
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 1304–1310,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

1304

Modeling Multi-Action Policy for Task-Oriented Dialogues

Lei Shu, Hu Xu, Bing Liu
University of Illinois at Chicago
{lshu3, hxu48, liub}@uic.edu

Piero Molino
Uber AI

piero@uber.com

Abstract

Dialogue management (DM) plays a key role
in the quality of the interaction with the user
in a task-oriented dialogue system. In most
existing approaches, the agent predicts only
one DM policy action per turn. This sig-
nificantly limits the expressive power of the
conversational agent and introduces unwanted
turns of interactions that may challenge users’
patience. Longer conversations also lead to
more errors and the system needs to be more
robust to handle them. In this paper, we com-
pare the performance of several models on the
task of predicting multiple acts for each turn.
A novel policy model is proposed based on a
recurrent cell called gated Continue-Act-Slots
(gCAS) that overcomes the limitations of the
existing models. Experimental results show
that gCAS1 outperforms other approaches.

1 Introduction

In a task-oriented dialogue system, the dialogue
manager policy module predicts actions usually in
terms of dialogue acts and domain specific slots.
It is a crucial component that influences the ef-
ficiency (e.g., the conciseness and smoothness)
of the communication between the user and the
agent. Both supervised learning (SL) (Stent, 2002;
Williams et al., 2017a; Williams and Zweig, 2016;
Henderson et al., 2005, 2008) and reinforcement
learning (RL) approaches (Walker, 2000; Young
et al., 2007; Gasic and Young, 2014; Williams
et al., 2017b; Su et al., 2017) have been adopted
to learn policies. SL learns a policy to predict
acts given the dialogue state. Recent work (Wen
et al., 2017; Liu and Lane, 2018) also used
SL as pre-training for RL to mitigate the sam-
ple inefficiency of RL approaches and to reduce
the number of interactions. Sequence2Sequence

1The code is available at https://leishu02.
github.io/

user msg Hi! I’m looking for good thriller. Are there any playing right now?
agent msg Yes, there are! The Witch, The Other Side of the Door,

and The Boy are all thrillers. Would you like to
find tickets for a showing for any of them?

agent acts inform(moviename=The Witch, The Other Side of the Door, The Boy;
genre=thriller) multiple choice(moviename)

Table 1: Dialogue example.

(Seq2Seq) (Sutskever et al., 2014) approaches
have also been adopted in user simulators to pro-
duce user acts (Gur et al., 2018). These ap-
proaches typically assume that the agent can only
produce one act per turn through classification.
Generating only one act per turn significantly lim-
its what an agent can do in a turn and leads to
lengthy dialogues, making tracking of state and
context throughout the dialogue harder. An exam-
ple in Table 1 shows how the agent can produce
both an inform and a multiple choice act, reducing
the need for additional turns.

The use of multiple actions has previously been
used in interaction managers that keep track of
the floor (who is speaking right now) (Raux and
Eskénazi, 2007; Khouzaimi et al., 2015; Hastie
et al., 2013, among others), but the option of gen-
erating multiple acts simultaneously at each turn
for dialogue policy has been largely ignored, and
only explored in simulated scenarios without real
data (Chandramohan and Pietquin, 2010).

This task can be cast as a multi-label classifica-
tion problem (if the sequential dependency among
the acts is ignored) or as a sequence generation one
as shown in Table 2.

In this paper, we introduce a novel policy model
to output multiple actions per turn (called multi-
act), generating a sequence of tuples and expand-
ing agents’ expressive power. Each tuple is de-
fined as (continue, act, slots), where continue in-
dicates whether to continue or stop producing new
acts, act is an act type (e.g., inform or request), and
slots is a set of slots (names) associated with the
current act type. Correspondingly, a novel decoder

https://leishu02.github.io/
https://leishu02.github.io/

1305

RNN RNN RNNRNN

Encoder Decoder

<go>
C <go>

A <go>
S

<continue>
inform

{moviename, genre}

<continue>
multiple_choice

{moviename}

<stop>
<pad>

{}

Dialogue State

Figure 1: CAS decoder: at each step, a tuple of (con-
tinue, act, slots) is produced. The KB vector k re-
garding the queried result from knowledge base is not
shown for brevity.

(Figure 1) is proposed to produce such sequences.
Each tuple is generated by a cell called gated
Continue Act Slots (gCAS, as in Figure 2), which
is composed of three sequentially connected gated
units handling the three components of the tuple.
This decoder can generate multi-acts in a double
recurrent manner (Tay et al., 2018). We compare
this model with baseline classifiers and sequence
generation models and show that it consistently
outperforms them.

2 Methodology

The proposed policy network adopts an encoder-
decoder architecture (Figure 1). The input to the
encoder is the current-turn dialogue state, which
follows Li et al. (2018)’s definition. It contains
policy actions from the previous turn, user dia-
logue acts from the current turn, user requested
slots, the user informed slots, the agent requested
slots and agent proposed slots. We treat the dia-
logue state as a sequence and adopt a GRU (Cho
et al., 2014) to encode it. The encoded dialogue
state is a sequence of vectors E = (e0, . . . , el)
and the last hidden state is hE . The CAS de-
coder recurrently generates tuples at each step. It
takes hE as initial hidden state h0. At each de-
coding step, the input contains the previous (con-
tinue, act, slots) tuple (ct−1, at−1, st−1). An ad-
ditional vector k containing the number of results
from the knowledge base (KB) query and the cur-
rent turn number is given as input. The output of
the decoder at each step is a tuple (c, a, s), where
c ∈ {〈continue〉, 〈stop〉, 〈pad〉}, a ∈ A (one act
from the act set), and s ⊂ S (a subset from the
slot set).

2.1 gCAS Cell
As shown in Figure 2, the gated CAS cell contains
three sequentially connected units for outputting
continue, act, and slots respectively.

ct-1 at-1 st-1

gate
ht-1

ct

at-1 st-1

gate

at

act unit

st-1

gate

st

slots unit

ht

ct-1 at-1 st-1

continue
unit

Figure 2: The gated CAS recurrent cell contains three
units: continue unit, act unit and slots unit. The three
units use a gating mechanism and are sequentially con-
nected. The KB vector k is not shown for brevity.

The Continue unit maps the previous tuple
(ct−1, at−1, st−1) and the KB vector k into xct .
The hidden state from the previous step ht−1 and
xct are inputs to a GRUc unit that produces output
gct and hidden state hct . Finally, gct is used to pre-
dict ct through a linear projection and a softmax.

xc
t = W c

x [ct−1, at−1, st−1, k] + bcx,

gct , h
c
t = GRUc(xc

t , ht−1),

P (ct) = softmax(W c
g g

c
t + bcg),

Lc = −
∑
t

logP (ct).

(1)

The Act unit maps the tuple (ct, at−1, st−1) and
the KB vector k into xat . The hidden state from
the continue cell hct and xat are inputs to a GRUa

unit that produces output gat and hidden state hat .
Finally, gat is used to predict at through a linear
projection and a softmax.

xa
t = W a

x [ct, at−1, st−1, k] + bax,

gat , h
a
t = GRUa(xa

t , h
c
t),

P (at) = softmax(W a
g g

a
t + bag),

La = −
∑
t

logP (at).

(2)

The Slots unit maps the tuple (ct, at, st−1) and
the KB vector k into xst . The hidden state from the
act cell hat and xst are inputs to a GRUs unit that
produces output gst and hidden state hst . Finally, gat
is used to predict st through a linear projection and
a sigmoid. Let zit be the i-th slot’s ground truth.

xs
t = W s

x [ct, at, st−1, k] + bsx,

gst , h
s
t = GRUs(xs

t , h
a
t),

st = sigmoid(W s
g g

s
t + bsg),

Ls = −
∑
t

|S|∑
i=0

zit log s
i
t + (1− zit) log

(
1− sit

)
.

(3)

The overall loss is the sum of the losses of the
three units: L = Lc + La + Ls

1306

annotation inform(moviename=The Witch, The Other Side of the Door, The Boy; genre=thriller) multiple choice(moviename)
classification inform+moviename, inform+genre, multiple choice+moviename
sequence ‘inform’ ‘(’ ‘moviename’ ‘=’ ‘;’ ‘genre’ ‘=’ ‘)’ ‘multiple choice’ ‘(’ ‘moviename’ ‘)’ ‘〈eos〉’
cas sequence (〈continue〉, inform, {moviename, genre}) (〈continue〉, multiple choice, {moviename}) (〈stop〉, 〈pad〉, {})

Table 2: Multiple dialogue act format in different architectures.

domain total train valid test acts slots pairs
movie 2888 1445 433 1010 11 29 90
taxi 3093 1548 463 1082 11 23 63

restaurant 4101 2051 615 1435 11 31 91

Table 3: Dataset: train, validation and test split, and the
count of distinct acts, slots and act-slot pairs.

domain & speaker 1 act 2 acts 3 acts 4 acts
movie user 9130 1275 106 11
movie agent 5078 4982 427 33

taxi user 10544 762 50 8
taxi agent 7855 3301 200 8

restaurant user 12726 1672 100 3
restaurant agent 10333 3755 403 10

Table 4: Dialogue act counts by turn.

3 Experiments

The experiment dataset comes from Microsoft Re-
search (MSR) 2. It contains three domains: movie,
taxi, and restaurant. The total count of dialogues
per domain and train/valid/test split is reported in
Table 3. At every turn both user and agent acts
are annotated, we use only the agent side as tar-
gets in our experiment. The acts are ordered in
the dataset (each output sentence aligns with one
act). The size of the sets of acts, slots, and act-slot
pairs are also listed in Table 3. Table 4 shows the
count of turns with multiple act annotations, which
amounts to 23% of the dataset. We use MSR’s di-
alogue management code and knowledge base to
obtain the state at each turn and use it as input to
every model.

3.1 Evaluation Metrics

We evaluate the performance at the act, frame and
task completion level. For a frame to be correct,
both the act and all the slots should match the
ground truth. We report precision, recall, F1 score
of turn-level acts and frames. For task comple-
tion evaluation, Entity F1 score and Success F1

score (Lei et al., 2018) are reported. The Entity
F1 score, differently from the entity match rate in
state tracking, compares the slots requested by the

2https://github.com/xiul-msr/e2e_
dialog_challenge

Entity F1 Success F1

movie taxi restaurant movie taxi restaurant
Classification 34.02 49.71 28.23 70.41 84.45 39.97
Seq2Seq 39.95 63.12 60.21 77.82 75.09 55.70
Copy Seq2Seq 28.04 62.95 59.14 77.59 74.58 58.74
CAS 48.02 59.16 54.70 76.81 78.89 65.18
gCAS 50.86 64.00 60.35 77.95 81.17 71.52

Table 5: Entity F1 and Success F1 at dialogue level.

agent with the slots the user informed about and
that were used to perform the KB query. We use it
to measure agent performance in requesting infor-
mation. The Success F1 score compares the slots
provided by the agent with the slots requested by
the user. We use it to measure the agent perfor-
mance in providing information.

Critical slots and Non-critical slots: By ‘non-
critical’, we mean slots that the user informs the
system about by providing their values and thus it
is not critical for the system to provide them in the
output. Table 1 shows an example, with the genre
slot provided by the user and the system repeat-
ing it in its answer. Critical slots refers to slots
that the system must provide like moviename in
the Table 1 example. Although non-critical slots
do not impact task completion directly, they may
influence the output quality by enriching the dia-
logue state and helping users understand the sys-
tem’s utterance correctly. Furthermore, given the
same dialog state, utterances offering non-critical
slots or not offering them can both be present in
the dataset, as they are optional. This makes the
prediction of those slots more challenging for the
system. To provide a more detailed analysis, we
report the precision, recall, F1 score of turn-level
for all slots, critical slots and non-critical slots of
the inform act.

3.2 Baseline

We compare five methods on the multi-act task.
Classification replicates the MSR challenge (Li

et al., 2018) policy network architecture: two fully
connected layers. We replace the last activation
from softmax to sigmoid in order to predict prob-
abilities for each act-slot pair. It is equivalent to
binary classification for each act-slot pair and the

https://github.com/xiul-msr/e2e_dialog_challenge
https://github.com/xiul-msr/e2e_dialog_challenge

1307

Act Frame
movie taxi restaurant movie taxi restaurant

method P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

classification 84.19 50.24 62.93 92.20 55.48 69.27 79.71 33.94 47.60 63.91 18.39 28.56 65.87 44.31 52.98 49.63 12.32 19.74
Seq2Seq 73.44 73.62 73.53 77.52 69.29 73.17 65.66 66.01 65.83 42.88 24.81 31.43 57.12 50.32 53.51 39.97 25.40 31.06
Copy Seq2Seq 67.56 73.61 70.46 73.99 69.21 71.52 64.93 65.69 65.31 41.90 23.12 29.80 51.66 50.23 50.93 36.96 27.22 31.35
CAS 70.46 76.08 73.16 79.85 72.54 76.02 65.40 72.43 68.73 43.12 31.60 36.47 51.66 54.29 52.94 33.72 25.45 29.01
gCAS 73.08 75.78 74.41 79.47 75.39 77.37 68.30 74.39 71.22 42.24 35.50 38.58 53.77 56.24 54.98 36.86 32.41 34.49

Table 6: Precision (P), Recall (R) and F1score (F1) of turn-level acts and frames.

example 1 example 2
groundtruth request(date; starttime) inform(restaurantname=; starttime =) multiple choice(restaurantname)
classification request+date []
Seq2Seq ‘request’ ‘(’ ‘date’ ‘;’ ‘starttime’ ‘)’ ‘inform’ ‘(’ ‘restaurantname’ ‘=’ ‘)’ ‘multiple choice’ ‘=’ ‘restaurantname’ ‘)’
Copy Seq2Seq ‘request’ ‘(’ ‘date’ ‘=’ ‘)’ ‘inform’ ‘(’ ‘restaurantname’ ‘=’ ‘;’ ‘;’, ‘;’, ‘=’, ‘;’ ‘starttime’ ‘=’ ‘)’
CAS request {} inform {restaurantname}
gCAS request {date; starttime} inform {restaurantname} multiple choice{restaurantname}

Table 7: Examples of predicted dialogue acts in the restaurant domain.

loss is the sum of the binary cross-entropy of all of
them.

Seq2Seq (Sutskever et al., 2014) encodes the
dialogue state as a sequence, and decodes agent
acts as a sequence with attention (Bahdanau et al.,
2015).

Copy Seq2Seq (Gu et al., 2016) adds a copy
mechanism to Seq2Seq, which allows copying
words from the encoder input.

CAS adopts a single GRU (Cho et al., 2014) for
decoding and uses three different fully connected
layers for mapping the output of the GRU to con-
tinue, act and slots. For each step in the sequence
of CAS tuples, given the output of the GRU, con-
tinue, act and slot predictions are obtained by sep-
arate heads, each with one fully connected layer.
The hidden state of the GRU and the predictions
at the previous step are passed to the cell at the
next step connecting them sequentially.

gCAS uses our proposed recurrent cell which
contains separate continue, act and slots unit that
are sequentially connected.

The classification architecture has two fully
connected layers of size 128, and the remaining
models have a hidden size of 64 and a teacher-
forcing rate of 0.5. Seq2Seq and Copy Seq2Seq
use a beam search with beam size 10 during in-
ference. CAS and gCAS do not adopt a beam
search since their inference steps are much less
than Seq2Seq methods. All models use Adam op-
timizer (Kingma and Ba, 2015) with a learning
rate of 0.001.

3.3 Result and Error Analysis

As shown in Table 5, gCAS outperforms all other
methods on Entity F1 in all three domains. Com-
pared to Seq2Seq, the performance advantage of
gCAS in the taxi and restaurant domains is small,
while it is more evident in the movie domain. The
reason is that in the movie domain the propor-
tion of turns with multiple acts is higher (52%),
while in the other two domains it is lower (30%).
gCAS also outperforms all other models in terms
of Success F1 in the movie and restaurant domain
but is outperformed by the classification model in
the taxi domain. The reason is that in the taxi
domain, the agent usually informs the user at the
last turn, while in all previous turns the agent usu-
ally requests information from the user. It is easy
for the classification model to overfit this pattern.
The advantage of gCAS in the restaurant domain
is much more evident: the agent’s inform act usu-
ally has multiple slots (see example 2 in Table 7)
and this makes classification and sequence gener-
ation harder, but gCAS multi-label slots decoder
handles it easily.

Table 6 shows the turn-level acts and frame pre-
diction performance. CAS and gCAS outperform
all other models in acts prediction in terms of F1

score. The main reason is that CAS and gCAS out-
put a tuple at each recurrent step, which makes for
shorter sequences that are easier to generate com-
pared to the long sequences of Seq2Seq (example
2 in Table 7). The classification method has a good
precision score, but a lower recall score, suggest-
ing it has problems making granular decisions (ex-
ample 2 in Table 7). At the frame level, gCAS still
outperforms all other methods. The performance

1308

All Slots Non-critical slots
movie taxi restaurant movie taxi restaurant

method P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

classification 67.90 21.48 32.64 73.52 72.66 73.08 45.16 12.71 19.84 62.98 13.39 22.08 43.91 60.03 50.72 33.61 11.15 16.75
Seq2Seq 53.25 29.54 38.00 64.09 74.32 68.83 42.36 17.73 25.00 47.90 13.95 21.61 64.15 48.45 55.20 35.28 12.95 18.94
Copy Seq2Seq 52.78 28.43 36.95 56.92 74.06 64.37 38.15 22.38 28.21 40.45 12.48 19.07 45.95 55.46 50.26 34.90 19.11 24.70
CAS 63.61 33.16 43.59 61.90 80.39 69.94 51.12 22.57 31.31 56.21 26.96 36.44 43.03 68.03 52.72 37.31 15.87 22.27
gCAS 54.75 38.70 45.35 62.31 79.76 69.96 44.20 29.65 35.49 48.23 36.68 41.67 44.35 62.15 51.77 31.26 29.60 30.41

Table 8: P ,R and F1 of turn-level inform all slots and non-critical slots.

Critical Slots
movie taxi restaurant

method P R F1 P R F1 P R F1

Classification 70.29 29.13 41.19 85.18 75.90 80.27 55.66 13.76 22.07
Seq2Seq 55.08 44.26 49.08 64.08 80.97 71.54 46.24 20.97 28.86
Copy Seq2Seq 57.54 43.49 49.54 59.49 78.83 67.81 40.11 24.59 30.49
CAS 69.59 39.02 50.00 68.15 83.57 75.08 59.93 27.10 37.32
gCAS 61.89 40.62 49.04 67.48 84.28 74.95 61.35 29.69 40.01

Table 9: P ,R andF1 of turn-level inform critical slots.

difference between CAS and gCAS on frames be-
comes much more evident, suggesting that gCAS
is more capable of predicting slots that are consis-
tent with the act. This finding is also consistent
with their Entity F1 and Success F1 performance.

However, gCAS’s act-slot pair performance is
far from perfect. The most common failure case
is on non-critical slots (like ‘genre’ in the example
in Table 2): gCAS does not predict them, while it
predicts the critical ones (like ‘moviename’ in the
example in Table 2).

Table 7 shows predictions of all methods from
two emblematic examples. Example 1 is a fre-
quent single-act multi-slots agent act. Example
2 is a complex multi-act example. The baseline
classification method can predict frequent pairs
in the dataset, but cannot predict any act in the
complex example. The generated sequences of
Copy Seq2Seq and Seq2Seq show that both mod-
els struggle in following the syntax. CAS cannot
predict slots correctly even if the act is common
in the dataset. gCAS returns a correct prediction
for Example 1, but for Example 2 gCAS cannot
predict ‘starttime’, which is a non-critical slot.

Tables 8 and 9 show the results of all slots, criti-
cal slots and non-critical slots under the inform act.
gCAS performs better than the other methods on
all slots in the movie and restaurant domains. The
reason why classification performs the best here in
the taxi domain is the same as the Success F1. In
the taxi domain, the agent usually informs the user
at the last turn. The non-critical slots are also re-
peated frequently in the taxi domain, which makes
their prediction easier. gCAS’s performance is
close to other methods on critical-slots. The rea-
son is that the inform act is mostly the first act in

multi-act and critical slots are usually frequent in
the data. All methods can predict them well.

In the movie and restaurant domains, the inform
act usually appears during the dialogue and there
are many optional non-critical slots that can ap-
pear (see Table 3, movie and restaurant domains
have more slots and pairs than the taxi domain).
gCAS can better predict the non-critical slots than
other methods. However, the overall performance
on non-critical slots is much worse than critical
slots since their appearances are optional and in-
consistent in the data.

4 Conclusion and Future Work

In this paper, we introduced a multi-act dialogue
policy model motivated by the need for a richer
interaction between users and conversation agents.
We studied classification and sequence generation
methods for this task, and proposed a novel recur-
rent cell, gated CAS, which allows the decoder to
output a tuple at each step. Experimental results
showed that gCAS is the best performing model
for multi-act prediction. The CAS decoder and the
gCAS cell can also be used in a user simulator
and gCAS can be applied in the encoder. A few
directions for improvement have also been identi-
fied: 1) improving the performance on non-critical
slots, 2) tuning the decoder with RL, 3) text gener-
ation from gCAS. We leave them as future work.

Acknowledgments

We would like to express our special thanks to
Alexandros Papangelis and Gokhan Tur for their
support and contribution. We also would like to
thank Xiujun Li for his help on dataset preparation
and Jane Hung for her valuable comments. Bing
Liu is partially supported by the NSF grant IIS-
1910424 and a research gift from Northrop Grum-
man.

1309

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations, San Diego,
California, USA.

Senthilkumar Chandramohan and Olivier Pietquin.
2010. User and noise adaptive dialogue manage-
ment using hybrid system actions. In Spoken Dia-
logue Systems for Ambient Environments, pages 13–
24. Springer.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In EMNLP, pages
1724–1734. ACL.

Milica Gasic and Steve J. Young. 2014. Gaussian pro-
cesses for pomdp-based dialogue manager optimiza-
tion. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 22:28–40.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In ACL (1). The As-
sociation for Computer Linguistics.

Izzeddin Gur, Dilek Z. Hakkani-Tur, Gokhan Tur, and
Pararth Shah. 2018. User modeling for task oriented
dialogues. 2018 IEEE Spoken Language Technology
Workshop (SLT), pages 900–906.

Helen F. Hastie, Marie-Aude Aufaure, Panos Alex-
opoulos, Heriberto Cuayáhuitl, Nina Dethlefs,
Milica Gasic, James Henderson, Oliver Lemon,
Xingkun Liu, Peter Mika, Nesrine Ben Mustapha,
Verena Rieser, Blaise Thomson, Pirros Tsiakoulis,
and Yves Vanrompay. 2013. Demonstration of the
parlance system: a data-driven incremental, spoken
dialogue system for interactive search. In SIGDIAL
Conference.

James Henderson, Oliver Lemon, and Kallirroi
Georgila. 2005. Hybrid reinforcement/supervised
learning for dialogue policies from communicator
data. In IJCAI workshop on knowledge and rea-
soning in practical dialogue systems, pages 68–75.
Citeseer.

James Henderson, Oliver Lemon, and Kallirroi
Georgila. 2008. Hybrid reinforcement/supervised
learning of dialogue policies from fixed data sets.
Computational Linguistics, 34(4):487–511.

Hatim Khouzaimi, Romain Laroche, and Fabrice
Lefèvre. 2015. Turn-taking phenomena in incre-
mental dialogue systems. In EMNLP.

Diederik P Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, San
Diego, California, USA.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequic-
ity: Simplifying task-oriented dialogue systems with
single sequence-to-sequence architectures. In ACL.

Xiujun Li, Sarah Panda, Jingjing Liu, and Jianfeng
Gao. 2018. Microsoft dialogue challenge: Building
end-to-end task-completion dialogue systems. vol-
ume abs/1807.11125.

Bing Liu and Ian Lane. 2018. End-to-end learning
of task-oriented dialogs. In Proceedings of the
NAACL-HLT.

Antoine Raux and Maxine Eskénazi. 2007. A multi-
layer architecture for semi-synchronous event-
driven dialogue management. 2007 IEEE Workshop
on Automatic Speech Recognition and Understand-
ing (ASRU), pages 514–519.

Amanda J Stent. 2002. A conversation acts model
for generating spoken dialogue contributions. Com-
puter Speech & Language, 16(3-4):313–352.

Pei-Hao Su, Pawel Budzianowski, Stefan Ultes, Mil-
ica Gasic, and Steve J. Young. 2017. Sample-
efficient actor-critic reinforcement learning with su-
pervised data for dialogue management. In Proceed-
ings of the 18th Annual SIGdial Meeting on Dis-
course and Dialogue, Saarbrücken, Germany, Au-
gust 15-17, 2017, pages 147–157. Association for
Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104–3112.

Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018.
Recurrently controlled recurrent networks. In Ad-
vances in Neural Information Processing Systems,
pages 4736–4748.

Marilyn A. Walker. 2000. An application of reinforce-
ment learning to dialogue strategy selection in a spo-
ken dialogue system for email. J. Artif. Intell. Res.,
12:387–416.

Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, and
Steve J. Young. 2017. Latent intention dialogue
models. In ICML, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3732–3741. PMLR.

Jason D. Williams, Kavosh Asadi, and Geoffrey Zweig.
2017a. Hybrid code networks: practical and effi-
cient end-to-end dialog control with supervised and
reinforcement learning. In ACL (1), pages 665–677.
Association for Computational Linguistics.

Jason D. Williams, Kavosh Asadi, and Geoffrey Zweig.
2017b. Hybrid code networks: practical and effi-
cient end-to-end dialog control with supervised and
reinforcement learning. In ACL.

Jason D Williams and Geoffrey Zweig. 2016. End-
to-end lstm-based dialog control optimized with su-
pervised and reinforcement learning. arXiv preprint
arXiv:1606.01269.

1310

Steve J. Young, Jost Schatzmann, Karl Weilhammer,
and Hui Ye. 2007. The hidden information state ap-
proach to dialog management. 2007 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing - ICASSP ’07, 4:IV–149–IV–152.

