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Abstract

Automated fact verification has been progress-
ing owing to advancements in modeling and
availability of large datasets. Due to the na-
ture of the task, it is critical to understand the
vulnerabilities of these systems against adver-
sarial instances designed to make them predict
incorrectly. We introduce two novel scoring
metrics, attack potency and system resilience
which take into account the correctness of the
adversarial instances, an aspect often ignored
in adversarial evaluations. We consider six
fact verification systems from the recent Fact
Extraction and VERification (FEVER) chal-
lenge: the four best-scoring ones and two
baselines. We evaluate adversarial instances
generated by a recently proposed state-of-the-
art method, a paraphrasing method, and rule-
based attacks devised for fact verification. We
find that our rule-based attacks have higher po-
tency, and that while the rankings among the
top systems changed, they exhibited higher re-
silience than the baselines.

1 Introduction

Fact verification is the task of predicting whether
claims can be supported or refuted by evidence.
Advances in this task have been achieved through
improved modelling and the availability of re-
sources to train and validate systems (e.g. Wang
(2017); Baly et al. (2018b); Thorne et al. (2018)).
As this is a task with potentially sensitive appli-
cations like propaganda (Baly et al., 2018a) or bi-
ased news detection (Potthast et al., 2018), it is
critical to understand how systems and models be-
have when exposed to real-world data and how de-
ficiencies in their training data may contribute to
this. It has been observed in related NLP tasks
that as models become more complex, it is diffi-
cult to fully understand and characterize their be-
haviour (Samek et al., 2017). And from an NLP
perspective, there has been an ongoing discussion

Original REFUTED Instance:
Bullitt is a movie directed by Phillip
D’Antoni
Adversarial REFUTED Instance:
There is a movie directed by Phillip D’Antoni
called Bullitt.
Adversarial SUPPORTED Instance:
Bullitt is not a movie directed by Phillip
D’Antoni

Evidence:
Bullitt is a 1968 American action thriller
film directed by Peter Yates and produced by
Philip D’Antoni

Figure 1: Adversarial instances generated through rule-
based transformations of existing claims

as to what extent these models understand lan-
guage (Jia and Liang, 2017) or they are exploit-
ing unintentional biases and cues that are present
in the datasets they are trained on (Poliak et al.,
2018; Gururangan et al., 2018).

One of the diagnostic tools for understand-
ing how models behave is adversarial evaluation,
where data that is deliberately designed to induce
classification errors is used to expose “blind spots”
of a system. While there are many recently pro-
posed techniques for generating adversarial in-
stances for NLP tasks (surveyed in Section 2), they
vary in the degree to which newly generated in-
stances are correct, i.e. grammatical and appropri-
ately labelled.

In this paper, we introduce two scoring met-
rics, (adversarial) attack potency and system re-
silience, that enable comparison of both adversar-
ial instance generators and the systems that they
are executed on respectively. We argue for manual
evaluation of instances generated and the incorpo-
ration of their correctness for scoring. We con-
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duct our experiments in the context of the FEVER
Shared Task (Thorne et al., 2018) (example in
Figure 1), which incorporates both information
retrieval and natural language inference to pre-
dict whether short factoid claims are SUPPORTED

or REFUTED by evidence from Wikipedia. Sys-
tems must return not only the correct label but
also the sentences providing the evidence for it.
In the case where there is not enough evidence
in Wikipedia for either label, the label NOTE-
NOUGHINFO (NEI) is applied and no evidence
needs to be returned.

We evaluate three adversarial attacks against
four state-of-the-art systems and two baselines and
apply our proposed scoring metrics that incorpo-
rate instance correctness. The first attack, in-
formed by model behaviour, uses Semantically
Equivalent Adversarial Rules (SEARs) (Ribeiro
et al., 2018), a state-of-the-art method for generat-
ing rules that perform meaning-preserving trans-
formations to instances that induce classification
errors. The second attack is informed by dataset
biases: we identify common patterns and con-
structions in the claims of the FEVER dataset and
exploit them with hand-crafted rules to generate a
number of new dataset instances. The final attack
is a lexically-informed approach which makes use
of a paraphrase model to generate new instances.

Our findings indicate that the instances gen-
erated by hand-crafted dataset-informed rules re-
duced all systems’ classification accuracy more
than the other approaches we tested. This was be-
cause the instances were not only more challeng-
ing to the systems under test, they were also more
frequently correct – both of these characteristics
factor into our potency score. While the lexically-
informed approach induced a comparable number
of misclassifications to the SEARs model, the in-
stances were often incorrect, resulting in a potency
score that was worse than sampling unmodified
instances at random from the test set. Consid-
ering the resilience of the systems under adver-
sarial evaluation, the 4th-ranked model from the
FEVER challenge performed better than the top
system, but otherwise, the rankings of the systems
were unchanged, and all top-ranked systems out-
performed the baselines.

2 Methods for adversarial evaluation

Adversarial examples were initially studied in the
field of computer vision (Szegedy et al., 2014)

where model deficiencies such as over-sensitivity
to perturbed inputs (by altering pixel intensities
in a way which is imperceptible to humans) re-
sulted in changes to the predictions. Making sim-
ilar perturbations to text for adversarial evalua-
tion is more challenging due to the discrete sym-
bol space: modifying a single token may change
an instance’s semantics or make it ungrammatical.
Various methods for attacks have been proposed
ranging from manual construction and rule-based
perturbation to automated paraphrasing and dis-
tractor information. Each of these methods can be
informed by observations on the datasets for the
task, model predictions and behaviour, and exter-
nal knowledge and lexical resources. There is also
a trade-off between the level of automation (which
allows both scale and diversity of new claims) and
to what extent the new instances are correct (i.e.
grammatical and appropriately labelled). We sur-
vey a range of methods for generating adversarial
instances and consider the suitability of the meth-
ods with respect to the FEVER task and generating
correct instances.

Manual construction informed by expert
knowledge: Instances that exploit world knowl-
edge, semantics, pragmatics, morphology and
syntactic variation have been written and compiled
into challenge datasets for Machine Translation
(Isabelle et al., 2017), Sentiment Analysis (Mahler
et al., 2017; Staliūnaite and Bonfil, 2017) and
Natural Language Understanding (Levesque,
2013). While these instances are expensive to
construct, the attacker would have a high degree
of confidence that the instances are correct and
therefore correctness is not incorporated into the
scoring metrics of any of these works. In FEVER,
generating instances is more complex due to
the need for annotators to highlight appropriate
evidence: scaling up annotation to create new
instances from scratch is non-trivial.

Noise introduced by character-level perturba-
tions: Character-level attacks highlight the brit-
tleness of systems by making letter swaps or inser-
tions. Belinkov and Bisk (2018), Naik et al. (2018)
and Ebrahimi et al. (2018) generate distorted ex-
amples which cause misclassifications or transla-
tion errors. An evaluation is performed compar-
ing the performance of human crowdworkers for
a classification task which only indicated minimal
losses in classification accuracy between the orig-
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inal and modified instances. While it is unlikely
that a single character can unintentionally change
the semantics of a sentence, requiring relabelling,
this method is still intentionally introducing typo-
graphical errors meaning that by the definition of
the FEVER task, the instances would be incorrect.

Adding distractor information: Jia and Liang
(2017) evaluated the addition of distractor sen-
tences to instances and their effect on systems
trained on the SQuAD question answering task
(Rajpurkar et al., 2016). In their study, they com-
pared appending a nonsensical string of words to
the instance against appending sensible distractors
generated by an automated method with the use of
human annotators for a final filtering step. This
approach cannot be ported to generate adversarial
instances for the FEVER task as the claims are sin-
gle sentences and the Wikipedia database which is
used as evidence is considered immutable. Naik
et al. (2018) concatenate manually-written logical
tautologies (such as ‘and true is true’) to instances
for a natural language inference task and this ap-
proach could be used to modify the claim portion
of instances.

Paraphrasing existing instances: Iyyer et al.
(2018) and Ribeiro et al. (2018) generate adversar-
ial instances through paraphrasing existing ones.
The method proposed by Ribeiro et al. (2018) is
informed by both the predictions from a model as
well as the external resource of a neural translation
model whereas the approach taken by Iyyer et al.
(2018) make use of a translation model only.

Zhao et al. (2018) use an autoencoder architec-
ture to generate new instances that are semanti-
cally equivalent. Paraphrasing introduces the risk
of meaning-altering changes to the sentence which
would require relabelling, or producing sentences
which are ungrammatical. Iyyer et al. (2018) iden-
tified that in at least 17.7% of cases, the gener-
ated examples were not paraphrases and in at least
14.0% of cases, the paraphrases were ungrammat-
ical. In a pilot study, Zhao et al. (2018) find that
19% of generated examples were not ‘semanti-
cally similar to the original input’1 and ungram-
matical in 14% of cases.

Ribeiro et al. (2018) generate textual replace-
ment rules that are applied to dataset instances,
modifying them in order to generate new semanti-

1The authors do not state whether the newly generated
adversarial instances retained the original label.

cally equivalent adversarial instances. In a crowd-
worker evaluation, not all rules are accepted as
some induced higher high rates of incorrect in-
stances: for the simpler task of sentiment analysis,
86.6% of rules were retained whereas, for visual
question answering, only 43.5% of rules were re-
tained. Paraphrasing approaches are applicable to
FEVER, but their success depends on constructing
instances that are both correctly labeled and gram-
matical. As FEVER consists of both information
retrieval and natural language inference, the risk
of generation of incorrect instances by paraphras-
ing can be quite high as subtle semantic changes
may change the label of the instance.

3 Potency and resilience

Consider a method for generating adversarial in-
stances (hereafter referred to as an adversary), a,
that generates a set of instances Xa = {xa,i}Ni=1

with accompanying labels Ya = {ya,i}Ni=1. To
evaluate such adversaries, we must consider both
their correctness and their effect on a system under
test.

We measure the effectiveness of an adversary
(a) through a system’s (s) evaluation measure f
(such as F1 or FEVER Score), on a set of predic-
tions made by the system Ŷs,a. Intuitively, bet-
ter adversarial instances induce more misclassifi-
cations, resulting in a lower evaluation measure.
Assuming the evaluation measure outputs a real
value in the range [0, 1], we define potency by the
average reduction in score (from a perfect score)
across all systems, s ∈ S weighted by the correct-
ness rate of the adversary, ca.

Potency(a) def
= ca

1

|S|
∑
s∈S

(
1− f(Ŷs,a, Ya)

)
(1)

Instances are correct if they are grammatical,
appropriately labeled and meet the task require-
ments. To illustrate the need to incorporate cor-
rectness into evaluation, we will compare against
raw potency where the correctness rate of the sys-
tem ca is set to 1. In our experiments, we will
be using an estimate of the correctness rate for
each adversary through annotating a sample of in-
stances as it is not cost-effective with adversaries
generating a large number of instances to perform
a complete annotation.

A system that is resilient will have fewer errors
induced by the adversarial instances, reflected in
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higher scores at evaluation. We wish to penalize
systems for making mistakes on instances from
adversaries with higher correctness rate. We de-
fine resilience as the average score scaled by the
correctness rate for each adversary, a ∈ A:

Resilience(s) def
=

∑
a∈A ca × f(Ŷs,a, Ya)∑

a∈A ca
(2)

4 Adversarial attacks against fact
verification systems

A FEVER dataset instance (example in Figure 1)
consists of a claim accompanied by a label and ev-
idence sentences unless the label is NOTENOUGH-
INFO (NEI) and no evidence needs to be provided.
The adversaries we explore in this paper gener-
ate new instances by altering the claim sentence
of existing instances and applying a new label if
appropriate, without modifying the evidence. We
chose this approach over generating completely
novel instances as this obviates the need to search
for new evidence, a process that is rather error-
prone if done automatically. We explore three
methods for generating adversarial instances by
modifying existing dataset instances: manually
crafted rule-based transformation informed by the
training data; a recently proposed state-of-the-art
method for automatically generating Semantically
Equivalent Adversarial Rules (Ribeiro et al., 2018,
SEARs) that is model targeted; and a lexically-
informed method for paraphrasing model.

4.1 Training data-targeted adversary
This adversary assumes access to the dataset
used to train the models and it identifies lexico-
syntactic patterns in the claims that are highly fre-
quent. The claims following these patterns un-
dergo rule-based transformations to generate new
instances with patterns not encountered in the
training data. We evaluate three different types of
transformations: entailment preserving rewrites,
simple negations and complex negations (see ex-
amples in Table 1).

The entailment-preserving transformations we
use include straightforward rules such as switch-
ing from active to passive voice while retaining
the original label. For transformations that reverse
the labels from SUPPORTED label to REFUTED

and vice versa, negations were applied to a claim’s
verb phrase. More complex negations were intro-
duced by combining the above two techniques.

We constructed 61 rules that matched the most
common claim patterns identified in the training
portion of the FEVER dataset, for example: X is
a Y , X was directed by Y , X died on Y . 23 of
our rules were entailment preserving, 19 were sim-
ple changes to negate claims and 23 were complex
changes that also negated the claims. We release
all of the rules on GitHub2.

4.2 Lexically-informed adversary

Our adversary generates paraphrases of the claim
without altering the evidence or label in a two-
step process. The first step is to generate candidate
claims x′ by substituting nouns and adjectives with
lemmas from all matching synsets from WordNet
(Miller, 1995). The second step is to realize the
surface forms for each of the lemmas. This is
performed using a neural translation model, trans-
lating the candidate sentence into a foreign pivot
language and back-translating into English yield-
ing x′′ using the model from Ribeiro et al. (2018).
Instances are scored using the ratio of transla-
tion probabilities between the paraphrased and the
original sentences P (x′′|x)

P (x|x) as given by the transla-
tion model. For instances where this ratio is low,
the translated sentence is not representative of the
semantics from the original claim. Where the ratio
is high, we observed that the generated instances
x′′ were sometimes nonsensical: P (x′′|x) was ex-
tremely high in cases where sentences contained a
high number of repeated words. To mitigate this,
all claims were ranked using this measure and the
upper and lower quartiles were excluded.

4.3 Model-targeting adversary

We also consider an adversary which exploits
model predictions by generating Semantically
Equivalent Adversarial Rules (Ribeiro et al., 2018,
SEARs). The rules are generated by identi-
fying transformations between paraphrased in-
stances that alter the label predicted by a model
while maintaining semantic equivalence. From all
the rules generated from the dataset, a submod-
ular selection is performed yielding a subset of
non-redundant rules which induce misclassifica-
tions that apply to a large proportion of instances.

We applied three sets of adversarial rules to the
FEVER dataset to generate new claims. The first
set of adversarial rules induced classification er-

2https://github.com/j6mes/
fever-attacks-emlnp-2019
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Transformation Pattern Template

Entailment Preserving (.+) is a (.+) There exists a $2 called $1
(.+) (?:was | is)? directed by (.+) $2 is the director of $1

Simple Negation (.+) was an (.+) $1 was not an $2
(.+) was born in (.+) $1 was never born

Complex Negation (.+) (?:was | is)? directed by (.+) There is a movie called $1 which wasn’t
directed by $2

(.+) an American (.+) $1 $2 that originated from outside the
United States.

Table 1: Example rule-based attacks that preserve the entailment relation of the original claim (within the definition
of the FEVER shared task), perform simple negation and more complex negations. The output new claims that are
sufficiently different to confuse the classifier. The matching groups within the regular expression are copied into
the template (variables begin with $).

rors in classifier for a sentiment analysis task (as
reported in Ribeiro et al. (2018)) and the second
and third sets of rules were generated using pre-
dictions made by the highest scoring model from
the shared task (Nie et al., 2019).

Because SEARs requires O(n2) model queries,
generating rules using the full dataset may be pro-
hibitively expensive for some users. In our evalua-
tion, we compare the rules generated using model
predictions on a sample of 1000 instances from the
development set against rules generated from the
full development set containing 9999 instances.

5 Experimental setup

We evaluate the potency of the adversarial in-
stances generated by the approaches described in
the previous section against four state-of-the-art
models from the FEVER shared task and two base-
line models. The models we evaluate were the
Neuro-Semantic Matching Network (NSMN) (Nie
et al., 2019), HexaF (Yoneda et al., 2018) En-
hanced ESIM (Hanselowski et al., 2018) and the
Transformer Model (Malon, 2018) as trained by
the authors. For the baseline systems, we adopt
the architecture from Thorne et al. (2018), us-
ing both a Decomposable Attention model and
ESIM+ELMo model for natural language infer-
ence from AllenNLP (Gardner et al., 2017) and
a Term Frequency - Inverse Document Frequency
(TF-IDF) model for document retrieval and sen-
tence selection.

Adversarial instances are generated by applying
each adversary to existing FEVER instances and
making modifications to the claim and label where

appropriate. We apply each adversary to the de-
velopment and test split of the dataset of Thorne
et al. (2018)3 to generate datasets of novel claims.
We tune parameters using the development data
and report results using a balanced uniform ran-
dom sample of instances generated from the test
data.

We measure instance correctness through blind
annotation of a random sample of approximately
100 instances generated by each of the adver-
saries. We annotate each instance for grammati-
cality and whether the labelled claim is supported
by the evidence from the original instance, fol-
lowing the manual error coding process described
in Appendix B of the FEVER dataset description
(Thorne et al., 2018).

6 Results

Applying each adversary to the 9999 instances in
the FEVER test set generated a large number of
new adversarial instances. From the training data
targeted rule-based adversary, 21348 new claims
were created, from the lexically-informed adver-
sary using WordNet substitutions and a paraphrase
model, 14046 instances were created, and using
SEARs, 3668, 4144 and 7386 instances were gen-
erated depending on whether the rules were gen-
erated using the model of Nie et al. (2019) on the
full dataset, sampled dataset or using the model of
the sentiment analysis classifier respectively. For

3Note: This is the test split from the paper containing
9999 examples each that later formed part of a development
set for the FEVER shared task. The reserved blind test in-
stances from the shared task were not used.
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Rank Method Raw Potency (%) Correct Rate (%) Potency (%)

1 Rule-based adversary 63.16 89.5 56.53
2 Baseline (Unmodified Instances) 44.79 97.0 43.46
3 SEARs (FEVER Full) 57.84 62.5 36.15
4 SEARs (FEVER Sample) 53.90 55.0 29.65
5 SEARs (Sentiment) 47.36 50.0 23.68
6 Paraphrase + WordNet 65.64 34.0 22.32

Table 2: Potency of adversaries where correctness rate is estimated using inspection of the generated instances.
The baseline method of sampled instances is not used for scoring resilience. Raw potency is potency score without
the considering the correctness of instances.

Rank System FEVER Score (%) Resilience (%)

1 Transformer 57.04 58.66
2 NSMN 63.98 51.09
3 HexaF 62.34 50.06
4 Enhanced ESIM 61.32 43.98
5 TF-IDF + ESIM 36.87 26.86
6 TF-IDF + DA 27.71 22.28

Table 3: Systems ranked by the resilience to adversarial attacks. The FEVER Score column uses reported scores
from the shared task.

each adversary we create a balanced dataset for
evaluation through a stratified sample of 1000 in-
stances where we report the potency of each ad-
versary and resilience of each system, considering
instance correctness. Our summary results are pre-
sented in two tables: Table 2 describes the potency
of each adversary against the systems tested and
Table 3 describes the resilience of each system to
the adversaries.

Considering potency, the highest scoring adver-
sary was the rule-based method – where the rules
were manually written informed by observations
on the training set. While the raw potency (not
considering the correctness of instances) of the in-
stances generated by the lexically-informed para-
phrase adversary was higher than the rule-based
adversary, a large number of instances generated
from this method failed to meet the guidelines
for the task, resulting in the lowest potency in
our evaluation. We the adversarial instances that
were generated by SEARs – which is informed by
model behaviour – also had a higher raw potency
than instances sampled from the dataset (baseline),
the errors introduced when automatically generat-
ing adversarial instances resulted in a lower po-

tency once the correctness of instances was taken
into account. However, this method generated a
higher rate of correct instances than the paraphrase
based method.

For the rule-based method, the largest propor-
tion of incorrect instances were generated by rules
that inadvertently matched sentences that encoun-
tered in the observations used to design the rules.
For example, the rule that transforms the pattern:
‘X is a Y ’ to ‘There is a Y called X‘ correctly
generates instances in most cases, but for the sen-
tence “Chinatown’s producer is a Gemini” which
contains a compound noun, the adversary “There
is a Gemini called Chinatown’s producer” was
generated. Similar errors were produced when the
patterns also matched determiners and included
these in the new sentence in a position which al-
tered the semantics or were ungrammatical.

The potency of SEARs is dependent on the
model and dataset used for generating the Seman-
tically Equivalent Adversarial Rules. When the
rules were generated using the full FEVER de-
velopment split, they not only resulted in a lower
FEVER Score (contributing to higher potency)
of the models but were also correct more often.
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System
FEVER Score (%)

Rules SEARS SEARS SEARS Paraphrase(FEVER Full) (FEVER Sample) (Sentiment)

Transformer 56.36 58.26 62.66 68.67 44.24
NSMN 48.85 47.85 53.35 64.56 39.44
HexaF 45.25 50.15 55.06 62.86 35.64
Enhanced ESIM 31.53 46.75 48.05 62.26 38.24
TF-IDF + ESIM 20.72 28.13 31.03 31.03 27.83
TF-IDF + DA 18.32 21.82 26.43 26.43 20.72

Table 4: Breakdown of FEVER Scores of each system to each adversarial attack prior used for calculating resilience
and potency. Lower scores indicates stronger attack (contributing to potency). Higher scores indicate stronger
systems (contributing to resilience). Scores in this table do not account for correctness of instances.

Using only 10% of the FEVER development set
instances when generating the adversarial rules
was orders magnitude faster than the full dataset
(generation took about a day instead of over two
months), but this had a negative impact on the po-
tency score in two ways: the systems made correct
predictions on approximately 4% more of these in-
stances and the instances were less correct about
7% of the time. SEARs generated on the out-
of-domain movie sentiment dataset had the lowest
potency of the three variants we evaluated. Some
of these rules (such as replacement of ‘movie’ with
‘film’) worked well when applied to FEVER.

A common failure mode from all variants of
SEARs was the replacement of a large number
of indefinite articles (such as a) with definite ar-
ticles (such as the) making claims nonsensical or
altering the semantics to the point where a label
change was required. The SEARs also often made
changes to determiners and quantifiers or deleted
terms such as only, which altered the semantics
of a claim, making it incorrectly labelled. A
higher proportion of this behaviour was observed
with SEARs generated from the sentiment analy-
sis task.

The paraphrasing model exhibited a great de-
gree of variance in the quality of the generated
claims – resulting in a low correctness score.
While all the claims generated were intelligible,
there were a large number of grammatical errors
present and some nonsensical paraphrases which
altered the semantics by substituting synonyms for
the wrong word senses. Some of the paraphrases
resulted in proper nouns and named entities being
replaced by third-person pronouns meaning that
these claims failed to meet the FEVER guideline

as all entities must be referenced directly to facili-
tate evidence retrieval.

The most resilient system was the transformer-
based model (Malon, 2018) with a score of
58.66%. The instances generated by SEARs had
a positive impact on the performance as both re-
call and FEVER Score were higher than the val-
ues reported from the shared task and the instances
generated by manually constructed rules only neg-
atively affected the model by a marginal amount.
Meanwhile, the highest performing system from
the shared task (NSMN) (Nie et al., 2019) had a
lower resilience: 51.09%. Using the breakdown of
FEVER Scores by system and adversary (reported
in Table 4)), we observe that the NSMN was af-
fected by the rule-based adversary and SEARS
(FEVER Full) adversaries much more than trans-
former model.

With the exception of the transformer model,
the resilience of the systems is well correlated with
the performance on the original FEVER task. This
demonstrates that the top-scoring systems in the
shared task were able to better capture the seman-
tic space of the task as the resilience of the baseline
TF-IDF models and that evaluation was adequate
in assessing their generalization abilities.

6.1 Effect of rule-based transformations

All the evaluated systems were pipelines of in-
formation retrieval and natural language inference
components. We perform an analysis of the mod-
els under test considering the effect of rule-based
adversarial instances and their impact on each
pipeline stage. We compare the performance of
the models using the new instances generated by
applying transformations to existing instances (re-
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Model Precision (%) Recall (%)
Original Modified Delta Original Modified Delta

Transformer 95.42 97.93 +2.51 71.47 50.00 -21.47
NSMN 41.14 44.18 +3.04 78.07 71.62 -6.45
HexaF 65.23 59.76 -5.47 80.78 75.98 -4.80
Enhanced ESIM 24.36 22.30 -2.06 86.04 80.93 -5.11
TF-IDF 10.49 9.10 -1.39 45.50 39.20 -6.30

Table 5: Effect of rule-based adversarial attacks on the evidence retrieval component of the pipelines considering
sentence-level accuracy of the evidence.

Model Accuracy (%) FEVER Score (%)
Original Modified Delta Original Modified Delta

Oracle + DA 82.38 62.56 -19.82 = = =
Oracle + ESIM 83.58 60.66 -22.92 = = =

TF-IDF + DA 46.49 37.44 -9.05 27.73 18.32 -9.41
TF-IDF + ESIM 49.75 37.34 -12.41 32.83 20.72 -12.11

Transformer 75.58 57.26 -18.32 73.87 56.36 -17.51
NSMN 70.27 50.35 -19.92 68.77 48.85 -19.92
HexaF 74.67 51.35 -23.32 67.37 45.25 -22.12
Enhanced ESIM 67.56 36.84 -30.72 62.76 31.53 -31.23

Table 6: Summary of label accuracy and FEVER Scores for instances used in rule-based adversarial attacks. For
the case of the oracle evidence retrieval component, FEVER Score is equal to accuracy.

ported in modified columns) and compare this to
the instances that were used to generate them (re-
ported in original columns).

Considering the evidence retrieval component
(refer to Table 5), we find that the adversarial
instances did not affect the information retrieval
component of some systems to the same extent as
the NLI component. Most systems incorporated
either TF-IDF of keyword matching in their infor-
mation retrieval component and thus they are little
affected by the rule-based transformations (which
were mostly adding stop words and reordering the
words within the sentence). The only exception is
the Transformer Model; even though it uses TF-
IDF to retrieve documents, it makes use of an en-
tailment classifier for sentence retrieval from the
documents. While this approach maintained very
high precision with the newly generated instances,
the recall decreased indicating a brittleness for in-
stances that differed from the distribution of the
training set.

Considering the NLI stage of the systems (refer
to Table 6), we observe that in an oracle environ-

ment (using manually labelled evidence – assum-
ing perfect evidence retrieval), both the ESIM and
Decomposable Attention models for natural lan-
guage inference suffer a stark decrease in accuracy
when making predictions on the adversarial exam-
ples. The decrease is less pronounced when con-
sidering the full pipeline (i.e. with an actual imper-
fect evidence retrieval component), which reduces
the upper bound for the FEVER Score and accu-
racy. This is due to the noise introduced by the
evidence retrieval pipeline stage.

The Enhanced ESIM system had the highest re-
duction in accuracy for the rule-based adversar-
ial instances. Even though the model had an evi-
dence recall of 80.93% (a reduction of 5.11%), the
FEVER score reduced by 30.72%. On inspection,
this model is mostly predicting SUPPORTED for
most adversarial instances. In contrast, the Trans-
former Model had the lowest reduction in FEVER
score (−17.51%) despite a reduction in evidence
recall of 23.17%. This model also exhibited simi-
lar behaviour to the Enhanced ESIM model: while
a large number of supported claims were cor-
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rectly classified, this model predominantly pre-
dicted NOTENOUGHINFO for the adversarial in-
stances. As this class does not require evidence to
be correctly scored, ‘falling back’ to it resulted in
a higher FEVER Score when no suitable evidence
was found.

The rule-based adversary applies both
entailment-preserving and label-altering (through
negation) transformations to claims to generate
new adversarial instances. We observe in all mod-
els (with the exception of the Enhanced ESIM
(Hanselowski et al., 2018)) that the reduction
in accuracy for the claims generated through
entailment-preserving transformations was lower
than the claims generated by the negating trans-
formations. This may be revealing an inherent
bias in the models similar to the one discussed by
Naik et al. (2018), where models perform poorly
for antonymous examples due to a dependence on
word-overlap as a feature.

7 Conclusions

As automated means for generating adversarial in-
stances do not always produce grammatical or cor-
rectly labelled instances, we developed a method
for evaluation which incorporates instance correct-
ness. We introduced two metrics that enable eval-
uation of adversarial attacks against systems: the
potency of attack, and the resilience of systems to
these attacks.

In this paper, we evaluated four state-of-the-
art systems and two baselines against instances
generated from three methods for adversarial at-
tack: manually written rules that were informed
by observations of the training data, an auto-
mated lexically-informed paraphrasing model and
an automated state-of-the-art model-targeted ap-
proach. While the manually-written rules exhib-
ited high correctness rate, the automated methods
often made grammatical errors or label-altering
changes which lowered the correctness rate. Our
metrics captured this trade-off between correct-
ness and impact on system scores – despite the
paraphrasing automated method having the great-
est impact on systems under test, it was not the
most potent, owing to the low correctness rate.

We hope that the findings and metrics that we
present in this paper help continue the discussion
on improving the robustness of models and enable
better comparisons between adversarial attacks to
be made that consider instance correctness.
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