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Abstract

Data-driven, knowledge-grounded neural con-
versation models are capable of generating
more informative responses. However, these
models have not yet demonstrated that they
can zero-shot adapt to updated, unseen knowl-
edge graphs. This paper proposes a new
task about how to apply dynamic knowl-
edge graphs in neural conversation model and
presents a novel TV series conversation corpus
(DyKgChat) for the task. Our new task and
corpus aids in understanding the influence of
dynamic knowledge graphs on responses gen-
eration. Also, we propose a preliminary model
that selects an output from two networks
at each time step: a sequence-to-sequence
model (Seq2Seq) and a multi-hop reasoning
model, in order to support dynamic knowl-
edge graphs. To benchmark this new task and
evaluate the capability of adaptation, we intro-
duce several evaluation metrics and the exper-
iments show that our proposed approach out-
performs previous knowledge-grounded con-
versation models. The proposed corpus and
model can motivate the future research direc-
tions1.

1 Introduction

In the chit-chat dialogue generation, neural con-
versation models (Sutskever et al., 2014; Sordoni
et al., 2015; Vinyals and Le, 2015) have emerged
for its capability to be fully data-driven and end-
to-end trained. While the generated responses
are often reasonable but general (without useful
information), recent work proposed knowledge-
grounded models (Eric et al., 2017; Ghazvinine-
jad et al., 2018; Zhou et al., 2018b; Qian et al.,
2018) to incorporate external facts in an end-to-
end fashion without hand-crafted slot filling. Ef-
fectively combining text and external knowledge

1The data and code are available in https://github.
com/Pascalson/DyKGChat.
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Figure 1: An example of an ideal conversation model
with dynamic knowledge graphs.

graphs have also been a crucial topic in ques-
tion answering (Yin et al., 2016; Hao et al., 2017;
Levy et al., 2017; Sun et al., 2018; Das et al.,
2019). Nonetheless, prior work rarely analyzed
the model capability of zero-shot adaptation to dy-
namic knowledge graphs, where the states/entities
and their relations are temporal and evolve as a
single time scale process. For example, as shown
in Figure 1, the entity Jin-Xi was originally related
to the entity Feng, Ruozhao with the type Ene-
myOf, but then evolved to be related to the entity
Nian, Shilan.

The goal of this paper is to facilitate knowledge-
grounded neural conversation models to learn and
zero-shot adapt with dynamic knowledge graphs.
To our observation, however, there is no existing
conversational data paired with dynamic knowl-
edge graphs. Therefore, we collect a TV se-
ries corpus—DyKgChat, with facts of the ficti-
tious life of characters. DyKgChat includes a Chi-
nese palace drama Hou Gong Zhen Huan Zhuan
(HGZHZ), and an English sitcom Friends,which
contain dialogues, speakers, scenes (e.g., the
places and listeners), and the corresponded knowl-

https://github.com/Pascalson/DyKGChat
https://github.com/Pascalson/DyKGChat
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HGZHZ

Zhen-Huan: She must be frightened. It should blame me. I should not ask her to play chess.
甄甄甄嬛嬛嬛: 姐姐定是嚇壞了。都怪臣妾不好，好端端的來叫梅姐姐下棋做什麼。
Doctor-Wen: Relax, Concubine-Huan madame. Lady Shen is just injured but is fine.
溫溫溫太太太醫醫醫: 莞莞莞嬪嬪嬪娘娘娘娘娘娘請放心，惠惠惠貴貴貴人人人的精神倒是沒有大礙，只是傷口燒得有些厲害。

Friends Joey: C’ mon , you’re going out with the guy! There’s gotta be something wrong with him!
Chandler: Alright Joey, be nice. So does he have a hump? A hump and a hairpiece?

Table 1: Examples of DyKgChat corpus.

edge graphs including explicit information such
as the relations FriendOf, EnemyOf, and Resi-
denceOf as well as the linked entities. Table 1
shows some examples from DyKgChat.

Prior graph embedding based knowledge-
grounded conversation models (Sutskever et al.,
2014; Ghazvininejad et al., 2018; Zhu et al., 2017)
did not directly use the graph structure, so it
is unknown how a changed graph will influence
the generated responses. In addition, key-value
retrieved-based models (Yin et al., 2016; Eric
et al., 2017; Levy et al., 2017; Qian et al., 2018)
retrieve only one-hop relation paths. As fictitious
life in drama, realistic responses often use knowl-
edge entities existing in multi-hop relational paths,
e.g., the residence of a friend of mine. Therefore,
we propose a model that incorporates multi-hop
reasoning (Lao et al., 2011; Neelakantan et al.,
2015; Xiong et al., 2017) on the graph structure
into a neural conversation generation model. Our
proposed model, called quick adaptive dynamic
knowledge-grounded neural conversation model
(Qadpt), is based on a Seq2Seq model (Sutskever
et al., 2014) with a widely-used copy mecha-
nism (Gu et al., 2016; Merity et al., 2017; He et al.,
2017; Xing et al., 2017; Zhu et al., 2017; Eric
et al., 2017; Ke et al., 2018). To enable multi-hop
reasoning, the model factorizes a transition matrix
for a Markov chain.

In order to focus on the capability of producing
reasonable knowledge entities and adapting with
dynamic knowledge graphs, we propose two types
of automatic metrics. First, given the provided
knowledge graphs, we examine if the models can
generate responses with proper usage of multi-hop
reasoning over knowledge graphs. Second, after
randomly replacing some crucial entities in knowl-
edge graphs, we test if the models can accordingly
generate correspondent responses. The empirical
results show that our proposed model has the de-
sired advantage of zero-shot adaptation with dy-
namic knowledge graphs, and can serve as a pre-
liminary baseline for this new task. To sum up, the
contributions of this paper are three-fold:

• A new task, dynamic knowledge-grounded
conversation generation, is proposed.
• A newly-collected TV series conversation

corpus DyKgChat is presented for the target
task.
• We benchmark the task by comparing many

prior models and the proposed quick adaptive
dynamic knowledge-grounded neural conver-
sation model (Qadpt), providing the potential
of benefiting the future research direction.

2 Task Description

For each single-turn conversation, the input mes-
sage and response are respectively denoted as x =
{xt}mt=1 and y = {yt}nt=1, wherem and n are their
lengths. Each turn (x, y) is paired with a knowl-
edge graph K, which is composed of a collection
of triplets (h, r, t), where h, t ∈ V (the set of enti-
ties) and r ∈ L (the set of relationships). Each
word yt in a response belongs to either generic
wordsW or knowledge graph entities V . The task
is two-fold:

1. Given an input message x and a knowledge
graph K, the goal is to generate a sequence
{ŷt}nt=1 that is not only as similar as possible
to the ground-truth {yt}nt=1, but contains cor-
rect knowledge graph entities to reflect the in-
formation.

2. After a knowledge graph is updated to K′,
where some triplets are revised to (h, r, t′) or
(h, r′, t), the generated sequence should con-
tain correspondent knowledge graph entities
in K′ to reflect the updated information.

2.1 Evaluation Metrics

To evaluate dynamic knowledge-grounded conver-
sation models, we propose two types of evalua-
tion metrics for validating two aspects described
above.

2.1.1 Knowledge Entity Modeling

There are three metrics focusing on the
knowledge-related capability.



1857

Knowledge word accuracy (KW-Acc). Given
the ground-truth sentence as the decoder inputs, at
each time step, it evaluates how many knowledge
graph entities are correctly predicted.

KW-Acc =
n∑
t=1

P (ŷt = yt | y1y2 . . . yt−1, yt ∈ V).

For example, after perceiving the partial ground-
truth response “If Jin-Xi not in” and knowing the
next word should be a knowledge graph entity,
KW-Acc measures if the model can predict the
correct word “Yongshou Palace”.

Knowledge and generic word classification
(KW/Generic). Given the ground-truth sen-
tence as the decoder inputs, at each time step, it
measures the capability of predicting the correct
class (a knowledge graph entity or a generic word)
and adopts micro-averaging. The true positive,
false negative and false positive are formulated as:

TP = |{t | ŷt ∈ V, yt ∈ V}|,
FN = |{t | ŷt ∈ W, yt ∈ V}|,
FP = |{t | ŷt ∈ V, yt ∈ W}|,
ŷt ∼ P (· | y1y2 . . . yt−1).

Generated knowledge words (Generated-KW).
Considering the knowledge graph entities in the
reference y = {yt}nt=1 as positives, in the infer-
ence stage, we use the generated knowledge en-
tities to compute true positive, false positive, and
true negative, and adopt micro-averaging.

TP = |{ŷt ∈ {yt ∈ V}nt=1, ŷt ∈ V}nt=1|,
FN = |{yt /∈ {ŷt ∈ V}nt=1, yt ∈ V}nt=1|,
FP = |{ŷt /∈ {yt ∈ V}nt=1, ŷt ∈ V}nt=1|,
ŷt ∼ P (· | ŷ1ŷ2 . . . ŷt−1).

For example, after input a sentence “Where’s
JinXi?”, if a model generates “Hi, Zhen-Huan,
JinXi is in Yangxin-Palace.” when reference is
“JinXi is in Yongshou-Palace.”, where bolded
words are knowledge entities. Recall is 1

2 and pre-
cision is 1

3 .

2.1.2 Adaptation of Changed Knowledge
Graphs

Each knowledge graph is randomly changed by (1)
shuffling a batch (All), (2) replacing the predicted
entities (Last1), or (3) replacing the last two steps
of paths predicting the generated entities (Last2).
We have two metrics focusing on the capability of
adaptation.

Metrics HGZHZ Friends
# Dialogues 1247 3092
Total # turns 17,164 57,757
Total # tokens 462,647 838,913
Avg. turns per dialogue 13.76 18.68
Avg. tokens per turn 26.95 14.52
Total unique tokens 3,624 19,762
# KG entities 174 281
# KG relation types 9 7
total # KG entities appear 46,059 176,550
# Dialogues w/ KG entities 1,166 2,373
# turns w/ KG entities 10,110 9,199

Table 2: The details of collected DyKgChat.

Relation Type (Percentage)

HGZHZ

IsAliasOf (25%), IsChildOf (5%),
IsLoverOf (6%), IsParentOf (5%),
IsResidenceOf (16%), IsSiblingOf (2%),
IsTitleOf (30%), IsEnemyOf (8%),
IsServantOrMasterOf (3%)

Friends

IsLoverOf (12%), IsWorkplaceOf (2%),
IsOccupationOf (8%), IsNameOf (47%),
IsRelativeOf (8%), IsFriendOf (4%),
IsNicknameOf (19%)

Table 3: The included relation types in the collect
knowledge graphs, and their percentages.

Change rate. It measures if the responses are
different from the original ones (with original
knowledge graphs). The higher rate indicates that
the model is more sensitive to a changed knowl-
edge graph. Therefore, the higher rate may not be
better, because some changes are worse. The fol-
lowing metric is proposed to deal with the issue,
but change rate is still reported.

Accurate change rate. This measures if the
original predicted entities are replaced with the hy-
pothesis set, where this ensures that the updated
responses generate knowledge graph entities ac-
cording to the updated knowledge graphs. (1) In
All, the hypothesis set is the collection of all enti-
ties in the new knowledge graph. (2) In Last1 and
Last2, the hypothesis set is the randomly-selected
substitutes.

3 DyKgChat Corpus

This section introduces the collected DyKgChat
corpus for the target knowledge-grounded conver-
sation generation task.

3.1 Data Collection

To build a corpus where the knowledge graphs
would naturally evolves, we collect TV series
conversations, considering that TV series often
contain complex relationship evolution, such as
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Figure 2: The knowledge entity counts of HGZHZ are more balanced than ones of Friends.

friends, jobs, and residences. We choose TV series
with different languages and longer episodes. We
download the scripts of a Chinese palace drama
“Hou Gong Zhen Huan Zhuang” (HGZHZ; with
76 episodes and hundreds of characters) from
Baidu Tieba, and the scripts of an English sitcom
“Friends” (with 236 episodes and six main charac-
ters)2. Their paired knowledge graphs are manu-
ally constructed according to their wikis written
by fans34. Noted that the knowledge graph of
HGZHZ is mainly built upon the top twenty-five
appeared characters.

The datasets are split 5% as validation data
and 10% as testing data, where the split is based
on multi-turn dialogues and balanced on speak-
ers. The boundaries of dialogues are annotated in
the original scripts. The tokenization of HGZHZ
considers Chinese characters and knowledge enti-
ties; the tokenization of Friends considers space-
separated tokens and knowledge entities. The data
statistics after preprocessing is detailed in Table 2.
The relation types r ∈ L of each knowledge graph
and their percentages are listed in Table 3, and
the knowledge graph entities are plotted as word
clouds in Figure 2.

3.2 Subgraph Sampling

Due to the excessive labor of building dynamic
knowledge graphs aligned with all episodes, we
currently collect a fixed knowledge graph G con-
taining all information that once exists for each TV
series. To build the aligned dynamic knowledge

2https://github.com/npow/
friends-chatbot

3https://zh.wikipedia.org/wiki/後宮甄嬛
傳 (電視劇)

4https://friends.fandom.com/wiki/
Friends_Wiki
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Figure 3: The distribution of lengths of shortest paths.

graphs, we sample the top-five shortest paths on
knowledge graphs from each source to each tar-
get, where the sources are knowledge entities in
the input message and the scene {xt ∈ V}, and the
targets are knowledge entities in the ground-truth
response {yt ∈ V}. We manually check whether
the selected number of shortest paths are able to
cover most of the used relational paths. The dy-
namic knowledge graphs are built based on an en-
semble of the following possible subgraphs:
• The sample for each single-turn dialogue.
• The sample for each multi-turn dialogue.
• The manually-annotated subgraph for each

period.
While the first rule is adopted for simplicity, the
preliminary models should at least work on this
type of subgraphs. The subgraphs are defined as
the dynamic knowledge graphs {K}, which are
updated every single-turn dialogue.

3.3 Data Analysis

Data imbalance. As shown in Table 2, the turns
with knowledge graph entities are about 58.9%
and 15.93% of HGZHZ and Friends respectively.
Apparently in Friends, the training data with
knowledge graph entities are too small, so fine-

https://github.com/npow/friends-chatbot
https://github.com/npow/friends-chatbot
https://zh.wikipedia.org/wiki/
https://friends.fandom.com/wiki/Friends_Wiki
https://friends.fandom.com/wiki/Friends_Wiki
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Figure 4: The framework of the proposed model. The node E here is the symbol for the emperor.

tuning on this subset with knowledge graph enti-
ties might be required.

Shortest paths. The lengths of shortest paths
from sources to targets are shown in Figure 3.
Most probabilities lie on two and three hops rather
than zero and one hop, so key-value extraction
based text generative models (Eric et al., 2017;
Levy et al., 2017; Qian et al., 2018) are not suit-
able for this task.On the other hand, multi-hop rea-
soning might be useful for better retrieving correct
knowledge graph entities.

Dynamics. The distribution of graph edit dis-
tances among dynamic knowledge graphs are
57.24± 24.34 and 38.16± 15.99 for HGZHZ and
Friends respectively, revealing that the graph dy-
namics are spread out: some are slightly changed
while some are largely changed, which matches
our intuition.

4 Qadpt: Quick Adaptative Dynamic
Knowledge-Grounded Neural
Conversation Model

To our best knowledge, no prior work focused on
dynamic knowledge-grounded conversation; thus
we propose Qadpt as the preliminary model. As
illustrated in Figure 4, the model is composed of
(1) a Seq2Seq model with a controller, which de-
cides to predict knowledge graph entities k ∈ V or
generic words w ∈ W , and (2) a reasoning model,
which retrieves the relational paths in the knowl-
edge graph.

4.1 Sequence-to-Sequence Model

Qadpt is based on a Seq2Seq model (Sutskever
et al., 2014; Vinyals and Le, 2015), where the
encoder encodes an input message x into a vec-
tor e(x) as the initial state of the decoder. At

each time step t, the decoder produces a vector
dt conditioned on the ground-truth or predicted
y1y2 . . . yt−1. Note that we use gated recurrent
unit (GRU) (Cho et al., 2014) in our experiments.

e(x) = GRU(x1x2 . . . xm) (1)

dt = GRU(y1y2 . . . yt−1, e(x)) (2)

Each predicted dt is used for three parts: output
projection, controller, and reasoning. For output
projection, the predicted dt is transformed into a
distribution wt over generic wordsW by a projec-
tion layer.

4.2 Controller
To decide which vocabulary set (knowledge graph
entities V or generic words W) to use, the vec-
tor dt is transformed to a controller ct, which is
a widely-used component (Eric et al., 2017; Zhu
et al., 2017; Ke et al., 2018; Zhou et al., 2018b;
Xing et al., 2017) similar to copy mechanism (Gu
et al., 2016; Merity et al., 2017; He et al., 2017).
The controller ct is the probability of choosing
from knowledge graph entities V , while 1 − ct
is the probability of choosing from generic words
W . Note that we take the controller as a special
symbol KB in generic words, so the term 1− ct is
already multiplied to wt. The controller here can
be flexibly replaced with any other model.

P ({KB ,W} | y1y2 . . .yt−1, e(x))
= softmax(φ(dt)),

(3)

wt = P (W | y1y2 . . . yt−1, e(x)), (4)

ct = P (KB | y1y2 . . . yt−1, e(x)), (5)

ot = {ctkt;wt}, (6)

where φ is the output projection layer, and kt is the
predicted distribution over knowledge graph enti-
ties V (detailed in subsection 4.3), and ot is the
produced distribution over all vocabularies.
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4.3 Reasoning Model
To ensure that Qadpt can zero-shot adapt to
dynamic knowledge graphs, instead of us-
ing attention mechanism on graph embed-
dings (Ghazvininejad et al., 2018; Zhou et al.,
2018b), we leverage the concept of multi-hop rea-
soning (Lao et al., 2011). The reasoning procedure
can be divided into two stages: (1) forming a tran-
sition matrix and (2) reasoning multiple hops by a
Markov chain.

In the first stage, a transition matrix Tt is
viewed as multiplication of a path matrix Rt and
the adjacency matrix A of a knowledge graph K.
The adjacency matrix is a binary matrix indicat-
ing if the relations between two entities exist. The
path matrix is a linear transformation θ of dt, and
represents the probability distribution of each head
h ∈ V choosing each relation type r ∈ L. Note
that a relation type self-loop is added.

Rt = softmax(θ(dt)), (7)

Ai,j,γ =

{
1, (hi, rj , tγ) ∈ K
0, (hi, rj , tγ) /∈ K

, (8)

Tt = RtA, (9)

where Rt ∈ IR|V|×1×|L|, A ∈ IR|V|×|L|×|V|, and
Tt ∈ IR|V|×|V|.

In the second stage, a binary vector s ∈ IR|V| is
computed to indicate whether each knowledge en-
tity exists in the input message x. First, the vector
s is multiplied by the transition matrix. A new vec-
tor sᵀTt is then produced to denote the new prob-
ability distribution over knowledge entities after
one-hop reasoning. After N times reasoning5, the
final probability distribution over knowledge en-
tities is taken as the generated knowledge entity
distribution kt:

kt = sᵀ(Tt)
N . (10)

The loss function is the cross-entropy of the pre-
dicted word ot and the ground-truth distribution:

L(ψ, φ, θ) = −
n∑
t=1

log ot(yt), (11)

where ψ is the parameters of GRU layers. Com-
pared to prior work, the proposed reasoning ap-
proach explicitly models the knowledge reasoning
path, so an updated knowledge graphs will defi-
nitely change the results without retraining.

5We choose N = 6 because of the maximum length of
shortest paths in Figure 3

4.4 Inferring Reasoning Paths

Because this reasoning method is stochastic, we
compute the probabilities of the possible reason-
ing paths by the reasoning model, and infer the one
with the largest probability as the retrieved reason-
ing path.

5 Related Work

The proposed task is motivated by prior
knowledge-grounded conversation tasks
(Ghazvininejad et al., 2018; Zhou et al., 2018b),
but further requires the capability to adapt to
dynamic knowledge graphs.

5.1 Knowledge-Grounded Conversations

The recent knowledge-grounded conversation
models (Sordoni et al., 2015; Ghazvininejad et al.,
2018; Zhu et al., 2017; Zhou et al., 2018b) gen-
erated responses conditioned on conversation his-
tory and external knowledge. Ghazvininejad et al.
(2018) used memory networks (Weston et al.,
2015b,a; Sukhbaatar et al., 2015) to attend on ex-
ternal facts, and added the encoded information
to the decoding process.Zhu et al. (2017) added a
copy mechanism (Gu et al., 2016; Merity et al.,
2017; He et al., 2017) for improving its perfor-
mance. Zhou et al. (2018b) presented two-level
graph attention mechanisms (Veličković et al.,
2018) to produce more informative responses.

For knowledge from unstructured texts,
Ghazvininejad et al. (2018) used bag-of-word
representations and Long et al. (2017) applied
a convolutional neural network to encode the
whole texts. With structured knowledge graphs,
Zhu et al. (2017) and Zhou et al. (2018b) utilized
graph embedding methods (e.g., TransE (Bordes
et al., 2013)) to encode each triplet.

The above methods generated responses with-
out explicit relationship to each external knowl-
edge triplet. Therefore, when a triplet is added
or deleted, it is unknown whether their generated
responses can change accordingly. Moon et al.
(2019) recently presented a similar concept, walk-
ing on the knowledge graph, for response gener-
ation. Nonetheless, their purpose is to find ex-
plainable path on a large-scaled knowledge graph
instead of adaptation with the changed knowl-
edge graphs. Hence, the proposed attention-based
graph walker may suffer from the same issue as
previous embedding-based methods.
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Model
HGZHZ Friends

Change Rate Accurate Change Rate Change Rate Accurate Change Rate
All Last1 Last2 All Last1 Last2 All Last1 Last2 All Last1 Last2

MemNet 92.98 31.78 37.46 62.19 1.17 2.92 93.27 19.22 27.53 78.23 0.91 7.66
+ multi 98.69 77.87 81.96 83.82 3.40 10.74 95.31 28.09 36.65 87.28 0.69 7.63

TAware 94.38 68.33 71.86 78.88 1.95 9.26 92.93 26.52 30.96 88.07 0.35 10.63
+ multi 97.74 76.68 81.00 95.30 4.03 10.75 98.31 68.87 68.22 92.29 0.87 10.09

KAware 96.91 90.89 96.91 64.80 13.06 7.22 90.93 50.92 61.08 75.57 2.77 10.00
Qadpt 95.65 77.33 78.68 59.01 66.67 16.82 92.34 38.62 36.96 81.24 30.85 16.87

+ multi 99.60 83.17 87.27 56.11 61.92 18.54 98.47 48.78 63.54 86.97 26.17 17.31
+ TAware 99.02 83.14 85.59 58.82 64.12 14.90 98.45 56.77 65.25 82.52 28.34 17.68

Table 4: The results of change rate and accurate change rate.

Model
HGZHZ Friends

KW KW/Generic Generated-KW KW KW/Generic Generated-KW
Acc Recall Precision Recall Precision Acc Recall Precision Recall Precision

Seq2Seq 12.10 29.08 27.44 13.30 24.28 3.81 23.22 5.57 6.88 2.02
MemNet 22.58 39.09 100.00 39.52 67.10 22.79 37.18 100.00 46.02 53.98

+ multi 35.20 54.49 100.00 60.63 83.43 34.92 47.31 100.00 60.54 69.46
TAware 50.21 44.40 35.50 49.18 76.72 62.74 50.78 22.50 57.84 62.83

+ multi 59.71 68.61 28.70 70.18 85.54 72.96 42.98 25.74 71.11 77.35
KAware 20.53 40.63 36.64 24.61 43.13 13.52 30.76 28.42 15.14 18.74
Qadpt 57.61 38.24 28.31 44.50 90.70 74.00 41.33 25.31 69.30 77.30

+ multi 57.40 51.97 28.43 64.55 91.22 74.44 42.81 25.01 74.63 77.09
+ TAware 56.24 53.68 31.03 63.66 88.99 73.57 47.05 25.91 74.52 78.56

Table 5: The results of knowledge graph entities prediction.

5.2 Multi-Hop Reasoning
We leverage multi-hop reasoning (Lao et al., 2011)
to allow our model to quickly adapt to dynamic
knowledge graphs. Recently, prior work used
convolutional neural network (Toutanova et al.,
2015), recurrent neural network (Neelakantan
et al., 2015; Das et al., 2017), and reinforcement
learning (Xiong et al., 2017; Das et al., 2018; Chen
et al., 2018; Shen et al., 2018) to model multi-hop
reasoning on knowledge graphs, and has proved
this concept useful in link prediction. These rea-
soning models, however, have not yet explored on
dialogue generation. The proposed model is the
first attempt at adapting conversations via a rea-
soning procedure.

6 Experiments

For all models, we use gated recurrent unit (GRU)
based Seq2Seq models (Cho et al., 2014; Chung
et al., 2014; Vinyals and Le, 2015). Both encoder
and decoder for HGZHZ are 256 dimension with
1 layer; ones for Friends are 128 dimension with 1
layer.

We benchmark the task, dynamic knowledge-
grounded dialogue generation, and corpus
DyKgChat by providing a detailed comparison
between the prior conversational models and our
proposed model as the preliminary experiments.
We evaluate their capability of quick adaptation

by randomized whole, last 1, last 2 reasoning
paths as described in Section 2.1.2. We eval-
uate the produced responses by sentence-level
BLEU-2 (Papineni et al., 2002; Liu et al., 2016),
perplexity, distinct-n (Li et al., 2016), and our pro-
posed metrics for predicting knowledge entities
descrin section 2.1.1.

Because of the significant data imbalance of
Friends, we first train on whole training data, and
then fine-tune the models using the subset contain-
ing knowledge entities. Early stopping is adopted
in all experiments.

6.1 Baselines

We compare our model with prior knowledge-
grounded conversation models: the memory net-
work (Ghazvininejad et al., 2018) and knowledge-
aware model (KAware) (Zhu et al., 2017; Zhou
et al., 2018b). We also leverage the topic-aware
model (TAware) (Xing et al., 2017; Wu et al.,
2018; Zhou et al., 2018a) by attending on knowl-
edge graphs and using two separate output pro-
jection layers (generic words and all knowledge
graph entities). In our experiments, MemNet is
modified for fair comparison, where the mem-
ory pool of MemNet stores TransE embeddings
of knowledge triples (Zhou et al., 2018b). The
maximum number of the stored triplets are set to
the maximum size of all knowledge graphs for
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Figure 5: The distribution of the lengths of Qadpt inferred relation paths.

Model HGZHZ Friends
BLEU PPL dist-1 dist-2 dist-3 dist-4 BLEU PPL dist-1 dist-2 dist-3 dist-4

Seq2Seq 14.20 94.48 0.008 0.039 0.092 0.150 15.46 73.23 0.004 0.016 0.026 0.032
MemNet 15.73 88.29 0.012 0.062 0.150 0.240 14.61 67.58 0.005 0.023 0.040 0.049
+ multi 15.88 86.76 0.010 0.058 0.138 0.224 12.97 54.67 0.006 0.022 0.032 0.036
TAware 15.97 81.54 0.013 0.068 0.153 0.223 14.78 60.61 0.002 0.007 0.013 0.016
+ multi 13.34 80.48 0.022 0.122 0.239 0.304 15.74 56.67 0.003 0.011 0.019 0.023
KAware 14.14 90.11 0.011 0.061 0.135 0.198 15.70 64.70 0.002 0.009 0.017 0.021
Qadpt 14.52 88.24 0.013 0.081 0.169 0.242 17.01 68.27 0.002 0.008 0.013 0.016
+ multi 15.47 86.65 0.021 0.129 0.259 0.342 14.79 66.70 0.005 0.023 0.041 0.051
+ TAware 15.05 81.75 0.022 0.123 0.246 0.332 16.85 55.46 0.003 0.012 0.020 0.024

Table 6: The results of responses generation with BLEU, perplexity (PPL), distinct scores (1-gram to 4-gram).

each dataset (176 for hgzhz and 98 for friends).
The multi-hop version of MemNet (Weston et al.,
2015b) is also implemented (MemNet+multi)6.
To empirically achieve better performance, we
also utilize the attention of MemNet for TAware
and KAware. Moreover, we empirically find that
multi-hop MemNet deteriorate the performance of
KAware (compared to one-hop), while it could en-
hance the performance of TAware. A standard
Seq2Seq model (Vinyals and Le, 2015) is also
shown as a baseline without using external knowl-
edge. We also leverage multi-hop MemNet and
the attention of TAware to strength Qadpt (+multi
and +TAware).

6.2 Results

As shown in Table 4, MemNet, TAware and
KAware significantly change when the knowl-
edge graphs are largely updated (All) and can also
achieve good accurate change rate. For them,
the more parts updated (All >> Last2 > Last1),
the more changes and accurate changes. How-
ever, when the knowledge graphs are slightly up-
dated (Last1 and Last2), the portion of accurate
changes over total changes (e.g., the Last1 score
1.17/31.78 for HGZHZ with MemNet model) is

6Note that multi-hop here indicates re-attention on the
triplet embeddings of a knowledge graph.

significantly low. Among the baselines, KAware
has better performance on Last1. On the other
hand, Qadpt outperforms all baselines when the
knowledge graphs slightly change (Last1 and
Last2) in terms of accurate change rate. The pro-
portion of accurate changes over total changes
also show significantly better performance than
the prior models. Figure 5 shows the distribution
of lengths of the inferred relation paths for Qadpt
models. After combining TAware or MemNet, the
distribution becomes more similar to the test data.

Table 5 shows the results of the proposed met-
rics for correctly predicting knowledge graph enti-
ties. On both HGZHZ and Friends, TAware+multi
and Qadpt significantly outperform MemNet for
KW-Acc and KW/Generic, and MemNet outper-
forms all other models by KW/Generic precision
(100%). This demonstrates that these models can
better predict knowledge graph entities, but are
slightly worse at making good choices of when to
predict generic words (KW/Generic).

Table 6 presents the BLEU-2 scores (as rec-
ommended in the prior work (Liu et al., 2016)),
perplexity (PPL), and distinct scores. The results
show that all models have similar levels of BLEU-
2 and PPL, while Qadpt+multi has slightly better
distinct scores. The results suggest the same claim
as Liu et al. (2016) that BLEU scores are not suit-



1863

Model
HGZHZ Friends

Fluency Information Fluency Information
Win Lose Kappa Win Lose Kappa Win Lose Kappa Win Lose Kappa

Qadpt vs Seq2Seq 60.0 21.3 .69 46.0 11.3 .64 55.3 23.3 .55 60.0 13.3 .61
Qadpt vs MemNet 49.3 19.3 .78 34.0 12.7 .73 35.3 38.7 .62 17.3 22.7 .59
Qadpt vs TAware 48.7 18.0 .72 30.0 13.3 .70 42.7 32.7 .58 20.7 18.0 .62
Qadpt vs KAware 59.3 14.0 .71 58.7 8.0 .78 44.7 28.7 .62 44.7 13.3 .68

Table 7: The results of human evaluation.

able for dialogue generation.

7 Human Evaluation

To perform human evaluation, we randomly select
examples from the knowledge-related outputs of
all models, because it is difficult for human to dis-
tinguish which generic response is better. We re-
cruit fifteen annotators to judge the results. Each
annotator was randomly assigned with 20 exam-
ples, and was guided to rank the results of five
models: Seq2Seq, MemNet, TAware, KAware,
and Qadpt. They were asked to rank all results ac-
cording to two criteria: (1) fluency and (2) infor-
mation. Fluency measures which output is more
proper as a response to a given input message. In-
formation measures which output contains more
correct information (in terms of knowledge words
here) according to a given input message and a re-
ferred response. The evaluation results are classi-
fied into “win”, “tie”, and “lose” for comparison.

The human evaluation results and the annotator
agreement in the form of Cohen’s kappa (Cohen,
1960) are reported in Table 7. According to a mag-
nitude guideline (Landis and Koch, 1977), most
agreements are substantial (0.6-0.8), while some
agreements of Friends are moderate (0.4-0.6). In
most cases of Table 7, Qadpt outperforms other
four models. However, in Friends, Qadpt, Mem-
Net, and TAware tie closely. The reason might
be the lower agreements of Friends, or only the
similar trend with automatic evaluation metrics.
There are two extra spots. First, Qadpt wins Mem-
Net and TAware less times than winning Seq2Seq
and KAware, which aligns with Table 5 and Ta-
ble 6. Second, Qadpt wins baselines more often
by fluency than by information, and much more
ties happen in the infomation fields than the flu-
ency fields. This is probably due to the selection
of knowledge-contained examples. Hence there is
no much difference when seeing the information
amount of models. Overall, the human evaluation
results can be considered as reference because of
the substantial agreement among annotators and
the similar trend with automatic evaluation.

8 Discussion

The results demonstrate that MemNet, TAware
and Qadpt generally perform better than than the
other two baselines, and they excel at different
aspects. MemNet can successfully incorporate
knowledge graphs and generate sentences with
both appropriate knowledge entities and generic
words. In contrast, TAware and Qadpt predict
more correct knowledge entities but tend to dimin-
ish generic words.

For the scenario of zero-shot adaptation, Mem-
Net and TAware show their ability to update re-
sponses when the knowledge graphs are largely
changed. On the other hand, Qadpt is better to
capture minor dynamic changes ( Last1 and Last2)
and updates the responses according to the new
knowledge graphs. Some examples are given in
Appendix. This demonstrates that MemNet and
TAware attend on the whole graph instead of fo-
cusing on the most influential part.

9 Conclusion

This paper presents a new task, dynamic
knowledge-grounded conversation generation,
and a new dataset DyKgChat for evaluation.
The dataset is currently provided with a Chinese
and an English TV series as well as their cor-
respondent knowledge graphs. This paper also
benchmarks the task and dataset by proposing
automatic evaluation metrics and baseline models,
which can motivate the future research directions.
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