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Abstract

Understanding text often requires identifying
meaningful constituent spans such as noun
phrases and verb phrases. In this work, we
show that we can effectively recover these
types of labels using the learned phrase vec-
tors from deep inside-outside recursive au-
toencoders (DIORA). Specifically, we clus-
ter span representations to induce span labels.
Additionally, we improve the model’s labeling
accuracy by integrating latent code learning
into the training procedure. We evaluate this
approach empirically through unsupervised la-
beled constituency parsing. Our method out-
performs ELMo and BERT on two versions
of the Wall Street Journal (WSJ) dataset and
is competitive to prior work that requires ad-
ditional human annotations, improving over a
previous state-of-the-art system that depends
on ground-truth part-of-speech tags by 5 abso-
lute F1 points (19% relative error reduction).

1 Introduction

The deep inside-outside recursive autoencoder
(Drozdov et al., 2019, DIORA) is part of a recent
trend in fully unsupervised neural constituency
parsers (Shen et al., 2018; Williams et al., 2018a;
Htut et al., 2018; Shen et al., 2019; Kim et al.,
2019). However, these works and nearly all previ-
ous research (Klein and Manning, 2002; Seginer,
2007; Ponvert et al., 2011; Spitkovsky et al., 2013)
have focused on unlabeled constituency parsing.

In this paper, we instead focus on labeled con-
stituency parsing for English. The small number
of previous works that exist in this area suffer from
substantial weaknesses: 1) the models depend on
ground-truth part-of-speech tags, which are not al-
ways available and known to boost constituency
parsing scores (Kitaev and Klein, 2018), 2) none
can simultaneously identify and label constituents
(instead they typically depend on an external la-
tent parser), and 3) they ignore sentences longer
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Figure 1: The left half of this figure depicts the inside-
pass of the DIORA model as described in (Drozdov
et al., 2019). We are interested in clustering the learned
vectors a(i, j) such that each span may be mapped to a
phrase type. To enhance this clustering based approach,
we augment the DIORA architecture with latent codes,
shown in the right half of the figure.

than ten tokens because previous latent parsers do
not scale to longer sentences (Haghighi and Klein,
2006; Borensztajn and Zuidema, 2007; Reichart
and Rappoport, 2008).

Unlike previous work, we achieve strong results
in unlabeled constituency parsing using a single
model for both bracketing and labeling. Our ap-
proach relies on clustering span representations,
which are fixed-length continuous vectors learned
end-to-end using DIORA and do not require exter-
nal resources such as part-of-speech tags. Further-
more, we enhance the DIORA architecture with
latent codes: the model learns a distribution over
these codes that loosely aligns with the ground-
truth assignment of phrase types and, more impor-
tantly, improves the quality of the clusters.

Our code-enhanced DIORA architecture out-
performs DIORA and achieves a new state of
the art of 76.7 F1 on WSJ-10 when labeling
a gold bracketing (19% relative error reduction
over the previous best model, Haghighi and Klein
2006, which unlike our approach uses gold part-
of-speech tags). Furthermore, we show DIORA
is competitive when a ground truth bracketing is
not provided, and instead must be induced. On
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the full WSJ test set, DIORA outperforms two
strong baselines, ELMo (Peters et al., 2018a) and
BERT (Devlin et al., 2019). We analyze the clus-
tered constituents and observe they are separated
syntactically (i.e. past tense vs. present participle
verbs) and semantically (i.e. time-related phrases
vs. references to people).

2 DIORA: Deep Inside-Outside

Recursive Autoencoders

DIORA is a recursive autoencoder that learns to
reconstruct an input sentence. A fundamental
step in the reconstruction is to build a chart using
the inside-outside algorithm (Baker, 1979), which
represents a soft weighting over all possible binary
trees of the input sentence. For all the model de-
tails, we refer the reader to Drozdov et al. (2019).
For this work, it is key to understand two capabili-
ties that DIORA provides: each span in a sentence
is represented as a vector and DIORA induces a
maximally likely binary tree for the sentence.

We can directly label the constituents of a sen-
tence by clustering the learned span vectors from
DIORA and assigning a label to each cluster.
DIORA’s autoencoder objective incentivizes the
model to learn representations that compress the
sentence well in order to reconstruct the input
leading to the discovery of syntactic structure.

To encourage phrase representations to be easily
clusterable into a small set of phrase types, we add
an additional component to DIORA that forces
phrase vectors to be representable by a small num-
ber of latent codes. Recent models have inte-
grated ideas from vector quantization into varia-
tional autoencoders (Kingma and Welling, 2013)
and key-value memory layers (Lample and Con-
neau, 2019), forcing the model to compress inputs
into a single discrete latent embedding (van den
Oord et al., 2017; Kaiser et al., 2018). Given a
trained model, one could then assign labels to each
of the latent variables and use this to label inputs
directly.

We instead use a less restrictive modeling ap-
proach by assigning each input to a soft weight-
ing over the K latent embeddings. This is similar
to the soft EM training used by Roy et al. (2018)
and can be thought of analogously to fuzzy/soft
K-means clustering (Dunn, 1974; Bezdek, 1981)
rather than hard K-means clustering.

Implementation and training details for our
model are described in Appendix A.1.

2.1 DIORA with Codebook

DIORA is constrained to binary trees and its com-
position is represented as:

a(i, j) = Compose(ā(i), ā(j)), (1)

where i and j are neighboring spans, ā is sum-
mary vector for all possible parses over a span,
and Compose is a function such as tree-LSTM or
multi-layer perceptron.

To add the latent codebook into the model, we
modify Eq. 1 to combine each constituent vector
with a weighted summation over latent codes:

fcb(x) = CT�(CWx),

where C is a codebook in RN⇥M , x is a con-
stituent vector in RM , and W is a bi-linear ma-
trix used to compute the affinity between the con-
stituent vector and the latent codes. One way to
think of this equation is that each code (row in
C) is a centroid, and the vector of affinity scores,
�(CWx),1 is a soft assignment of the constituent
vector over the latent codes. The modified DIORA
equation when incorporating the codebook is:

a0(i, j) = a(i, j) + fcb(a(i, j)) (2)

This codebook-enhanced architecture is visu-
ally depicted in Fig. 1. We use 70 codes when
training this model (representing the 25 phrase
types, 45 part-of-speech types, and ignoring the
ROOT label), although we explore different config-
urations in §4.4.

3 Unsupervised Labeled Parsing

We perform unsupervised labeled constituency
parsing with a multi-step approach.

Tree assignment. Assign a tree to each input
sentence where the leaves of the tree are the words
in the sentence. The tree is not labeled. This
may be derived from the ground truth parse or in-
duced using DIORA. When induced, we extract a
binary tree by running the CKY algorithm2 over
DIORA’s learned compatibility scores.

1More details about the equation C>�(CWx) are dis-
cussed in Appendix A.3. It’s worth noting that � can be an
arbitrary function, in this work we use the identity function.

2The CKY algorithm is an efficient dynamic program-
ming approach for recognizing constituency trees using exact
inference (Kasami, 1966; Younger, 1967; Rush et al., 2010).
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– WSJ (Test) – Gold Induced

Model F1µ F1max F1µ F1max

Upper Bound 76.3 76.3 59.7 59.7
Majority (NP) 30.6 30.6 24.5 24.5

ELMo 58.5 59.4 43.5 48.2
ELMoCI 53.4 56.3 38.5 40.2
BERT 41.8 42.2 38.1 38.3

DIORA 62.5 ±0.5 63.4 50.2 ±0.5 51.4
DIORACB 64.5 ±0.6 65.5 49.8 ±0.7 50.6
DIORA⇤

CB 66.4 ±0.7 67.8 50.4 ±0.7 51.5

Table 1: Results on the full Wall Street Journal test set.

Vector assignment. Assign the corresponding
span vector to each constituent in these trees over
the entire dataset. For DIORA without the code-
book, this will be the concatenation of inside and
outside vector. When using the codebook, this will
be one of two options: the same as for DIORA, ex-
cept using the output of Eq. 2, or it will be the soft
score assignment of the codebook �(CWx). The
first option is referred to as DIORACB and the soft
score assignment as DIORA⇤

CB .
Cluster and label assignment. Cluster the col-

lection of constituent vectors using K centroids
learned with K-means. Finally, we use the ground
truth phrase labels to assign each cluster to a
phrase type — each constituent is mapped to the
most common label within its cluster. We set K
equal to the number of distinct phrase types in or-
der to match previous work.

4 Experiments and Results

4.1 DIORA

We compare multiple configurations of DIORA.
The first is the original model DIORA using the
concatenation of the inside and outside vectors to
represent a phrase. We also look at the codebook-
enhanced architecture DIORACB , and when clus-
tering the codebook scores we refer to the model
as DIORA⇤

CB .

4.2 Baselines

While ELMo (Peters et al., 2018a) and BERT (De-
vlin et al., 2019) do not produce phrase vectors
or induce recognizable constituency parse struc-
ture,3 we show that they can still be used for unsu-

3BERT does not strictly output word-level vectors.
Rather, the output are subword vectors which we aggregate
with mean-pooling to achieve a word-level representation.

– WSJ-10 – Gold Induced

Model F1µ F1max F1µ F1max

Upper Bound 86.0 86.0 64.6 64.6
Majority (NP) 32.0 32.0 25.2 25.2

ELMo 67.8 68.9 50.1 53.0
ELMoCI 65.9 67.3 46.0 47.6
BERT 54.6 57.8 44.5 45.2

DIORA 72.7 ±1.5 76.2 55.2 ±0.7 56.3
DIORACB 73.2 ±1.7 75.7 54.5 ±1.2 56.6
DIORA⇤

CB 74.9 ±1.1 76.7 53.9 ±0.8 55.1

PCFG† - 51.6 - 35.3

BMM† - (76.8) - 59.5
Proto† - 71.1 - 65.2

Table 2: WSJ-10 unsupervised labeled constituency
parsing with punctuation removed. † indicates that the
model relies on gold part-of-speech tags, and results in
parentheses are related but not comparable to others in
the table. Proto (Haghighi and Klein, 2006) uses ad-
ditional hand written rules. BMM (Gold) (Borensztajn
and Zuidema, 2007) is evaluated using more than K
clusters (where K is the size of the tag set) by map-
ping ground truth labels to induced labels, therefore
it is not strictly comparable to the other results. Nei-
ther BMM (Reichart and Rappoport, 2008) nor Proto
are effective at inducing unlabeled structured, so de-
pend on external latent parsers for the Induced evalua-
tion, either CCM (Klein and Manning, 2002) or CCL
(Seginer, 2007). ELMo and BERT do not induce struc-
ture whatsoever and depend on DIORA for the Induced

evaluation. ELMoCI uses only the context-insensitive
character embeddings produced by ELMo.

pervised labeled parsing. When a reference parse
is provided, it is only necessary to derive ad-hoc
phrase vectors using the contextualized token vec-
tors from these models. Peters et al. (2018b) de-
scribe an effective way to do so for ELMo, which
involves concatenating the token vectors at the be-
ginning and end of the phrase.4 For BERT, it is
critical to look at all layers as lower layers tend to
be more syntactic in nature (Tenney et al., 2019).
For both models, we report the max F1 and mean
F1, and for the Induced evaluation we use the
parses extracted from DIORA.

4.3 WSJ

Unsupervised constituency parsing has often been
evaluated on different splits of the WSJ. For la-

beled constituency parsing, models that produce
4We tried many combinations (4 variants for ELMo and

nearly 200 for BERT). They are described in Appendix A.2.
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binary trees as output have a performance ceiling
on this n-ary data — unary-chains limit recall5 and
more-than-binary nodes limit precision.

In some cases, an unlabeled tree structure over
a sentence can be readily accessed. The algorithm
described in §3 is robust to this case — simply
replace the first step with the ground truth parse.
We evaluate our model using the ground truth
parse (Gold) and when inducing a parse (Induced).
These results, comparison to baseline methods,
and an upper-bound on binary tree performance
are shown in Tables 1 and 2.

The Upper Bound in the Induced column of
these tables represents a perfect labeling of the
most accurate induced binary tree from DIORA,
and the Majority (NP) row is the same tree labeled
with the most common tag.

4.4 Model Ablations

As an alternative to clustering the constituent vec-
tors with K-means, one can treat the codebook
affinity scores, �(C>Wx), as a soft assignment
over the clusters represented by each code. To
examine this alternative, we replace K-means in
the algorithm from §3 with the argmax over the
affinity scores. A model trained with 25 codes6

achieves greater than 60% recall at labeling the
ground truth trees for WSJ-10, indicating the
codes represent some syntactic patterns although
not as effectively as when using K-means.

Given these results, we are curious to see how
model performance changes as the number of
codes varies. We train codebook DIORA with
{25, 70, 100, 200, 300, 400} codes and evaluate
each configuration using the procedure from §3
on the WSJ validation set. We compare the per-
formance to non-codebook DIORA trained with
{2, 3, 4, 5} layers.7 Results are shown in Fig. 2.

5 Qualitative Analysis of Clusters

We investigate phrase clusters from a single ex-
periment (DIORACB on WSJ-10), which are as-
signed to 9 NP, 5 VP, 5 S, 4 PP, 1 ADJP and 1 QP,
according to the majority gold labels in that clus-

5Labeled parsing is usually evaluated on whether a span
has the correct label. An NP prediction for a span would be
correct if there is an NP-QP or QP-NP unary-chain over this
span. A binary tree could only ever get one of QP or NP correct
in this case, hence limiting recall.

6We use 25 codes here instead of 70 so that the model may
be fairly compared with previous systems.

7Elsewhere in this paper, DIORA uses two layers.
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Figure 2: WSJ validation set results for different
DIORA variants. The non-codebook DIORA sees im-
proved performance as layers are added, but its average
F1 never exceeds that of the codebook-enhanced archi-
tecture. Both clustering of codebook cells a0(i, j) and
codebook scores �(CWx) see performance improve-
ments then diminishing returns as the number of codes
increases. The dashed line uses the bottom x-axis and
the solid lines use the top x-axis.

VBD VBG VBN VBP VBZ MD

Verb Type

0.0

0.2

0.4

0.6

Fr
ac

ti
on

of
V

P Cluster 0

Cluster 1

Cluster 2

Cluster 3

Figure 3: DIORACB cluster assignment analyzed on
WSJ-10 using part-of-speech tags. The four clusters
shown were all assigned the VP label, yet seem to have
finer-grained properties related to verb tense.

ter. These 6 assigned phrase types correspond with
the 6 most frequent labels.

We find some semantic properties are evident
in the clusters. For example, a 100% correct NP
cluster (all phrases in this cluster have gold label
NP) are all possessive NPs. One of the NP clus-
ters consists of NPs that are mostly related to time

(15 minutes, last year, this fall), even the incor-
rectly labeled phrases are time-related such as the
ADVP ‘no longer’ and ‘so far’. Another NP clus-
ter identifies people, which includes “ms. parks
’s mother” but excludes “mr. noriega ’s proposal”
even though both phrases have the same part-of-
speech tag sequence [NNP NNP POS NN].

One of the five VP clusters completely takes
the form to + verb — 7 out of 11 mislabeled
cases contain “to” in the phrase, for example, “not
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to mention” (CONJP). The four other VP clusters
present some degree of tense and singular/plural
properties. A bar-chart showing the finer-grained
properties of the VP clusters is shown in Fig. 3.
Cluster 0 includes the majority of VBZ and MD
(will, won’t, can, could), Cluster 1 is mainly com-
posed of past tense VPs (VBD), Cluster 2 has many
VBG, and Cluster 3 consists of 86% VBP.

One of the S clusters captures instances of S that
do not cover the whole sentence. Another starts
with coordinating conjunctions such as “and” or
“but”, yet another captures phrases beginning with
personal pronouns or determiners.

6 Conclusions

In this paper, we show that DIORA can be used
for unsupervised labeled constituency parsing. We
also introduce a new codebook-enhanced variant
of DIORA that improves labeling performance.
Our model outperforms the previous state of the
art in unsupervised labeled constituency parsing
for the WSJ-10 dataset, even though the previous
best uses ground truth part-of-speech tags and ours
does not, and introduces the first results on the full
WSJ test set. The results indicate that grammar
induction with types is viable using recent neural-
network-based models, and our analysis warrants
further exploration in this area.
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