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Abstract

Existing approaches to dialogue state track-
ing rely on pre-defined ontologies consisting
of a set of all possible slot types and values.
Though such approaches exhibit promising
performance on single-domain benchmarks,
they suffer from computational complexity
that increases proportionally to the number of
pre-defined slots that need tracking. This is-
sue becomes more severe when it comes to
multi-domain dialogues which include larger
numbers of slots. In this paper, we investi-
gate how to approach DST using a generation
framework without the pre-defined ontology
list. Given each turn of user utterance and
system response, we directly generate a se-
quence of belief states by applying a hierarchi-
cal encoder-decoder structure. In this way, the
computational complexity of our model will
be a constant regardless of the number of pre-
defined slots. Experiments on both the multi-
domain and the single domain dialogue state
tracking dataset show that our model not only
scales easily with the increasing number of
pre-defined domains and slots but also reaches
the state-of-the-art performance.

1 Introduction

A Dialogue State Tracker (DST) is a core compo-
nent of a modular task-oriented dialogue system
(Young et al., 2013). For each dialogue turn, a
DST module takes a user utterance and the dia-
logue history as input, and outputs a belief esti-
mate of the dialogue state. Then a machine action
is decided based on the dialogue state according to
a dialogue policy module, after which a machine
response is generated.

Traditionally, a dialogue state consists of a set
of requests and joint goals, both of which are rep-
resented by a set of slot-value pairs (e.g. (request,
phone), (area, north), (food, Japanese)) (Hender-
son et al., 2014). In a recently proposed multi-

DST Models ITC

NBT-CNN (Mrksic et al., 2017) O(mn)
MD-DST (Rastogi et al., 2017) O(n)

GLAD (Zhong et al., 2018) O(mn)
StateNet PSI (Ren et al., 2018) O(n)

TRADE (Wu et al., 2019) O(n)
HyST (Goel et al., 2019) O(n)

DSTRead (Gao et al., 2019) O(n)

Table 1: The Inference Time Complexity (ITC) of pre-
vious DST models. The ITC is calculated based on how
many times inference must be performed to complete a
prediction of the belief state in a dialogue turn, where
m is the number of values in a pre-defined ontology list
and n is the number of slots.

domain dialogue state tracking dataset, MultiWoZ
(Budzianowski et al., 2018), a representation of
dialogue state consists of a hierarchical structure
of domain, slot, and value is proposed. This is a
more practical scenario since dialogues often in-
clude multiple domains simultaneously.

Many recently proposed DSTs (Zhong et al.,
2018; Ramadan et al., 2018) are based on pre-
defined ontology lists that specify all possible slot
values in advance. To generate a distribution over
the candidate set, previous works often take each
of the slot-value pairs as input for scoring. How-
ever, in real-world scenarios, it is often not prac-
tical to enumerate all possible slot value pairs and
perform scoring from a large dynamically chang-
ing knowledge base (Xu and Hu, 2018). To tackle
this problem, a popular direction is to build a
fixed-length candidate set that is dynamically up-
dated throughout the dialogue development. Ta-
ble 1 briefly summaries the inference time com-
plexity of multiple state-of-the-art DST models
following this direction. Since the inference com-
plexity of all of previous model is at least pro-
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portional to the number of the slots, these mod-
els will struggle to scale to multi-domain datasets
with much larger numbers of pre-defined slots.

In this work, we formulate the dialogue state
tracking task as a sequence generation problem,
instead of formulating the task as a pair-wise pre-
diction problem as in existing work. We pro-
pose the COnditional MEmory Relation Network
(COMER), a scalable and accurate dialogue state
tracker that has a constant inference time complex-
ity. 1

Specifically, our model consists of an encoder-
decoder network with a hierarchically stacked de-
coder to first generate the slot sequences in the be-
lief state and then for each slot generate the cor-
responding value sequences. The parameters are
shared among all of our decoders for the scalabil-
ity of the depth of the hierarchical structure of the
belief states. COMER applies BERT contextual-
ized word embeddings (Devlin et al., 2018) and
BPE (Sennrich et al., 2016) for sequence encod-
ing to ensure the uniqueness of the representations
of the unseen words. The word embeddings for
sequence generation are initialized and fixed with
the static word embeddings generated from BERT
to have the potential of generating unseen words.

2 Motivation

Figure 1 shows a multi-domain dialogue in which
the user wants the system to first help book a train
and then reserve a hotel. For each turn, the DST
will need to track the slot-value pairs (e.g. (ar-
rive by, 20:45)) representing the user goals as well
as the domain that the slot-value pairs belongs to
(e.g. train, hotel). Instead of representing the be-
lief state via a hierarchical structure, one can also
combine the domain and slot together to form a
combined slot-value pair (e.g. (train; arrive by,
20:45) where the combined slot is “train; arrive
by”), which ignores the subordination relationship
between the domain and the slots.

A typical fallacy in dialogue state tracking
datasets is that they make an assumption that the
slot in a belief state can only be mapped to a sin-
gle value in a dialogue turn. We call this the sin-
gle value assumption. Figure 2 shows an exam-
ple of this fallacy from the WoZ2.0 dataset: Based
on the belief state label (food, seafood), it will be
impossible for the downstream module in the di-

1The code is released at https://github.com/
renll/ComerNet

Figure 1: An example dialogue from the multi-domain
dataset, MultiWOZ. At each turn, the DST needs to
output the belief state, a nested tuple of (DOMAIN,
(SLOT, VALUE)), immediately after the user utterance
ends. The belief state is accumulated as the dialogue
proceeds. Turns are separated by black lines.

Figure 2: An example in the WoZ2.0 dataset that inval-
idates the single value assumption. It is impossible for
the system to generate the sample response about the
Chinese restaurant with the original belief state (food,
seafood). A correction could be made as (food, seafood
> chinese) which has multiple values and a logical op-
erator “>”.

alogue system to generate sample responses that
return information about Chinese restaurants. A
correct representation of the belief state could be
(food, seafood > chinese). This would tell the
system to first search the database for information
about seafood and then Chinese restaurants. The
logical operator “>” indicates which retrieved in-
formation should have a higher priority to be re-
turned to the user. Thus we are interested in build-
ing DST modules capable of generating structured
sequences, since this kind of sequence representa-
tion of the value is critical for accurately capturing
the belief states of a dialogue.

3 Hierarchical Sequence Generation for
DST

Given a dialogue D which consists of T turns of
user utterances and system actions, our target is to

 https://github.com/renll/ComerNet
 https://github.com/renll/ComerNet
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Figure 3: The general model architecture of the Hierarchical Sequence Generation Network. The Conditional
Memory Relation (CMR) decoders (gray) share all of their parameters.

predict the state at each turn. Different from pre-
vious methods which formulate multi-label state
prediction as a collection of binary prediction
problems, COMER adapts the task into a sequence
generation problem via a Seq2Seq framework.

As shown in Figure 3, COMER consists of
three encoders and three hierarchically stacked de-
coders. We propose a novel Conditional Memory
Relation Decoder (CMRD) for sequence decod-
ing. Each encoder includes an embedding layer
and a BiLSTM. The encoders take in the user ut-
terance, the previous system actions, and the pre-
vious belief states at the current turn, and encodes
them into the embedding space. The user encoder
and the system encoder use the fixed BERT model
as the embedding layer.

Since the slot value pairs are un-ordered set el-
ements of a domain in the belief states, we first
order the sequence of domain according to their
frequencies as they appear in the training set (Yang
et al., 2018), and then order the slot value pairs in
the domain according to the slot’s frequencies of
as they appear in a domain. After the sorting of
the state elements, We represent the belief states
following the paradigm: (Domain1- Slot1, Value1;
Slot2, Value2; ... Domain2- Slot1, Value1; ...) for
a more concise representation compared with the
nested tuple representation.

All the CMRDs take the same representations
from the system encoder, user encoder and the be-

lief encoder as part of the input. In the proce-
dure of hierarchical sequence generation, the first
CMRD takes a zero vector for its condition input
c, and generates a sequence of the domains, D, as
well as the hidden representation of domains HD.
For each d in D, the second CMRD then takes the
corresponding hd as the condition input and gen-
erates the slot sequence Sd, and representations,
HS,d. Then for each s in S, the third CMRD gen-
erates the value sequence Vd,s based on the corre-
sponding hs,d. We update the belief state with the
new (d, (sd, Vd,s)) pairs and perform the proce-
dure iteratively until a dialogue is completed. All
the CMR decoders share all of their parameters.

Since our model generates domains and slots in-
stead of taking pre-defined slots as inputs, and the
number of domains and slots generated each turn
is only related to the complexity of the contents
covered in a specific dialogue, the inference time
complexity of COMER isO(1) with respect to the
number of pre-defined slots and values.

3.1 Encoding Module

Let X represent a user utterance or system
transcript consisting of a sequence of words
{w1, . . . , wT }. The encoder first passes the se-
quence {[CLS ], w1, . . . , wT , [SEP ]} into a pre-
trained BERT model and obtains its contextual
embeddings EX . Specifically, we leverage the
output of all layers of BERT and take the average
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to obtain the contextual embeddings.
For each domain/slot appeared in the training

set, if it has more than one word, such as ‘price
range’, ‘leave at’, etc., we feed it into BERT and
take the average of the word vectors to form the
extra slot embeddingEs. In this way, we map each
domain/slot to a fixed embedding, which allows us
to generate a domain/slot as a whole instead of a
token at each time step of domain/slot sequence
decoding. We also construct a static vocabulary
embedding Ev by feeding each token in the BERT
vocabulary into BERT. The final static word em-
bedding E is the concatenation of the Ev and Es.

After we obtain the contextual embeddings for
the user utterance, system action, and the static
embeddings for the previous belief state, we feed
each of them into a Bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997).

hat = BiLSTM(eXat
,hat−1)

hut = BiLSTM(eXut
,hut−1)

hbt = BiLSTM(eXbt
,hbt−1)

ha0 = hu0 = hb0 = c0,

(1)

where c0 is the zero-initialized hidden state for
the BiLSTM. The hidden size of the BiLSTM is
dm/2. We concatenate the forward and the back-
ward hidden representations of each token from
the BiLSTM to obtain the token representation
hkt ∈ Rdm , k ∈ {a, u, b} at each time step t.
The hidden states of all time steps are concate-
nated to obtain the final representation of Hk ∈
RT×dm , k ∈ {a, u,B}. The parameters are shared
between all of the BiLSTMs.

3.2 Conditional Memory Relation Decoder
Inspired by Residual Dense Networks (Zhang
et al., 2018), End-to-End Memory Networks
(Sukhbaatar et al., 2015) and Relation Networks
(Santoro et al., 2017), we here propose the Condi-
tional Memory Relation Decoder (CMRD). Given
a token embedding, ex, CMRD outputs the next
token, s, and the hidden representation, hs, with
the hierarchical memory access of different en-
coded information sources, HB , Ha, Hu, and the
relation reasoning under a certain given condition
c,

s,hs = CMRD(ex, c, HB, Ha, Hu),

the final output matrices S,Hs ∈ Rls×dm are con-
catenations of all generated s and hs (respectively)

along the sequence length dimension, where dm is
the model size, and ls is the generated sequence
length. The general structure of the CMR decoder
is shown in Figure 4. Note that the CMR decoder
can support additional memory sources by adding
the residual connection and the attention block,
but here we only show the structure with three
sources: belief state representation (HB), system
transcript representation (Ha), and user utterance
representation (Hu), corresponding to a dialogue
state tracking scenario. Since we share the pa-
rameters between all of the decoders, thus CMRD
is actually a 2-dimensional auto-regressive model
with respect to both the condition generation and
the sequence generation task.

At each time step t, the CMR decoder first em-
beds the token xt with a fixed token embedding
E ∈ Rde×dv , where de is the embedding size and
dv is the vocabulary size. The initial token x0 is
“[CLS]”. The embedded vector ext is then en-
coded with an LSTM, which emits a hidden repre-
sentation h0 ∈ Rdm ,

h0 = LSTM(ext ,qt−1).

where qt is the hidden state of the LSTM. q0 is
initialized with an average of the hidden states of
the belief encoder, the system encoder and the user
encoder which producesHB ,Ha,Hu respectively.
h0 is then summed (element-wise) with the con-

dition representation c ∈ Rdm to produce h1,
which is (1) fed into the attention module; (2)
used for residual connection; and (3) concatenated
with other hi, (i > 1) to produce the concatenated
working memory, r0, for relation reasoning,

h1 = h0 + c,

h2 = h1 + Attnbelief(h1, He),

h3 = h2 + Attnsys(h2, Ha),

h4 = h3 + Attnusr(h3, Hu),

r = h1 ⊕ h2 ⊕ h3 ⊕ h4 ∈ R4dm ,

where Attnk (k ∈ {belief, sys, usr}) are the atten-
tion modules applied respectively to HB , Ha, Hu,
and ⊕ means the concatenation operator. The gra-
dients are blocked for h1,h2,h3 during the back-
propagation stage, since we only need them to
work as the supplementary memories for the re-
lation reasoning followed.

The attention module takes a vector, h ∈ Rdm ,
and a matrix, H ∈ Rdm×l as input, where l is the
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Figure 4: The general structure of the Conditional Memory Relation Decoder. The decoder output, s (e.g. “food”),
is refilled to the LSTM for the decoding of the next step. The blue lines in the figure means that the gradients are
blocked during the back propagation stage.

sequence length of the representation, and outputs
ha, a weighted sum of the column vectors in H .

a =W T
1 h+ b1 ∈ Rdm ,

c = softmax(HTa) ∈ Rl,

h = Hc ∈ Rdm ,

ha =W T
2 h+ b2 ∈ Rdm ,

where the weights W1 ∈ Rdm×dm , W2 ∈
Rdm×dm and the bias b1 ∈ Rdm , b2 ∈ Rdm are
the learnable parameters.

The order of the attention modules, i.e., first at-
tend to the system and the user and then the be-
lief, is decided empirically. We can interpret this
hierarchical structure as the internal order for the
memory processing, since from the daily life expe-
rience, people tend to attend to the most contem-
porary memories (system/user utterance) first and
then attend to the older history (belief states). All
of the parameters are shared between the attention
modules.

The concatenated working memory, r0, is then
fed into a Multi-Layer Perceptron (MLP) with four
layers,

r1 = σ(W T
1 r0 + b1),

r2 = σ(W T
2 r1 + b2),

r3 = σ(W T
3 r2 + b3),

hs = σ(W T
4 r3 + b4),

where σ is a non-linear activation, and the weights
W1 ∈ R4dm×dm , Wi ∈ Rdm×dm and the bias
b1 ∈ Rdm , bi ∈ Rdm are learnable parameters,
and 2 ≤ i ≤ 4. The number of layers for the MLP
is decided by the grid search.

The hidden representation of the next token, hs,
is then (1) emitted out of the decoder as a represen-
tation; and (2) fed into a dropout layer with drop
rate p, and a linear layer to generate the next token,

hk = dropout(hs) ∈ Rdm ,

ho =W T
k hk + bk ∈ Rde ,

ps = softmax(ETho) ∈ Rdv ,

s = argmax(ps) ∈ R,

where the weight Wk ∈ Rdm×de and the bias
bk ∈ Rde are learnable parameters. Since de is
the embedding size and the model parameters are
independent of the vocabulary size, the CMR de-
coder can make predictions on a dynamic vocabu-
lary and implicitly supports the generation of un-
seen words. When training the model, we min-
imize the cross-entropy loss between the output
probabilities, ps, and the given labels.

4 Experiments

4.1 Experimental Setting
We first test our model on the single domain
dataset, WoZ2.0 (Wen et al., 2017). It consists
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Metric WoZ2.0 MultiWoZ

Avg. # turns, t 7.45 13.68
Avg. tokens / turn, s 11.24 13.18
Number of Slots, n 3 35
Number of Values, m 99 4510
Training set size 600 8438
Validation set size 200 1000
Test set size 400 1000

Table 2: The statistics of the WoZ2.0 and the Multi-
WoZ datasets.

of 1,200 dialogues from the restaurant reservation
domain with three pre-defined slots: food, price
range, and area. Since the name slot rarely occurs
in the dataset, it is not included in our experiments,
following previous literature (Ren et al., 2018; Liu
and Perez, 2017). Our model is also tested on the
multi-domain dataset, MultiWoZ (Budzianowski
et al., 2018). It has a more complex ontology with
7 domains and 25 predefined slots. Since the com-
bined slot-value pairs representation of the belief
states has to be applied for the model with O(n)
ITC, the total number of slots is 35. The statistics
of these two datsets are shown in Table 2.

Based on the statistics from these two datasets,
we can calculate the theoretical Inference Time
Multiplier (ITM), K, as a metric of scalability.
Given the inference time complexity, ITM mea-
sures how many times a model will be slower
when being transferred from the WoZ2.0 dataset,
d1, to the MultiWoZ dataset, d2,

K = h(t)h(s)h(n)h(m)

h(x) =

{
1 O(x) = O(1),
xd2
xd1

otherwise,

where O(x) means the Inference Time Complex-
ity (ITC) of the variable x. For a model having an
ITC of O(1) with respect to the number of slots
n, and values m, the ITM will be a multiplier of
2.15x, while for an ITC of O(n), it will be a mul-
tiplier of 25.1, and 1,143 for O(mn).

As a convention, the metric of joint goal ac-
curacy is used to compare our model to previ-
ous work. The joint goal accuracy only regards
the model making a successful belief state predic-
tion if all of the slots and values predicted are ex-
actly matched with the labels provided. This met-
ric gives a strict measurement that tells how often

the DST module will not propagate errors to the
downstream modules in a dialogue system. In this
work, the model with the highest joint accuracy on
the validation set is evaluated on the test set for the
test joint accuracy measurement.

4.2 Implementation Details
We use the BERTlarge model for both contextual
and static embedding generation. All LSTMs in
the model are stacked with 2 layers, and only the
output of the last layer is taken as a hidden repre-
sentation. ReLU non-linearity is used for the acti-
vation function, σ.

The hyper-parameters of our model are identical
for both the WoZ2.0 and the MultiwoZ datasets:
dropout rate p = 0.5, model size dm = 512, em-
bedding size de = 1024. For training on WoZ2.0,
the model is trained with a batch size of 32 and
the ADAM optimizer (Kingma and Ba, 2015) for
150 epochs, while for MultiWoZ, the AMSGrad
optimizer (Reddi et al., 2018) and a batch size of
16 is adopted for 15 epochs of training. For both
optimizers, we use a learning rate of 0.0005 with
a gradient clip of 2.0. We initialize all weights in
our model with Kaiming initialization (He et al.,
2015) and adopt zero initialization for the bias. All
experiments are conducted on a single NVIDIA
GTX 1080Ti GPU.

4.3 Results
To measure the actual inference time multiplier of
our model, we evaluate the runtime of the best-
performing models on the validation sets of both
the WoZ2.0 and MultiWoZ datasets. During eval-
uation, we set the batch size to 1 to avoid the influ-
ence of data parallelism and sequence padding. On
the validation set of WoZ2.0, we obtain a runtime
of 65.6 seconds, while on MultiWoZ, the runtime
is 835.2 seconds. Results are averaged across 5
runs. Considering that the validation set of Mul-
tiWoZ is 5 times larger than that of WoZ2.0, the
actual inference time multiplier is 2.54 for our
model. Since the actual inference time multiplier
roughly of the same magnitude as the theoretical
value of 2.15, we can confirm empirically that we
have the O(1) inference time complexity and thus
obtain full scalability to the number of slots and
values pre-defined in an ontology.

Table 3 compares our model with the previous
state-of-the-art on both the WoZ2.0 test set and the
MultiWoZ test set. For the WoZ2.0 dataset, we
maintain performance at the level of the state-of-
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DST Models Joint Acc.
WoZ 2.0

Joint Acc.
MultiWoZ ITC

Baselines (Mrksic et al., 2017) 70.8% 25.83% O(mn)
NBT-CNN (Mrksic et al., 2017) 84.2% - O(mn)
StateNet PSI (Ren et al., 2018) 88.9% - O(n)
GLAD (Nouri and Hosseini-Asl, 2018) 88.5% 35.58% O(mn)
HyST (ensemble) (Goel et al., 2019) - 44.22% O(n)
DSTRead (ensemble) (Gao et al., 2019) - 42.12% O(n)
TRADE (Wu et al., 2019) - 48.62% O(n)
COMER 88.6% 45.72% O(1)

Table 3: The joint goal accuracy of the DST models on the WoZ2.0 test set and the MultiWoZ test set. We also
include the Inference Time Complexity (ITC) for each model as a metric for scalability. The baseline accuracy
for the WoZ2.0 dataset is the Delexicalisation-Based (DB) Model (Mrksic et al., 2017), while the baseline for the
MultiWoZ dataset is taken from the official website of MultiWoZ (Budzianowski et al., 2018).

Model Joint Acc.

COMER 88.64%
- Hierachical-Attn 86.69%
- MLP 83.24%

Table 4: The ablation study on the WoZ2.0 dataset
with the joint goal accuracy on the test set. For “-
Hierachical-Attn”, we remove the residual connections
between the attention modules in the CMR decoders
and all the attention memory access are based on the
output from the LSTM. For “- MLP”, we further re-
place the MLP with a single linear layer with the non-
linear activation.

the-art, with a marginal drop of 0.3% compared
with previous work. Considering the fact that
WoZ2.0 is a relatively small dataset, this small dif-
ference does not represent a significant big perfor-
mance drop. On the muli-domain dataset, Mul-
tiWoZ, our model achieves a joint goal accuracy
of 45.72%, which is significant better than most
of the previous models other than TRADE which
applies the copy mechanism and gains better gen-
eralization ability on named entity coping.

4.4 Ablation Study

To prove the effectiveness of our structure of the
Conditional Memory Relation Decoder (CMRD),
we conduct ablation experiments on the WoZ2.0
dataset. We observe an accuracy drop of 1.95% af-
ter removing residual connections and the hierar-
chical stack of our attention modules. This proves
the effectiveness of our hierarchical attention de-
sign. After the MLP is replaced with a linear layer

Model JD Acc. JDS Acc. JG Acc.

COMER 95.53% 54.74% 45.72%
- ShareParam 94.96% 54.40% 44.38%
- Order 95.55% 55.06% 42.84%
- Nested - 49.58% 40.57%
- BlockGrad - 49.36% 39.15%

Table 5: The ablation study on the MultiWoZ
dataset with the joint domain accuracy (JD Acc.), joint
domain-slot accuracy (JDS Acc.) and joint goal accu-
racy (JG Acc.) on the test set. For “- ShareParam”, we
remove the parameter sharing mechanism on the en-
coders and the attention module. For “- Order”, we
further arrange the order of the slots according to its
global frequencies in the training set instead of the lo-
cal frequencies given the domain it belongs to. For
“- Nested”, we do not generate domain sequences but
generate combined slot sequences which combines the
domain and the slot together. For “- BlockGrad”, we
further remove the gradient blocking mechanism in the
CMR decoder.

of hidden size 512 and the ReLU activation func-
tion, the accuracy further drops by 3.45%. This
drop is partly due to the reduction of the number
of the model parameters, but it also proves that
stacking more layers in an MLP can improve the
relational reasoning performance given a concate-
nation of multiple representations from different
sources.

We also conduct the ablation study on the Mul-
tiWoZ dataset for a more precise analysis on the
hierarchical generation process. For joint domain
accuracy, we calculate the probability that all do-
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mains generated in each turn are exactly matched
with the labels provided. The joint domain-slot
accuracy further calculate the probability that all
domains and slots generated are correct, while the
joint goal accuracy requires all the domains, slots
and values generated are exactly matched with
the labels. From Table 5, We can further calcu-
late that given the correct slot prediction COMER
has 83.52% chance to make the correct value pre-
diction. While COMER has done great job on
domain prediction (95.53%) and value prediction
(83.52%), the accuracy of the slot prediction given
the correct domain is only 57.30%. We suspect
that this is because we only use the previous be-
lief state to represent the dialogue history, and the
inter-turn reasoning ability on the slot prediction
suffers from the limited context and the accuracy
is harmed due to the multi-turn mapping problem
(Wu et al., 2019). We can also see that the JDS
Acc. has an absolute boost of 5.48% when we
switch from the combined slot representation to
the nested tuple representation. This is because
the subordinate relationship between the domains
and the slots can be captured by the hierarchi-
cal sequence generation, while this relationship is
missed when generating the domain and slot to-
gether via the combined slot representation.

4.5 Qualitative Analysis

Figure 5 shows an example of the belief state pre-
diction result in one turn of a dialogue on the
MultiWoZ test set. The visualization includes the
CMRD attention scores over the belief states, sys-
tem transcript and user utterance during the decod-
ing stage of the slot sequence.

From the system attention (top right), since it
is the first attention module and no previous con-
text information is given, it can only find the in-
formation indicating the slot “departure” from the
system utterance under the domain condition, and
attend to the evidence “leaving” correctly during
the generation step of “departure”. From the user
attention, we can see that it captures the most help-
ful keywords that are necessary for correct pre-
diction, such as “after” for “day” and “leave at”,
“to” for “destination”. Moreover, during the gen-
eration step of “departure”, the user attention suc-
cessfully discerns that, based on the context, the
word “leave” is not the evidence that need to be
accumulated and choose to attend nothing in this
step. For the belief attention, we can see that the

belief attention module correctly attends to a pre-
vious slot for each generation step of a slot that has
been presented in the previous state. For the gen-
eration step of the new slot “destination”, since the
previous state does not have the “destination” slot,
the belief attention module only attends to the ‘-’
mark after the ‘train’ domain to indicate that the
generated word should belong to this domain.

5 Related Work

Semi-scalable Belief Tracker Rastogi et al.
(2017) proposed an approach that can generate
fixed-length candidate sets for each of the slots
from the dialogue history. Although they only
need to perform inference for a fixed number of
values, they still need to iterate over all slots de-
fined in the ontology to make a prediction for a
given dialogue turn. In addition, their method
needs an external language understanding module
to extract the exact entities from a dialogue to form
candidates, which will not work if the label value
is an abstraction and does not have the exact match
with the words in the dialogue.

StateNet (Ren et al., 2018) achieves state-of-
the-art performance with the property that its pa-
rameters are independent of the number of slot val-
ues in the candidate set, and it also supports online
training or inference with dynamically changing
slots and values. Given a slot that needs tracking,
it only needs to perform inference once to make
the prediction for a turn, but this also means that
its inference time complexity is proportional to the
number of slots.

TRADE (Wu et al., 2019) achieves state-of-the-
art performance on the MultiWoZ dataset by ap-
plying the copy mechanism for the value sequence
generation. Since TRADE takes n combinations
of the domains and slots as the input, the infer-
ence time complexity of TRADE is O(n). The
performance improvement achieved by TRADE
is mainly due to the fact that it incorporates the
copy mechanism that can boost the accuracy on
the name slot, which mainly needs the ability in
copying names from the dialogue history. How-
ever, TRADE does not report its performance on
the WoZ2.0 dataset which does not have the name
slot.

DSTRead (Gao et al., 2019) formulate the dia-
logue state tracking task as a reading comprehen-
sion problem by asking slot specified questions to
the BERT model and find the answer span in the
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Figure 5: An example belief prediction of our model on the MultiWoZ test set. The attention scores for belief
states, system transcript and user utterance in CMRD is visualized on the right. Each row corresponds to the
attention score of the generation step of a particular slot under the ‘train’ domain.

dialogue history for each of the pre-defined com-
bined slot. Thus its inference time complexity is
still O(n). This method suffers from the fact that
its generation vocabulary is limited to the words
occurred in the dialogue history, and it has to do
a manual combination strategy with another joint
state tracking model on the development set to
achieve better performance.

Contextualized Word Embedding (CWE) was
first proposed by Peters et al. (2018). Based on the
intuition that the meaning of a word is highly cor-
related with its context, CWE takes the complete
context (sentences, passages, etc.) as the input,
and outputs the corresponding word vectors that
are unique under the given context. Recently, with
the success of language models (e.g. Devlin et al.
(2018)) that are trained on large scale data, con-
textualizeds word embedding have been further
improved and can achieve the same performance
compared to (less flexible) finely-tuned pipelines.

Sequence Generation Models. Recently, se-
quence generation models have been successfully
applied in the realm of multi-label classifica-
tion (MLC) (Yang et al., 2018). Different from
traditional binary relevance methods, they pro-
posed a sequence generation model for MLC tasks
which takes into consideration the correlations be-
tween labels. Specifically, the model follows the
encoder-decoder structure with an attention mech-
anism (Cho et al., 2014), where the decoder gen-
erates a sequence of labels. Similar to language
modeling tasks, the decoder output at each time
step will be conditioned on the previous predic-

tions during generation. Therefore the correlation
between generated labels is captured by the de-
coder.

6 Conclusion

In this work, we proposed the Conditional Mem-
ory Relation Network (COMER), the first dia-
logue state tracking model that has a constant in-
ference time complexity with respect to the num-
ber of domains, slots and values pre-defined in an
ontology. Besides its scalability, the joint goal ac-
curacy of our model also achieve the similar per-
formance compared with the state-of-the-arts on
both the MultiWoZ dataset and the WoZ dataset.
Due to the flexibility of our hierarchical encoder-
decoder framework and the CMR decoder, abun-
dant future research direction remains as apply-
ing the transformer structure, incorporating open
vocabulary and copy mechanism for explicit un-
seen words generation, and inventing better dia-
logue history access mechanism to accommodate
efficient inter-turn reasoning.
Acknowledgements. This work is partly sup-
ported by NSF #1750063. We thank all the re-
viewers for their constructive suggestions. We also
want to thank Zhuowen Tu and Shengnan Zhang
for the early discussions of the project.

References

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
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