text.

(ii) We perform extensive experimentation to
investigate the performance of finetuning ver-
sus task-specific architectures atop frozen embed-
dings, and the effect of having an in-domain vo-
cabulary.

(iii) We evaluate SCIBERT on a suite of tasks
in the scientific domain, and achieve new state-of-
the-art (SOTA) results on many of these tasks.

2 Methods

Background The BERT model architecture (De-
vlin et al., 2019) is based on a multilayer bidirec-
tional Transformer (Vaswani et al., 2017). Instead
of the traditional left-to-right language modeling
objective, BERT is trained on two tasks: predicting
randomly masked tokens and predicting whether
two sentences follow each other. SCIBERT fol-
lows the same architecture as BERT but is instead
pretrained on scientific text.

Vocabulary BERT uses WordPiece (Wu et al.,
2016) for unsupervised tokenization of the input
text. The vocabulary is built such that it contains
the most frequently used words or subword units.
We refer to the original vocabulary released with
BERT as BASEVOCAB.

https://github.com/allenai/scibert/
https://github.com/allenai/scibert/
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We construct SCIVOCAB, a new WordPiece vo-
cabulary on our scientific corpus using the Sen-
tencePiece1 library. We produce both cased and
uncased vocabularies and set the vocabulary size
to 30K to match the size of BASEVOCAB. The re-
sulting token overlap between BASEVOCAB and
SCIVOCAB is 42%, illustrating a substantial dif-
ference in frequently used words between scien-
tific and general domain texts.

Corpus We train SCIBERT on a random sample
of 1.14M papers from Semantic Scholar (Ammar
et al., 2018). This corpus consists of 18% papers
from the computer science domain and 82% from
the broad biomedical domain. We use the full text
of the papers, not just the abstracts. The average
paper length is 154 sentences (2,769 tokens) re-
sulting in a corpus size of 3.17B tokens, similar to
the 3.3B tokens on which BERT was trained. We
split sentences using ScispaCy (Neumann et al.,
2019),2 which is optimized for scientific text.

3 Experimental Setup

3.1 Tasks

We experiment on the following core NLP tasks:

1. Named Entity Recognition (NER)
2. PICO Extraction (PICO)
3. Text Classification (CLS)
4. Relation Classification (REL)
5. Dependency Parsing (DEP)

PICO, like NER, is a sequence labeling task where
the model extracts spans describing the Partici-
pants, Interventions, Comparisons, and Outcomes
in a clinical trial paper (Kim et al., 2011). REL
is a special case of text classification where the
model predicts the type of relation expressed be-
tween two entities, which are encapsulated in the
sentence by inserted special tokens.

3.2 Datasets

For brevity, we only describe the newer datasets
here, and refer the reader to the references in Ta-
ble 1 for the older datasets. EBM-NLP (Nye et al.,
2018) annotates PICO spans in clinical trial ab-
stracts. SciERC (Luan et al., 2018) annotates enti-
ties and relations from computer science abstracts.

1https://github.com/google/
sentencepiece

2https://github.com/allenai/SciSpaCy

ACL-ARC (Jurgens et al., 2018) and SciCite (Co-
han et al., 2019) assign intent labels (e.g. Com-
parison, Extension, etc.) to sentences from sci-
entific papers that cite other papers. The Paper
Field dataset is built from the Microsoft Academic
Graph (Sinha et al., 2015)3 and maps paper titles
to one of 7 fields of study. Each field of study
(i.e. geography, politics, economics, business, so-
ciology, medicine, and psychology) has approxi-
mately 12K training examples.

3.3 Pretrained BERT Variants

BERT-Base We use the pretrained weights for
BERT-Base (Devlin et al., 2019) released with the
original BERT code.4 The vocabulary is BASE-
VOCAB. We evaluate both cased and uncased ver-
sions of this model.

SCIBERT We use the original BERT code to
train SCIBERT on our corpus with the same con-
figuration and size as BERT-Base. We train 4
different versions of SCIBERT: (i) cased or un-
cased and (ii) BASEVOCAB or SCIVOCAB. The
two models that use BASEVOCAB are finetuned
from the corresponding BERT-Base models. The
other two models that use the new SCIVOCAB are
trained from scratch.

Pretraining BERT for long sentences can be
slow. Following the original BERT code, we set a
maximum sentence length of 128 tokens, and train
the model until the training loss stops decreasing.
We then continue training the model allowing sen-
tence lengths up to 512 tokens.

We use a single TPU v3 with 8 cores. Training
the SCIVOCAB models from scratch on our corpus
takes 1 week5 (5 days with max length 128, then
2 days with max length 512). The BASEVOCAB

models take 2 fewer days of training because they
aren’t trained from scratch.

All pretrained BERT models are converted to
be compatible with PyTorch using the pytorch-
transformers library.6 All our models (Sec-
tions 3.4 and 3.5) are implemented in PyTorch us-
ing AllenNLP (Gardner et al., 2017).

3https://academic.microsoft.com/
4https://github.com/google-research/

bert
5BERT’s largest model was trained on 16 Cloud TPUs for

4 days. Expected 40-70 days (Dettmers, 2019) on an 8-GPU
machine.

6https://github.com/huggingface/
pytorch-transformers

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://github.com/allenai/SciSpaCy
https://academic.microsoft.com/
https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
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Casing We follow Devlin et al. (2019) in using
the cased models for NER and the uncased models
for all other tasks. We also use the cased models
for parsing. Some light experimentation showed
that the uncased models perform slightly better
(even sometimes on NER) than cased models.

3.4 Finetuning BERT

We mostly follow the same architecture, optimiza-
tion, and hyperparameter choices used in Devlin
et al. (2019). For text classification (i.e. CLS
and REL), we feed the final BERT vector for the
[CLS] token into a linear classification layer. For
sequence labeling (i.e. NER and PICO), we feed
the final BERT vector for each token into a linear
classification layer with softmax output. We dif-
fer slightly in using an additional conditional ran-
dom field, which made evaluation easier by guar-
anteeing well-formed entities. For DEP, we use
the model from Dozat and Manning (2017) with
dependency tag and arc embeddings of size 100
and biaffine matrix attention over BERT vectors in-
stead of stacked BiLSTMs.

In all settings, we apply a dropout of 0.1 and
optimize cross entropy loss using Adam (Kingma
and Ba, 2015). We finetune for 2 to 5 epochs using
a batch size of 32 and a learning rate of 5e-6, 1e-
5, 2e-5, or 5e-5 with a slanted triangular schedule
(Howard and Ruder, 2018) which is equivalent to
the linear warmup followed by linear decay (De-
vlin et al., 2019). For each dataset and BERT vari-
ant, we pick the best learning rate and number of
epochs on the development set and report the cor-
responding test results.

We found the setting that works best across
most datasets and models is 2 or 4 epochs and a
learning rate of 2e-5. While task-dependent, op-
timal hyperparameters for each task are often the
same across BERT variants.

3.5 Frozen BERT Embeddings
We also explore the usage of BERT as pretrained
contextualized word embeddings, like ELMo (Pe-
ters et al., 2018), by training simple task-specific
models atop frozen BERT embeddings.

For text classification, we feed each sentence of
BERT vectors into a 2-layer BiLSTM of size 200
and apply a multilayer perceptron (with hidden
size 200) on the concatenated first and last BiL-
STM vectors. For sequence labeling, we use the
same BiLSTM layers and use a conditional ran-
dom field to guarantee well-formed predictions.

For DEP, we use the full model from Dozat and
Manning (2017) with dependency tag and arc em-
beddings of size 100 and the same BiLSTM setup
as other tasks. We did not find changing the depth
or size of the BiLSTMs to significantly impact re-
sults (Reimers and Gurevych, 2017).

We optimize cross entropy loss using Adam,
but holding BERT weights frozen and applying a
dropout of 0.5. We train with early stopping on
the development set (patience of 10) using a batch
size of 32 and a learning rate of 0.001.

We did not perform extensive hyperparameter
search, but while optimal hyperparameters are go-
ing to be task-dependent, some light experimenta-
tion showed these settings work fairly well across
most tasks and BERT variants.

4 Results

Table 1 summarizes the experimental results. We
observe that SCIBERT outperforms BERT-Base
on scientific tasks (+2.11 F1 with finetuning and
+2.43 F1 without)8. We also achieve new SOTA
results on many of these tasks using SCIBERT.

4.1 Biomedical Domain

We observe that SCIBERT outperforms BERT-
Base on biomedical tasks (+1.92 F1 with finetun-
ing and +3.59 F1 without). In addition, SCIB-
ERT achieves new SOTA results on BC5CDR and
ChemProt (Lee et al., 2019), and EBM-NLP (Nye
et al., 2018).

SCIBERT performs slightly worse than SOTA
on 3 datasets. The SOTA model for JNLPBA is a
BiLSTM-CRF ensemble trained on multiple NER
datasets not just JNLPBA (Yoon et al., 2018). The
SOTA model for NCBI-disease is BIOBERT (Lee
et al., 2019), which is BERT-Base finetuned on
18B tokens from biomedical papers. The SOTA
result for GENIA is in Nguyen and Verspoor
(2019) which uses the model from Dozat and
Manning (2017) with part-of-speech (POS) fea-
tures, which we do not use.

In Table 2, we compare SCIBERT results
with reported BIOBERT results on the subset of
datasets included in (Lee et al., 2019). Interest-
ing, SCIBERT outperforms BIOBERT results on

7The SOTA paper did not report a single score. We
compute the average of the reported results for each class
weighted by number of examples in each class.

8For rest of this paper, all results reported in this manner
are averaged over datasets excluding UAS for DEP since we
already include LAS.
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Field Task Dataset SOTA BERT-Base SCIBERT

Frozen Finetune Frozen Finetune

Bio
NER

BC5CDR (Li et al., 2016) 88.857 85.08 86.72 88.73 90.01
JNLPBA (Collier and Kim, 2004) 78.58 74.05 76.09 75.77 77.28
NCBI-disease (Dogan et al., 2014) 89.36 84.06 86.88 86.39 88.57

PICO EBM-NLP (Nye et al., 2018) 66.30 61.44 71.53 68.30 72.28

DEP GENIA (Kim et al., 2003) - LAS 91.92 90.22 90.33 90.36 90.43
GENIA (Kim et al., 2003) - UAS 92.84 91.84 91.89 92.00 91.99

REL ChemProt (Kringelum et al., 2016) 76.68 68.21 79.14 75.03 83.64

CS
NER SciERC (Luan et al., 2018) 64.20 63.58 65.24 65.77 67.57
REL SciERC (Luan et al., 2018) n/a 72.74 78.71 75.25 79.97
CLS ACL-ARC (Jurgens et al., 2018) 67.9 62.04 63.91 60.74 70.98

Multi CLS Paper Field n/a 63.64 65.37 64.38 65.71
SciCite (Cohan et al., 2019) 84.0 84.31 84.85 85.42 85.49

Average 73.58 77.16 76.01 79.27

Table 1: Test performances of all BERT variants on all tasks and datasets. Bold indicates the SOTA result (multiple
results bolded if difference within 95% bootstrap confidence interval). Keeping with past work, we report macro
F1 scores for NER (span-level), macro F1 scores for REL and CLS (sentence-level), and macro F1 for PICO
(token-level), and micro F1 for ChemProt specifically. For DEP, we report labeled (LAS) and unlabeled (UAS)
attachment scores (excluding punctuation) for the same model with hyperparameters tuned for LAS. All results
are the average of multiple runs with different random seeds.

Task Dataset BIOBERT SCIBERT

NER
BC5CDR 88.85 90.01
JNLPBA 77.59 77.28
NCBI-disease 89.36 88.57

REL ChemProt 76.68 83.64

Table 2: Comparing SCIBERT with the reported
BIOBERT results on biomedical datasets.

BC5CDR and ChemProt, and performs similarly
on JNLPBA despite being trained on a substan-
tially smaller biomedical corpus.

4.2 Computer Science Domain

We observe that SCIBERT outperforms BERT-
Base on computer science tasks (+3.55 F1 with
finetuning and +1.13 F1 without). In addition,
SCIBERT achieves new SOTA results on ACL-
ARC (Cohan et al., 2019), and the NER part of
SciERC (Luan et al., 2018). For relations in Sci-
ERC, our results are not comparable with those in
Luan et al. (2018) because we are performing re-
lation classification given gold entities, while they
perform joint entity and relation extraction.

4.3 Multiple Domains

We observe that SCIBERT outperforms BERT-
Base on the multidomain tasks (+0.49 F1 with
finetuning and +0.93 F1 without). In addition,
SCIBERT outperforms the SOTA on SciCite (Co-

han et al., 2019). No prior published SOTA results
exist for the Paper Field dataset.

5 Discussion

5.1 Effect of Finetuning

We observe improved results via BERT finetuning
rather than task-specific architectures atop frozen
embeddings (+3.25 F1 with SCIBERT and +3.58
with BERT-Base, on average). For each scientific
domain, we observe the largest effects of finetun-
ing on the computer science (+5.59 F1 with SCIB-
ERT and +3.17 F1 with BERT-Base) and biomed-
ical tasks (+2.94 F1 with SCIBERT and +4.61 F1
with BERT-Base), and the smallest effect on mul-
tidomain tasks (+0.7 F1 with SCIBERT and +1.14
F1 with BERT-Base). On every dataset except
BC5CDR and SciCite, BERT-Base with finetuning
outperforms (or performs similarly to) a model us-
ing frozen SCIBERT embeddings.

5.2 Effect of SCIVOCAB

We assess the importance of an in-domain sci-
entific vocabulary by repeating the finetuning ex-
periments for SCIBERT with BASEVOCAB. We
find the optimal hyperparameters for SCIBERT-
BASEVOCAB often coincide with those of SCIB-
ERT-SCIVOCAB.

Averaged across datasets, we observe +0.60 F1
when using SCIVOCAB. For each scientific do-
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main, we observe +0.76 F1 for biomedical tasks,
+0.61 F1 for computer science tasks, and +0.11 F1
for multidomain tasks.

Given the disjoint vocabularies (Section 2) and
the magnitude of improvement over BERT-Base
(Section 4), we suspect that while an in-domain
vocabulary is helpful, SCIBERT benefits most
from the scientific corpus pretraining.

6 Related Work

Recent work on domain adaptation of BERT in-
cludes BIOBERT (Lee et al., 2019) and CLINI-
CALBERT (Alsentzer et al., 2019; Huang et al.,
2019). BIOBERT is trained on PubMed ab-
stracts and PMC full text articles, and CLIN-
ICALBERT is trained on clinical text from the
MIMIC-III database (Johnson et al., 2016). In
contrast, SCIBERT is trained on the full text of
1.14M biomedical and computer science papers
from the Semantic Scholar corpus (Ammar et al.,
2018). Furthermore, SCIBERT uses an in-domain
vocabulary (SCIVOCAB) while the other above-
mentioned models use the original BERT vocab-
ulary (BASEVOCAB).

7 Conclusion and Future Work

We released SCIBERT, a pretrained language
model for scientific text based on BERT. We evalu-
ated SCIBERT on a suite of tasks and datasets from
scientific domains. SCIBERT significantly outper-
formed BERT-Base and achieves new SOTA re-
sults on several of these tasks, even compared to
some reported BIOBERT (Lee et al., 2019) results
on biomedical tasks.

For future work, we will release a version of
SCIBERT analogous to BERT-Large, as well as ex-
periment with different proportions of papers from
each domain. Because these language models are
costly to train, we aim to build a single resource
that’s useful across multiple domains.
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