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Abstract
We introduce PubMedQA, a novel biomedi-
cal question answering (QA) dataset collected
from PubMed abstracts. The task of Pub-
MedQA is to answer research questions with
yes/no/maybe (e.g.: Do preoperative statins
reduce atrial fibrillation after coronary artery
bypass grafting?) using the corresponding ab-
stracts. PubMedQA has 1k expert-annotated,
61.2k unlabeled and 211.3k artificially gen-
erated QA instances. Each PubMedQA in-
stance is composed of (1) a question which
is either an existing research article title or
derived from one, (2) a context which is the
corresponding abstract without its conclusion,
(3) a long answer, which is the conclusion of
the abstract and, presumably, answers the re-
search question, and (4) a yes/no/maybe an-
swer which summarizes the conclusion. Pub-
MedQA is the first QA dataset where rea-
soning over biomedical research texts, espe-
cially their quantitative contents, is required
to answer the questions. Our best performing
model, multi-phase fine-tuning of BioBERT
with long answer bag-of-word statistics as
additional supervision, achieves 68.1% accu-
racy, compared to single human performance
of 78.0% accuracy and majority-baseline of
55.2% accuracy, leaving much room for im-
provement. PubMedQA is publicly available
at https://pubmedqa.github.io.

1 Introduction

A long-term goal of natural language understand-
ing is to build intelligent systems that can reason
and infer over natural language. The question an-
swering (QA) task, in which models learn how to
answer questions, is often used as a benchmark for
quantitatively measuring the reasoning and infer-
ring abilities of such intelligent systems.

While many large-scale annotated general do-
main QA datasets have been introduced (Ra-
jpurkar et al., 2016; Lai et al., 2017; Kočiskỳ

Question:
Do preoperative statins reduce atrial fibrillation after
coronary artery bypass grafting?
Context:
(Objective) Recent studies have demonstrated that statins
have pleiotropic effects, including anti-inflammatory ef-
fects and atrial fibrillation (AF) preventive effects [...]
(Methods) 221 patients underwent CABG in our hospital
from 2004 to 2007. 14 patients with preoperative AF and
4 patients with concomitant valve surgery [...]
(Results) The overall incidence of postoperative AF was
26%. Postoperative AF was significantly lower in the
Statin group compared with the Non-statin group (16%
versus 33%, p=0.005). Multivariate analysis demon-
strated that independent predictors of AF [...]
Long Answer:
(Conclusion) Our study indicated that preoperative statin
therapy seems to reduce AF development after CABG.
Answer: yes

Figure 1: An instance (Sakamoto et al., 2011) of Pub-
MedQA dataset: Question is the original question title;
Context includes the structured abstract except its con-
clusive part, which serves as the Long Answer; Human
experts annotated the Answer yes. Supporting fact for
the answer is highlighted.

et al., 2018; Yang et al., 2018; Kwiatkowski
et al., 2019), the largest annotated biomedical QA
dataset, BioASQ (Tsatsaronis et al., 2015) has less
than 3k training instances, most of which are sim-
ple factual questions. Some works proposed au-
tomatically constructed biomedical QA datasets
(Pampari et al., 2018; Pappas et al., 2018; Kim
et al., 2018), which have much larger sizes. How-
ever, questions of these datasets are mostly fac-
toid, whose answers can be extracted in the con-
texts without much reasoning.

In this paper, we aim at building a biomedi-
cal QA dataset which (1) has substantial instances
with some expert annotations and (2) requires rea-
soning over the contexts to answer the questions.
For this, we turn to the PubMed1, a search engine
providing access to over 25 million references of

1https://www.ncbi.nlm.nih.gov/pubmed/

https://pubmedqa.github.io
https://www.ncbi.nlm.nih.gov/pubmed/
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biomedical articles. We found that around 760k
articles in PubMed use questions as their titles.
Among them, the abstracts of about 120k articles
are written in a structured style – meaning they
have subsections of “Introduction”, “Results” etc.
Conclusive parts of the abstracts, often in “Con-
clusions”, are the authors’ answers to the ques-
tion title. Other abstract parts can be viewed as
the contexts for giving such answers. This pattern
perfectly fits the scheme of QA, but modeling it
as abstractive QA, where models learn to generate
the conclusions, will result in an extremely hard
task due to the variability of writing styles.

Interestingly, more than half of the question ti-
tles of PubMed articles can be briefly answered by
yes/no/maybe, which is significantly higher than
the proportions of such questions in other datasets,
e.g.: just 1% in Natural Questions (Kwiatkowski
et al., 2019) and 6% in HotpotQA (Yang et al.,
2018). Instead of using conclusions to answer
the questions, we explore answering them with
yes/no/maybe and treat the conclusions as a long
answer for additional supervision.

To this end, we present PubMedQA, a biomed-
ical QA dataset for answering research questions
using yes/no/maybe. We collected all PubMed
articles with question titles, and manually la-
beled 1k of them for cross-validation and test-
ing. An example is shown in Fig. 1. The rest
of yes/no/answerable QA instances compose of
the unlabeled subset which can be used for semi-
supervised learning. Further, we automatically
convert statement titles of 211.3k PubMed arti-
cles to questions and label them with yes/no an-
swers using a simple heuristic. These artificially
generated instances can be used for pre-training.
Unlike other QA datasets in which questions are
asked by crowd-workers for existing contexts (Ra-
jpurkar et al., 2016; Yang et al., 2018; Kočiskỳ
et al., 2018), in PubMedQA contexts are gener-
ated to answer the questions and both are written
by the same authors. This consistency assures that
contexts are perfectly related to the questions, thus
making PubMedQA an ideal benchmark for test-
ing scientific reasoning abilities.

As an attempt to solve PubMedQA and provide
a strong baseline, we fine-tune BioBERT (Lee
et al., 2019) on different subsets in a multi-phase
style with additional supervision of long answers.
Though this model generates decent results and
vastly outperforms other baselines, it’s still much

worse than the single-human performance, leaving
significant room for future improvements.

2 Related Works

Biomedical QA: Expert-annotated biomedical
QA datasets are limited by scale due to the diffi-
culty of annotations. In 2006 and 2007, TREC2

held QA challenges on genomics corpus (Hersh
et al., 2006, 2007), where the task is to retrieve rel-
evant documents for 36 and 38 topic questions, re-
spectively. QA4MRE (Peñas et al., 2013) included
a QA task about Alzheimer’s disease (Morante
et al., 2012). This dataset has 40 QA instances
and the task is to answer a question related to a
given document using one of five answer choices.
The QA task of BioASQ (Tsatsaronis et al., 2015)
has phases of (a) retrieve question-related docu-
ments and (b) using related documents as contexts
to answer yes/no, factoid, list or summary ques-
tions. BioASQ 2019 has a training set of 2,747
QA instances and a test set of 500 instances.

Several large-scale automatically collected
biomedical QA datasets have been introduced:
emrQA (Pampari et al., 2018) is an extractive QA
dataset for electronic medical records (EHR) built
by re-purposing existing annotations on EHR cor-
pora. BioRead (Pappas et al., 2018) and BMKC
(Kim et al., 2018) both collect cloze-style QA in-
stances by masking biomedical named entities in
sentences of research articles and using other parts
of the same article as context.

Yes/No QA: Datasets such as HotpotQA (Yang
et al., 2018), Natural Questions (Kwiatkowski
et al., 2019), ShARC (Saeidi et al., 2018) and
BioASQ (Tsatsaronis et al., 2015) contain yes/no
questions as well as other types of questions.
BoolQ (Clark et al., 2019) specifically focuses on
naturally occurring yes/no questions, and those
questions are shown to be surprisingly difficult to
answer. We add a “maybe” choice in PubMedQA
to cover uncertain instances.

Typical neural approaches to answering yes/no
questions involve encoding both the question and
context, and decoding the encoding to a class
output, which is similar to the well-studied nat-
ural language inference (NLI) task. Recent
breakthroughs of pre-trained language models like
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2018) show significant performance im-

2https://trec.nist.gov/

https://trec.nist.gov/
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Figure 2: Architecture of PubMedQA dataset. Pub-
MedQA is split into three subsets, PQA-A(rtificial),
PQA-U(nlabeled) and PQA-L(abeled).

provements on NLI tasks. In this work, we use
domain specific versions of them to set baseline
performance on PubMedQA.

3 PubMedQA Dataset

3.1 Data Collection

PubMedQA is split into three subsets: labeled, un-
labeled and artificially generated. They are de-
noted as PQA-L(abeled), PQA-U(nlabeled) and
PQA-A(rtificial), respectively. We show the archi-
tecture of PubMedQA dataset in Fig. 2.

Statistic PQA-L PQA-U PQA-A

Number of QA pairs 1.0k 61.2k 211.3k

Prop. of yes (%) 55.2 – 92.8
Prop. of no (%) 33.8 – 7.2
Prop. of maybe (%) 11.0 – 0.0

Avg. question length 14.4 15.0 16.3
Avg. context length 238.9 237.3 238.0
Avg. long answer length 43.2 45.9 41.0

Table 1: PubMedQA dataset statistics.

Collection of PQA-L and PQA-U: PubMed ar-
ticles which have i) a question mark in the ti-
tles and ii) a structured abstract with conclusive
part are collected and denoted as pre-PQA-U. Now
each instance has 1) a question which is the orig-
inal title 2) a context which is the structured ab-
stract without the conclusive part and 3) a long an-
swer which is the conclusive part of the abstract.

Two annotators3 labeled 1k instances from pre-
PQA-U with yes/no/maybe to build PQA-L using
Algorithm 1. The annotator 1 doesn’t need to do
much reasoning to annotate since the long answer
is available. We denote this reasoning-free setting.
However, the annotator 2 cannot use the long an-
swer, so reasoning over the context is required for

3Both are qualified M.D. candidates.

Algorithm 1 PQA-L data collection procedure
Input: pre-PQA-U
ReasoningFreeAnnotation← {}
ReasoningRequiredAnnotation← {}
GroundTruthLabel← {}
while not finished do

Randomly sample an instance inst from pre-PQA-U
if inst is not yes/no/maybe answerable then

Remove inst and continue to next iteration
end if
Annotator 1 annotates inst with l1 ∈ {yes, no,maybe}
using question, context and long answer
Annotator 2 annotates inst with l2 ∈ {yes, no,maybe}
using question and context
if l1 = l2 then

la ← l1
else

Annotator 1 and Annotator 2 discuss for an agree-
ment annotation la
if not ∃la then

Remove inst and continue to next iteration
end if

end if
ReasoningFreeAnnotation[inst]← l1
ReasoningRequiredAnnotation[inst]← l2
GroundTruthLabel[inst]← la

end while

annotation. We denote such setting as reasoning-
required setting. Note that the annotation process
might assign wrong labels when both annotator 1
and annotator 2 make a same mistake, but consid-
ering human performance in §5.1, such error rate
could be as low as 1%4. 500 randomly sampled
PQA-L instances are used for 10-fold cross vali-
dation and the rest 500 instances consist of Pub-
MedQA test set.

Further, we include the unlabeled instances in
pre-PQA-U with yes/no/maybe answerable ques-
tions to build PQA-U. For this, we use a simple
rule-based method which removes all questions
started with interrogative words (i.e. wh-words)
or involving selections from multiple entities. This
results in over 93% agreement with annotator 1 in
identifying the questions that can be answered by
yes/no/maybe.

Collection of PQA-A: Motivated by the recent
successes of large-scale pre-training from ELMo
(Peters et al., 2018) and BERT (Devlin et al.,
2018), we use a simple heuristic to collect many
noisily-labeled instances to build PQA-A for pre-
training. Towards this end, we use PubMed arti-
cles with 1) a statement title which has POS tag-
ging structures of NP-(VBP/VBZ)5 and 2) a struc-
tured abstract including a conclusive part. The

4Roughly half of the products of two annotator error rates.
5Using Stanford CoreNLP parser (Manning et al., 2014).
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Original Statement Title Converted Question Label %

Spontaneous electrocardiogram alterations predict
ventricular fibrillation in Brugada syndrome.

Do spontaneous electrocardiogram alterations pre-
dict ventricular fibrillation in Brugada syndrome?

yes 92.8

Liver grafts from selected older donors do not have
significantly more ischaemia reperfusion injury.

Do liver grafts from selected older donors have sig-
nificantly more ischaemia reperfusion injury?

no 7.2

Table 2: Examples of automatically generated instances for PQA-A. Original statement titles are converted to
questions and answers are automatically generated according to the negation status.

0.0 0.2 0.4 0.6 0.8 1.0
Frequency of the MeSH terms

Humans
Female

Male
Middle Aged

Adult
Aged

Retrospective Studies
Adolescent

Aged, 80 and over
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Treatment Outcome

Young Adult
Risk Factors

Child
Follow-Up Studies

Time Factors
Surveys and Questionnaires

Child, Preschool
Cross-Sectional Studies

Pregnancy
Sensitivity and Specificity

Cohort Studies
Prognosis

Predictive Value of Tests
Infant

Figure 3: MeSH topic distribution of PubMedQA.

statement titles are converted to questions by sim-
ply moving or adding copulas (“is”, “are”) or aux-
iliary verbs (“does”, “do”) in the front and fur-
ther revising for coherence (e.g.: adding a question
mark). We generate the yes/no answer according
to negation status of the VB. Several examples are
shown in Table 2. We collected 211.3k instances
for PQA-A, of which 200k randomly sampled in-
stances are for training and the rest 11.3k instances
are for validation.

3.2 Characteristics

We show the basic statistics of three PubMedQA
subsets in Table 1.

Instance Topics: PubMed abstracts are manu-
ally annotated by medical librarians with Medi-
cal Subject Headings (MeSH)6, which is a con-
trolled vocabulary designed to describe the topics
of biomedical texts. We use MeSH terms to repre-
sent abstract topics, and visualize their distribution
in Fig. 3. Nearly all instances are human studies
and they cover a wide variety of topics, including
retrospective, prospective, and cohort studies, dif-
ferent age groups, and healthcare-related subjects
like treatment outcome, prognosis and risk factors
of diseases.

6https://www.nlm.nih.gov/mesh

Question Type Reasoning Type Number interpretation
already in context?

Figure 4: Proportional relationships between corre-
sponded question types, reasoning types, and whether
the text interpretations of numbers exist in contexts.

Question and Reasoning Types: We sampled
200 examples from PQA-L and analyzed the types
of questions and types of reasoning required to an-
swer them, which is summarized in Table 3. Var-
ious types of questions have been asked, includ-
ing causal effects, evaluations of therapies, relat-
edness, and whether a statement is true. Besides,
PubMedQA also covers several different reason-
ing types: most (57.5%) involve comparing multi-
ple groups (e.g.: experiment and control), and oth-
ers require interpreting statistics of a single group
or its subgroups. Reasoning over quantitative con-
tents is required in nearly all (96.5%) of them,
which is expected due to the nature of biomedi-
cal research. 75.5% of contexts have text descrip-
tions of the statistics while 21.0% only have the
numbers. We use a Sankey diagram to show the
proportional relationships between corresponded
question type and reasoning type, as well as corre-
sponded reasoning type and whether there are text
interpretations of numbers in Fig. 4.

3.3 Evaluation Settings

The main metrics of PubMedQA are accuracy and
macro-F1 on PQA-L test set using question and
context as input. We denote prediction using ques-
tion and context as a reasoning-required setting,
because under this setting answers are not directly

https://www.nlm.nih.gov/mesh
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Question Type % Example Questions

Does a factor influence the output? 36.5 Does reducing spasticity translate into functional benefit?
Does ibuprofen increase perioperative blood loss during hip arthroplasty?

Is a therapy good/necessary? 26.0 Should circumcision be performed in childhood?
Is external palliative radiotherapy for gallbladder carcinoma effective?

Is a statement true? 18.0 Sternal fracture in growing children: A rare and often overlooked fracture?
Xanthogranulomatous cholecystitis: a premalignant condition?

Is a factor related to the output? 18.0 Can PRISM predict length of PICU stay?
Is trabecular bone related to primary stability of miniscrews?

Reasoning Type % Example Snippet in Context

Inter-group comparison 57.5 [...] Postoperative AF was significantly lower in the Statin group compared
with the Non-statin group (16% versus 33%, p=0.005). [...]

Interpreting subgroup statistics 16.5 [...] 57% of patients were of lower socioeconomic status and they had more
health problems, less functioning, and more symptoms [...]

Interpreting (single) group statistics 16.0 [...] A total of 4 children aged 5-14 years with a sternal fracture were treated
in 2 years, 2 children were hospitalized for pain management and [...]

Text Interpretations of Numbers % Example Snippet in Context

Existing interpretations of numbers 75.5 [...] Postoperative AF was significantly lower in the Statin group compared
with the Non-statin group (16% versus 33%, p=0.005). [...]

No interpretations (numbers only) 21.0 [...] 30-day mortality was 12.4% in those aged<70 years and 22% in
those>70 years (p<0.001). [...]

No numbers (texts only) 3.5 [...] The halofantrine therapeutic dose group showed loss and distortion of
inner hair cells and inner phalangeal cells [...]

Table 3: Summary of PubMedQA question types, reasoning types and whether there are text descriptions of the
statistics in context. Colored texts are matched key phrases (sentences) between types and examples.

expressed in the input and reasoning over the con-
texts is required to answer the question. Addition-
ally, long answers are available at training time, so
generation or prediction of them can be used as an
auxiliary task in this setting.

A parallel setting, where models can use ques-
tion and long answer to predict yes/no/maybe an-
swer, is denoted as reasoning-free setting since
yes/no/maybe are usually explicitly expressed in
the long answers (i.e.: conclusions of the ab-
stracts). Obviously, it’s a much easier setting
which can be exploited for bootstrapping PQA-U.

4 Methods

4.1 Fine-tuning BioBERT

We fine-tune BioBERT (Lee et al., 2019) on Pub-
MedQA as a baseline. BioBERT is initialized
with BERT (Devlin et al., 2018) and further pre-
trained on PubMed abstracts and PMC7 articles.
Expectedly, it vastly outperforms BERT in vari-
ous biomedical NLP tasks. We denote the original
transformer weights of BioBERT as θ0.

While fine-tuning, we feed PubMedQA ques-
tions and contexts (or long answers), separated

7https://www.ncbi.nlm.nih.gov/pmc/

by the special [SEP] token, to BioBERT. The
yes/no/maybe labels are predicted using the spe-
cial [CLS] embedding using a softmax function.
Cross-entropy loss of predicted and true label dis-
tribution is denoted as LQA.

4.2 Long Answer as Additional Supervision

Under reasoning-required setting, long answers
are available in training but not inference phase.
We use them as an additional signal for training:
similar to Ma et al. (2018) regularizing neural ma-
chine translation models with binary bag-of-word
(BoW) statistics, we fine-tune BioBERT with an
auxiliary task of predicting the binary BoW statis-
tics of the long answers, also using the special
[CLS] embedding. We minimize binary cross-
entropy loss of this auxiliary task:

LBoW = − 1

N

∑
i

bilogb̂i + (1− bi)log(1− b̂i)

where bi and b̂i are ground-truth and predicted
probability of whether token i is in the long an-
swers (i.e.: bi ∈ {0, 1} and b̂i ∈ [0, 1]), and N is
the BoW vocabulary size. The total loss is:

L = LQA + βLBoW

https://www.ncbi.nlm.nih.gov/pmc/
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Figure 5: Multi-phase fine-tuning architecture. Nota-
tions and equations are described in §4.3.

In reasoning-free setting which we use for boot-
strapping, the regularization coefficient β is set to
0 because long answers are directly used as input.

4.3 Multi-phase Fine-tuning Schedule
Since PQA-A and PQA-U have different proper-
ties from the ultimate test set of PQA-L, BioBERT
is fine-tuned in a multi-phase style on different
subsets. Fig. 5 shows the architecture of this train-
ing schedule. We use q, c, a, l to denote ques-
tion, context, long answer and yes/no/maybe label
of instances, respectively. Their source subsets are
indexed by the superscripts of A for PQA-A, U for
PQA-U and L for PQA-L.

Phase I Fine-tuning on PQA-A: PQA-A is au-
tomatically collected whose questions and labels
are artificially generated. As a result, questions
of PQA-A might differ a lot from those of PQA-
U and PQA-L, and it only has yes/no labels with a
very imbalanced distribution (92.8% yes v.s. 7.2%
no). Despite these drawbacks, PQA-A has sub-
stantial training instances so models could still
benefit from it as a pre-training step.

Thus, in Phase I of multi-phase fine-tuning, we
initialize BioBERT with θ0, and fine-tune it on
PQA-A using question and context as input:

θI ← argminθ L(BioBERTθ(qA, cA), lA) (1)

Phase II Fine-tuning on Bootstrapped PQA-U:
To fully utilize the unlabeled instances in PQA-U,
we exploit the easiness of reasoning-free setting to
pseudo-label these instances with a bootstrapping
strategy: first, we initialize BioBERT with θ0, and
fine-tune it on PQA-A using question and long an-
swer (reasoning-free),

θB1 ← argminθ L(BioBERTθ(qA, aA), lA) (2)

then we further fine-tune BioBERTθB1
on PQA-

L, also under the reasoning-free setting:

θB2 ← argminθ L(BioBERTθ(qL, aL), lL) (3)

We pseudo-label PQA-U instances using the
most confident predictions of BioBERTθB2

for
each class. Confidence is simply defined by the
corresponding softmax probability and then we la-
bel a subset which has the same proportions of
yes/no/maybe labels as those in the PQA-L:

lUpseudo ← BioBERTθB2
(qU, aU) (4)

In phase II, we fine-tune BioBERTθI on the
bootstrapped PQA-U using question and context
(under reasoning-required setting):

θII ← argminθ L(BioBERTθ(qU, cU), lUpseudo)
(5)

Final Phase Fine-tuning on PQA-L: In the fi-
nal phase, we fine-tune BioBERTθII on PQA-L:

θF ← argminθ L(BioBERTθ(qL, cL), lL) (6)

Final predictions on instances of PQA-L valida-
tion and test sets are made using BioBERTθF :

lpred = BioBERTθF(q
L, cL)

4.4 Compared Models

Majority: The majority (about 55%) of the in-
stances have the label “yes”. We use a trivial base-
line denoted as Majority where we simply predict
“yes” for all instances, regardless of the question
and context.

Shallow Features: For each instance, we in-
clude the following shallow features: 1) TF-IDF
statistics of the question 2) TF-IDF statistics of
the context/long answer and 3) sum of IDF of the
overlapping non-stop words between the question
and the context/long answer. To allow multi-phase
fine-tuning, we apply a feed-forward neural net-
work on the shallow features instead of using a lo-
gistic classifier.

BiLSTM: We simply concatenate the question
and context/long answer with learnable segment
embeddings appended to the biomedical word2vec
embeddings (Pyysalo et al., 2013) of each token.
The concatenated sentence is then fed to a biL-
STM, and the final hidden states of the forward
and backward network are used for classifying the
yes/no/maybe label.
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ESIM with BioELMo: Following the state-of-
the-art recurrent architecture of NLI (Peters et al.,
2018), we use pre-trained biomedical contextual-
ized embeddings BioELMo (Jin et al., 2019) for
word representations. Then we apply the ESIM
model (Chen et al., 2016), where a biLSTM is
used to encode the question and context/long an-
swer, followed by an attentional local inference
layer and a biLSTM inference composition layer.
After pooling, a softmax output unit is applied for
predicting the yes/no/maybe label.

4.5 Compared Training Schedules

Final Phase Only: Under this setting, we train
models only on PQA-L. It’s an extremely low re-
sources setting where there are only 450 training
instances in each fold of cross-validation.

Phase I + Final Phase: Under this setting, we
skip the training on bootstrapped PQA-U. Models
are first fine-tuned on PQA-A, and then fine-tuned
on PQA-L.

Phase II + Final Phase: Under this setting,
we skip the training on PQA-A. Models are first
fine-tuned on bootstrapped PQA-U, and then fine-
tuned on PQA-L.

Single-phase Training: Instead of training a
model sequentially on different splits, under
single-phase training setting we train the model on
the combined training set of all PQA splits: PQA-
A, bootstrapped PQA-U and PQA-L.

5 Experiments

5.1 Human Performance

Human performance is measured during the an-
notation: As shown in Algorithm 1, annotations
of annotator 1 and annotator 2 are used to calcu-
late reasoning-free and reasoning-required human
performance, respectively, against the discussed
ground truth labels. Human performance on the
test set of PQA-L is shown in Table 4. We only
test single-annotator performance due to limited
resources. Kwiatkowski et al. (2019) show that an
ensemble of annotators perform significantly bet-
ter than single-annotator, so the results reported in
Table 4 are the lower bounds of human perfor-
mance. Under reasoning-free setting where the
annotator can see the conclusions, a single hu-
man achieves 90.4% accuracy and 84.2% macro-
F1. Under reasoning-required setting, the task be-

comes much harder, but it’s still possible for hu-
mans to solve: a single annotator can get 78.0%
accuracy and 72.2% macro-F1.

Setting Accuracy (%) Macro-F1 (%)

Reasoning-Free 90.40 84.18
Reasoning-Required 78.00 72.19

Table 4: Human performance (single-annotator).

5.2 Main Results
We report the test set performance of different
models and training schedules in Table 5. In gen-
eral, multi-phase fine-tuning of BioBERT with ad-
ditional supervision outperforms other baselines
by large margins, but the results are still much
worse than just single-human performance.

Comparison of Models: A trend of BioBERT
> ESIM w/ BioELMo > BiLSTM > shallow fea-
tures > majority, conserves across different train-
ing schedules on both accuracy and macro-F1.
Fine-tuned BioBERT is better than state-of-the-
art recurrent model of ESIM w/ BioELMo, prob-
ably because BioELMo weights are fixed while
all BioBERT parameters can be fine-tuned, which
better benefit from the pre-training settings.

Comparison of Training Schedules: Multi-
phase fine-tuning setting gets 5 out of 9 model-
wise best accuracy/macro-F1. Due to lack of an-
notated data, training only on the PQA-L (final
phase only) generates similar results as the ma-
jority baseline. In phase I + Final setting where
models are pre-trained on PQA-A, we observe sig-
nificant improvements on accuracy and macro-F1
and some models even achieve their best accuracy
under this setting. This indicates that a hard task
with limited training instances can be at least par-
tially solved by pre-training on a large automati-
cally collected dataset when the tasks are similarly
formatted.

Improvements are also observed in phase II +
Final setting, though less significant than those of
phase I + Final. As expected, multi-phase fine-
tuning schedule is better than single-phase, due to
different properties of the subsets.

Additional Supervision: Despite its simplicity,
the auxiliary task of long answer BoW prediction
clearly improves the performance: most results
(28/40) are better with such additional supervision
than without.
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Model Final Phase Only Single-phase Phase I + Final Phase II + Final Multi-phase

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Majority 55.20 23.71 – – – – – – – –
Human (single) 78.00 72.19 – – – – – – – –

w/o A.S.

Shallow Features 53.88 36.12 57.58 31.47 57.48 37.24 56.28 40.88 53.50 39.33
BiLSTM 55.16 23.97 55.46 39.70 58.44 40.67 52.98 33.84 59.82 41.86
ESIM w/ BioELMo 53.90 32.40 61.28 42.99 61.96 43.32 60.34 44.38 62.08 45.75
BioBERT 56.98 28.50 66.44 47.25 66.90 46.16 66.08 50.84 67.66 52.41

w/ A.S.

Shallow Features 53.60 35.92 57.30 30.45 55.82 35.09 56.46† 40.76 55.06† 40.67†

BiLSTM 55.22† 23.86 55.96† 40.26† 61.06† 41.18† 54.12† 34.11† 58.86 41.06
ESIM w/ BioELMo 53.96† 31.07 62.68† 43.59† 63.72† 47.04† 60.16 45.81† 63.72† 47.90†

BioBERT 57.28† 28.70† 66.66† 46.70† 67.24† 46.21† 66.44† 51.41† 68.08† 52.72†

Table 5: Main results on PQA-L test set under reasoning-required setting. A.S.: additional supervision. †with A.S.
is better than without A.S. Underlined numbers are model-wise best performance, and bolded numbers are global
best performance. All numbers are percentages.

Model w/o A.S. w/ A.S.

Acc F1 Acc F1

Majority 92.76 48.12 – –

Shallow Features 93.01 54.59 93.05 55.12
BiLSTM 94.59 73.40 94.45 71.81
ESIM w/ BioELMo 94.82 74.01 95.04 75.22
BioBERT 96.50 84.65 96.40 83.76

Table 6: Results of Phase I (eq. 1). Experiments are on
PQA-A under reasoning-required setting. A.S.: addi-
tional supervision.

Model Eq. 2 Eq. 3

Acc F1 Acc F1

Majority 92.76 48.12 55.20 23.71
Human (single) – – 90.40† 84.18†

Shallow Features 93.11 56.11 54.44 38.63
BiLSTM 95.97 83.70 71.46 50.93
ESIM w/ BioELMo 97.01 88.47 74.06 58.53
BioBERT 98.28 93.17 80.80 63.50

Table 7: Bootstrapping results. Experiments are on
PQA-A (eq. 2) and PQA-L (eq. 3) under reasoning-
free setting. †Reasoning-free human performance.

5.3 Intermediate Results
In this section we show the intermediate results of
multi-phase fine-tuning schedule.

Phase I: Results are shown in Table 6. Phase I is
fine-tuning on PQA-A using question and context.
Since PQA-A is imbalanced due to its collection
process, a trivial majority baseline gets 92.76%
accuracy. Other models have better accuracy and
especially macro-F1 than majority baseline. Fine-
tuned BioBERT performs best.

Model w/o A.S. w/ A.S.

Acc F1 Acc F1

Majority 55.10 23.68 – –
Shallow Features 76.66 66.12 77.71 67.97

Majority 56.53 24.07 – –
BiLSTM 85.33 81.32 85.68 81.87

Majority 55.10 23.68 – –
ESIM w/ BioELMo 78.47 63.32 79.62 64.91

Majority 54.82 24.87 – –
BioBERT 80.93 68.84 81.02 70.04

Table 8: Phase II results (eq. 5). Experiments are on
pseudo-labeled PQA-U under reasoning-required set-
ting. A.S.: additional supervision.

Bootstrapping: Results are shown in Table 7.
Bootstrapping is a three-step process: fine-tuning
on PQA-A, then on PQA-L and pseudo-labeling
PQA-U. All three steps are using question and
long answer as input. Expectedly, models perform
better in this reasoning-free setting than they do in
reasoning-required setting (for PQA-A, Eq. 2 re-
sults in Table 7 are better than the performance in
Table 6; for PQA-L, Eq. 3 results in Table 7 are
better than the performance in Table 5).

Phase II: Results are shown in Table 8. In
Phase II, since each model is fine-tuned on its own
pseudo-labeled PQA-U instances, results are not
comparable between models. While the ablation
study in Table 5 clearly shows that Phase II is help-
ful, performance in Phase II doesn’t necessarily
correlate with final performance on PQA-L.
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6 Conclusion

We present PubMedQA, a novel dataset aimed
at biomedical research question answering using
yes/no/maybe, where complex quantitative rea-
soning is required to solve the task. PubMedQA
has substantial automatically collected instances
as well as the largest size of expert annotated
yes/no/maybe questions in biomedical domain.
We provide a strong baseline using multi-phase
fine-tuning of BioBERT with long answer as ad-
ditional supervision, but it’s still much worse than
just single human performance.

There are several interesting future directions to
explore on PubMedQA, e.g.: (1) about 21% of
PubMedQA contexts contain no natural language
descriptions of numbers, so how to properly han-
dle these numbers is worth studying; (2) we use bi-
nary BoW statistics prediction as a simple demon-
stration for additional supervision of long answers.
Learning a harder but more informative auxiliary
task of long answer generation might lead to fur-
ther improvements.

Articles of PubMedQA are biased towards clin-
ical study-related topics (described in Appendix
B), so PubMedQA has the potential to assist
evidence-based medicine, which seeks to make
clinical decisions based on evidence of high qual-
ity clinical studies. Generally, PubMedQA can
serve as a benchmark for testing scientific reason-
ing abilities of machine reading comprehension
models.
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A Yes/no/maybe Answerability

Not all naturally occuring question titles from
PubMed are answerable by yes/no/maybe. The
first step of annotating PQA-L (as shown in
algorithm 1) from pre-PQA-U is to manually
identify questions that can be answered using
yes/no/maybe. We labeled 1091 (about 50.2%)
of 2173 question titles as unanswerable. For ex-
ample, those questions cannot be answered by
yes/no/maybe:

• “Critical Overview of HER2 Assessement in
Bladder Cancer: What Is Missing for a Better
Therapeutic Approach?” (wh- question)

• “Otolaryngology externships and the match:
Productive or futile?” (multiple choices)

B Over-represented Topics

Clinical study-related topics are over-represented
in PubMedQA: we found proportions of MeSH
terms like:

• “Pregnancy Outcome”

• “Socioeconomic Factors”

• “Risk Assessment”

• “Survival Analysis”

• “Prospective Studies”

• “Case-Control Studies”

• “Reference Values”

are significantly higher in the PubMedQA articles
than those in 200k most recent general PubMed ar-
ticles (significance is defined by p < 0.05 in two-
proportion z-test).

C Annotation Criteria

Strictly speaking, most yes/no/maybe research
questions can be answered by “maybe” since there
will always be some conditions where one state-
ment is true and vice versa. However, the task will
be trivial in this case. Instead, we annotate a ques-
tion using “yes” if the experiments and results in
the paper indicate it, so the answer is not universal
but context-dependent.

Given a question like “Do patients benefit from
drug X?”: certainly not all patients will benefit
from it, but if there is a significant difference in

an outcome between the experimental and control
group, the answer will be “yes”. If there is not, the
answer will be “no”.

“Maybe” is annotated when (1) the paper dis-
cusses conditions where the answer is True and
conditions where the answer is False or (2) more
than one intervention/observation/etc. is asked,
and the answer is True for some but False for the
others (e.g.: “Do Disease A, Disease B and/or
Disease C benefit from drug X?”). To model un-
certainty of the answer, we don’t strictly follow
the logic calculations where such questions can al-
ways be answered by either “yes” or “no”.


