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Abstract

Building effective text generation systems re-
quires three critical components: content se-
lection, text planning, and surface realiza-
tion, and traditionally they are tackled as sep-
arate problems. Recent all-in-one style neu-
ral generation models have made impressive
progress, yet they often produce outputs that
are incoherent and unfaithful to the input. To
address these issues, we present an end-to-
end trained two-step generation model, where
a sentence-level content planner first decides
on the keyphrases to cover as well as a de-
sired language style, followed by a surface re-
alization decoder that generates relevant and
coherent text. For experiments, we consider
three tasks from domains with diverse topics
and varying language styles: persuasive ar-
gument construction from Reddit, paragraph
generation for normal and simple versions of
Wikipedia, and abstract generation for scien-
tific articles. Automatic evaluation shows that
our system can significantly outperform com-
petitive comparisons. Human judges further
rate our system generated text as more fluent
and correct, compared to the generations by its
variants that do not consider language style.

1 Introduction

Automatic text generation is a long-standing chal-
lenging task, as it needs to solve at least three
major problems: (1) content selection (“what to
say”), identifying pertinent information to present,
(2) text planning (“when to say what”), arrang-
ing content into ordered sentences, and (3) surface
realization (“how to say it”), deciding words and
syntactic structures that deliver a coherent output
based on given discourse goals (McKeown, 1985).
Traditional text generation systems often handle
each component separately, thus requiring exten-
sive effort on data acquisition and system engi-
neering (Reiter and Dale, 2000). Recent progress

Topic:  US should cut off foreign aid completely.

/r/ChangeMyView Counter-argument:  It can be a useful 
political bargaining chip. A few years ago, the US cut financial 
aid to Uganda due to its plans to make homosexuality a crime 
punishable by death. Please consider changing your mind!

Topic:  Artificial Intelligence

English Wikipedia:  … Computer science defines AI research as 
… any device that perceives its environment and takes actions 
that maximize its chance of successfully achieving its goals. ...

Simple Wikipedia:  Artificial Intelligence is the ability of a 
computer program or a machine to think and learn. ...

Figure 1: [Upper] Sample counter-argument from Red-
dit. Argumentative stylistic language for persuasion is
in italics. [Bottom] Excerpts from Wikipedia, where
sophisticated concepts and language of higher com-
plexity used in the standard version are not present in
the corresponding simplified version. Both: key con-
cepts are in bold.

has been made by developing end-to-end trained
neural models (Rush et al., 2015; Yu et al., 2018;
Fan et al., 2018), which naturally excel at produc-
ing fluent text. Nonetheless, limitations of model
structures and training objectives make them suf-
fer from low interpretability and substandard gen-
erations which are often incoherent and unfaithful
to the input material (See et al., 2017; Wiseman
et al., 2017; Li et al., 2017).

To address the problems, we believe it is im-
perative for neural models to gain adequate con-
trol on content planning (i.e., content selection
and ordering) to produce coherent output, espe-
cially for long text generation. We further argue
that, in order to achieve desired discourse goals,
it is beneficial to enable style-controlled surface
realization by explicitly modeling and specifying
proper linguistic styles. Consider the task of pro-
ducing counter-arguments to the topic “US should
cut off foreign aid completely”. A sample argu-
ment in Figure 1 demonstrates how human selects



592

can ...

0
PREMISE

FUNCTIONAL

0

political bargaining chip

0

0
0
0

1
1

A few years ago, the US cut financial 
aid to Uganda...make homosexuality 
a crime punishable by death

PREMISE

Please consider 
changing your mind!

FUNCTIONAL

CLAIM 1

cut financial aid
uganda
make homosexuality a crime

<END>

political bargaining chip

cut financial aid
uganda
make homosexuality a crime

<END>

political bargaining ...

cut financial aid
uganda
make homosexuality...

<END>

political ...

cut...
uganda
make ...

<END>

Topic: US should 
cut off foreign aid 
completely

it be a useful

Figure 2: Overview of our framework. The LSTM content planning decoder (§ 3.2) first identifies a set of
keyphrases from the memory bank conditional on previous selection history, based on which, a style is speci-
fied. During surface realization, the hidden states of the planning decoder and the predicted style encoding are fed
into the realizer, which generates the final output (§ 3.3). Best viewed in color.

a series of talking points and a proper style based
on the argumentative function for each sentence.
For instance, the argument starts with a proposi-
tion on “foreign aid as a political bargaining chip”,
followed by a concrete example covering several
key concepts. It ends with argumentative stylistic
language, which differs in both content and style
from the previous sentences. Figure 1 shows an-
other example on Wikipedia articles: compared
to a topic’s standard version where longer sen-
tences with complicated concepts are constructed,
its simplified counterpart tends to explain the same
subject with plain language and simpler concepts,
indicating the interplay between content selection
and language style.

We thus present an end-to-end trained neural
text generation framework that includes the mod-
eling of traditional generation components, to pro-
mote the control of content and linguistic style of
the produced text.1 Our model performs sentence-
level content planning for information selection
and ordering, and style-controlled surface realiza-
tion to produce the final generation. We focus on
conditional text generation problems (Lebret et al.,
2016; Colin et al., 2016; Dušek et al., 2018): As
shown in Figure 2, the input to our model con-
sists of a topic statement and a set of keyphrases.
The output is a relevant and coherent paragraph to
reflect the salient points from the input. We uti-
lize two separate decoders: for each sentence, (1)
a planning decoder selects relevant keyphrases and
a desired style conditional on previous selections,
and (2) a realization decoder produces the text in

1Data and code are available at xinyuhua.github.
io/Resources/emnlp19/.

the specified style.
We demonstrate the effectiveness of our frame-

work on three challenging datasets with di-
verse topics and varying linguistic styles: per-
suasive argument generation on Reddit Change-
MyView (Hua and Wang, 2018); introduction
paragraph generation on a newly collected dataset
from Wikipedia and its simple version; and sci-
entific paper abstract generation on AGENDA
dataset (Koncel-Kedziorski et al., 2019).

Experimental results on all three datasets show
that our models that consider content planning and
style selection achieve significantly better BLEU,
ROUGE, and METEOR scores than non-trivial
comparisons that do not consider such informa-
tion. Human judges also rate our model gen-
erations as more fluent and correct compared to
the outputs produced by its variants without style
modeling.

2 Related Work

Content selection and text planning are critical
components in traditional text generation sys-
tems (Reiter and Dale, 2000). Early approaches
separately construct each module and mainly rely
on hand-crafted rules based on discourse the-
ory (Scott and de Souza, 1990; Hovy, 1993) and
expert knowledge (Reiter et al., 2000), or train sta-
tistical classifiers with rich features (Duboue and
McKeown, 2003; Barzilay and Lapata, 2005). Ad-
vances in neural generation models have alleviated
human efforts on system engineering, by com-
bining all components into an end-to-end trained
conditional text generation framework (Mei et al.,
2016; Wiseman et al., 2017). However, without

xinyuhua.github.io/Resources/emnlp19/
xinyuhua.github.io/Resources/emnlp19/
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proper planning and control (Rambow and Korel-
sky, 1992; Stone and Doran, 1997; Walker et al.,
2001), the outputs are often found to be incoherent
and hallucinating. Recent work (Moryossef et al.,
2019) separates content selection from the neu-
ral generation process and shows improved gen-
eration quality. However, their method requires
an exhaustive search for content ordering and is
therefore hard to generalize and scale. In this
work, we improve the content selection by incor-
porating past selection history and directly feed-
ing the predicted language style into the realiza-
tion module.

Our work is also inline with concept-to-
text generation, where sentences are produced
from structured representations, such as database
records (Konstas and Lapata, 2013; Lebret et al.,
2016; Wiseman et al., 2017; Moryossef et al.,
2019), knowledge base items (Luan et al.,
2018; Koncel-Kedziorski et al., 2019), and AMR
graphs (Konstas et al., 2017; Song et al., 2018;
Koncel-Kedziorski et al., 2019). Shared tasks
such as WebNLG (Colin et al., 2016) and E2E
NLG challenges (Dušek et al., 2019) have been
designed to evaluate single sentence planning and
realization from the given structured inputs with
a small set of fixed attribute types. Planning for
multiple sentences in the same paragraph is nev-
ertheless much less studied; it poses extra chal-
lenges for generating coherent long text, which
is addressed in this work. Moreover, structured
inputs are only available in a limited number
of domains (Tanaka-Ishii et al., 1998; Chen and
Mooney, 2008; Belz, 2008; Liang et al., 2009;
Chisholm et al., 2017). The emerging trend is to
explore less structured data (Kiddon et al., 2016;
Fan et al., 2018; Martin et al., 2018). In our work,
keyphrases are used as input to our generation sys-
tem, which offer flexibility for concept representa-
tion and generalizability to broader domains.

3 Model

Our model tackles conditional text generation
tasks where the input is comprised of two major
parts: (1) a topic statement, x = {xi}, which can
be an argument, the title of a Wikipedia article, or
a scientific paper title, and (2) a keyphrase mem-
ory bank, M, containing a list of talking points,
which plays a critical role in content planning and
style selection. We aim to produce a sequence
of words, y = {yt}, to comprise the output,

which can be a counter-argument, a paragraph as
in Wikipedia articles, or a paper abstract.

3.1 Input Encoding

The input text x is encoded via a bidirectional
LSTM (biLSTM), with its last hidden state used
as the initial states for both content planning de-
coder and surface realization decoder. To en-
code keyphrases in the memory bank M, each
keyphrase is first converted into a vector ek
by summing up all its words’ embeddings from
GloVe (Pennington et al., 2014). A biLSTM-based
keyphrase reader, with hidden states he

k, is used
to encode all keyphrases inM. We also insert en-
tries of <START> and <END> intoM to facilitate
learning to start and finish selection.

3.2 Sentence-Level Content Planning and
Style Specification

Content Planning: Context-Aware Keyphrase
Selection. Our content planner selects a set
of keyphrases from the memory bank M for
each sentence, indexed with j, conditional on
keyphrases that have been selected in previous
sentences, allowing topical coherence and content
repetition avoidance. The decisions are denoted
as a selection vector vj ∈ R|M|, with each di-
mension vj,k ∈ {0, 1}, indicating whether the k-
th phrase is selected for the j-th sentence gener-
ation. Starting with a <START> tag as the input
for the first step, our planner predicts v1 for the
first sentence, and recurrently makes predictions
per sentence until <END> is selected, as depicted
in Figure 2.

Formally, we utilize a sentence-level LSTM f ,
which consumes the summation embedding of se-
lected keyphrases, mj , to produce a hidden state
sj for the j-th sentence step:

sj = f(sj−1,mj) (1)

mj =

|M|∑
k=1

vj,kh
e
k (2)

where vj,k ∈ {0, 1} is the selection decision for
the k-th keyphrase in the j-th sentence.

Our recent work (Hua et al., 2019) utilizes a
similar formulation for sentence representations.
However, the prediction of vj+1 is estimated by a
bilinear product between he

k and sj , which is ag-
nostic to what have been selected so far. While
in reality, content selection for a new sentence
should depend on previous selections. For in-
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stance, keyphrases that have already been utilized
many times are less likely to be picked again;
topically related concepts tend to be mentioned
closely. We therefore propose a vector qj that
keeps track of what keyphrases have been selected
up to the j-th sentence:

qj = (

j∑
r=0

vr)T × E (3)

where E = [he
1,h

e
2, . . .h

e
|M|]

T ∈ R|M|×H is the
matrix of keyphrase representations, H is the hid-
den dimension of the keyphrase reader LSTM.

Then vj+1 is calculated in an attentive manner
with qj as the attention query:

P (vj+1,k = 1|v1:j) = σ(wT
v sj + qjW

che
k) (4)

where σ is the sigmoid funciton, and w∗, W∗,
and W∗∗ are trainable parameters throughout the
paper. Bias terms are all omitted for simplicity.

As part of the learning objective, we utilize the
binary cross-entropy loss with the gold-standard
selection v∗j as criterion over the training set D:

Lsel = −
∑

(x,y)∈D

J∑
j=1

(

|M|∑
k=1

log(P (v∗j,k))) (5)

Style Specification. As discussed in § 1, de-
pending on the content (represented as selected
keyphrases in our model), humans often choose
different language styles adapted for different dis-
course goals. Our model characterizes such stylis-
tic variations by assigning a categorical style type
tj for each sentence, which is predicted as follows:

t̂j = softmax(wT
s (tanh (Ws[mj ; sj ])) (6)

t̂j is the estimated distribution over all types.
We select the one with the highest probability and
use a one-hot encoding vector, tj , as the input
to our realization decoder (§ 3.3). The estimated
distributions t̂j are compared against the gold-
standard labels t∗j to calculate the cross-entropy
loss Lstyle:

Lstyle = −
∑

(x,y)∈D

J∑
j=1

t∗j log t̂j (7)

3.3 Style-Controlled Surface Realization

Our surface realization decoder is implemented
with an LSTM with state calculation function g
to get each hidden state zt for the t-th generated
token. To compute zt, we incorporate the content

planning decoder hidden state sJ(t) for the sen-
tence to be generated, with J(t) as the sentence
index, and previously generated token yt−1:

zt = g(zt−1, tanh(WwssJ(t) + Wwwyt−1)) (8)

For word prediction, we calculate two atten-
tions, one over the input statement x, which pro-
duces a context vector cwt (Eq. 10), the other over
the keyphrase memory bankM, which generates
cet (Eq. 11). To better reflect the control over word
choice by language styles, we directly append the
predicted style tJ(t) to the context vectors and hid-
den state zt, to compute the distribution over the
vocabulary2:

P (yt|y1:t−1) = softmax(tanh(Wo[zt; c
w
t ; cet ; tJ(t)]))

(9)

cwt =
L∑

i=1

αw
i hi, αw

i = softmax(ztW
wahi) (10)

cet =

|M|∑
k=1

αkh
e
k, αe

k = softmax(ztW
wehe

k) (11)

We further adopt a copying mechanism
from See et al. (2017) to enable direct reuse of
words from the input x and keyphrase bankM to
allow out-of-vocabulary words to be included.

3.4 Training Objective

We jointly learn to conduct content plan-
ning and surface realization by aggregating
the losses over (i) word generation: Lgen =

−
∑

D

∑T
t=1 logP (y∗t |x; θ), (ii) keyphrase selection:

Lsel (Eq. 5), and (iii) style prediction Lstyle (Eq. 7):

L(θ) = Lgen(θ) + γ · Lstyle(θ) + η · Lsel(θ) (12)

where θ denotes the trainable parameters. γ and
η are set to 1.0 in our experiments for simplicity.

4 Tasks and Datasets

4.1 Task I: Argument Generation

Our first task is to generate a counter-argument for
a given statement on a controversial issue. The
input keyphrases are extracted from automatically
retrieved and reranked passages with queries con-
structed from the input statement.

2The inclusion of style variables is different from our
prior style-aware generation model (Hua et al., 2019), where
styles are predicted but not encoded for word production.
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Argument Wikipedia AGENDA
# Args (# Threads) (Nor. / Sim.)

# Train 272,147 (11,434) 125,136 38,720
# Dev 40,291 (1,784) 21,004 1,000
# Test 46,757 (1,706) 23,534 1,000
# Tokens 54.87 70.57 / 48.60 141.34
# Sent. 2.48 3.15 / 3.20 5.59
# KP (candidates) 55.80 23.56 12.23
# KP (selected) 11.61 16.01/11.11 12.23

Table 1: Statistics of the three datasets. Average num-
bers are reported. For argument dataset, number of
unique threads is also shown. On AGENDA, entities
are extracted from abstract as keyphrases, hence all
candidates are “selected”.

We reuse the dataset from our previous
work (Hua et al., 2019), but annotate with newly
designed style scheme. We first briefly summa-
rize the procedures for data collection, keyphrase
extraction and selection, and passage reranking;
more details can be found in our prior work. Then
we describe how to label argument sentences with
style types that capture argumentative structures.

The dataset is collected from Reddit
/r/ChangeMyView subcommunity, where
each thread consists of a multi-paragraph original
post (OP), followed by user replies with the
intention to change the opinion of the OP user.
Each OP is considered as the input, and the root
replies awarded with delta (∆), or with positive
karma (# upvotes > # downvotes) are target
counter-arguments to be generated. A domain
classifier is further adopted to select politics
related threads. Since users often have separate
arguments in different paragraphs, we treat each
paragraph as one target argument by itself.
Statistics are shown in Table 1.

Input Keyphrases and Label Construction. To
obtain the input keyphrase candidates and their
sentence-level selection labels, we first construct
queries to retrieve passages from Wikipedia and
news articles collected from commoncrawl.
org.3 For training, we construct a query per tar-
get argument sentence using its content words for
retrieval, and keep top 5 passages per query. For
testing, the queries are constructed from the sen-
tences in OP (input statement).

We then extract keyphrases from the retrieved
passages based on topic signature words (Lin and
Hovy, 2000) calculated over the given OP. These

3The choice of news portals, statistics of the dataset, and
preprocerssing steps are described in Hua et al. (2019), §4.1.

CLAIM PREMISE FUNCTIONAL

# Arguments 29.1% 62.2% 8.7%
# Tokens 17.0 26.2 10.0

Length ∈ (0, 10] (10, 20] (20, 30] (30,∞)

Normal Wikipedia 9.9% 40.5% 29.8% 19.8%
Simple Wikipedia 29.3% 51.7% 14.6% 4.4%

Table 2: Sentence style distribution for argument and
Wikipedia datasets.

words, together with their related terms from
WordNet (Miller, 1994), are used to determine
whether a phrase in the passage is a keyphrase.
Specifically, a keyphrase is (1) a noun phrase or
verb phrase that is shorter than 10 tokens; (2) con-
tains at least one content word; (3) has a topic sig-
nature or a Wikipedia title. For each keyphrase
candidate, we match them with the sentences in
the target counter-argument, and we consider it to
be “selected” for the sentence if there is any over-
lapping content word.

During test time, we further adopt a stance clas-
sifier from Bar-Haim et al. (2017) to produce a
stance score for each passage. We retain pas-
sages that have a negative stance towards OP,
and a greater than 5 stance score. They are fur-
ther ordered based on the number of overlapping
keyphrases with the OP. Top 10 passages are used
to construct the input keyphrase bank, and as op-
tional input to our model.
Sentence Style Label Construction. For argu-
ment generation, we define three sentence styles
based on their argumentative discourse func-
tions (Persing and Ng, 2016; Lippi and Torroni,
2016): CLAIM is a proposition, usually containing
one or two talking points, e.g., “I believe foreign
aid is a useful bargaining chip”; PREMISE con-
tains supporting arguments with reasoning or ex-
amples; FUNCTIONAL is usually a generic state-
ment, e.g., “I understand what you said”. For
training, we employ a list of rules extended from
the claim detection method by Levy et al. (2018) to
automatically construct a style label for each sen-
tence. Statistics are displayed in Table 2, and sam-
ple rules are shown below, with the complete list
in the Supplementary:

• CLAIM: must be shorter than 20 tokens and
matches any of the following patterns: (a) i
(don’t)? (believe|agree|...); (b)
(anyone|all|everyone|nobody...)
(should|could|need|must|might...);

commoncrawl.org
commoncrawl.org
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(c) (in my opinion|my view|...)

• PREMISE: must be longer than 5 tokens, con-
tains at least one noun or verb content word,
and matches any of the following patterns: (a)
(for (example|instance)|e.g.); (b)
(increase|reduce|improve|...)

• FUNCTIONAL: contains fewer than 5 alphabetical
words and no noun or verb content word

Paragraphs that only contain FUNCTIONAL sen-
tences are removed from our dataset.

4.2 Task II: Paragraph Generation for
Normal and Simple Wikipedia

The second task is generating introduction para-
graphs for Wikipedia articles. The input consists
of a title, a user-specified global style (normal or
simple), and a list of keyphrases collected from
the gold-standard paragraphs of both normal and
simple Wikipedia. During training and testing, the
global style is encoded as one extra bit appended
to mj (Eq. 2).

We construct a new dataset with topically-
aligned paragraphs from normal and simple En-
glish Wikipedia.4 For alignment, we consider it a
match if two articles share exactly the same title
with at most two non-English words. We then ex-
tract the first paragraphs from both and filter out
the pair if one of the paragraphs is shorter than 10
words or is followed by a table.

Input Keyphrases and Label Construction.
Similar to argument generation, we extract noun
phrases and verb phrases and consider the ones
with at least one content word as keyphrase can-
didates. After de-duplication, there are on aver-
age 5.4 and 3.7 keyphrases per sentence for the
normal and simple Wikipedia paragraphs, respec-
tively. For each sample, we merge the keyphrases
from the aligned paragraphs as the input. The
model is then trained to select the appropriate ones
conditioned on the global style.

Sentence Style Label Construction. We dis-
tinguish sentence-level styles based on language
complexity, which is approximated by sentence
length. The distribution of sentence styles is dis-
played in Table 2.

4.3 Task III: Paper Abstract Generation
We further consider a task of generating abstracts
for scientific papers (Ammar et al., 2018), where

4We download the dumps of 2019/04/01 for both dataset.

the input contains a paper title and scientific en-
tities mentioned in the abstract. We use the
AGENDA data processed by Koncel-Kedziorski
et al. (2019), where entities and their relations in
the abstracts are extracted by SciIE (Luan et al.,
2018). All entities appearing in the abstract are in-
cluded in our keyphrase bank. The state-of-the-art
system (Koncel-Kedziorski et al., 2019) exploits
the scientific entities, their relations, and the re-
lation types. In our setup, we ignore the rela-
tion graph, and focus on generating the abstract
with only entities and title as the input. Due to
the dataset’s relatively uniform language style and
smaller size, we do not experiment with our style
specification component.

5 Experiments

5.1 Implementation Details
For argument generation, we truncate the input
OP and retrieved passages to 500 and 400 words.
Passages are optionally appended to OP as our
encoder input. The keyphrase bank size is lim-
ited to 70 for argument, and 30 for Wikipedia and
AGENDA data (based on the average numbers in
Table 1), with keyphrases truncated to 10 words.
We use a vocabulary size of 50K for all tasks.

Training Details. Our models use a two-layer
LSTM for both decoders. They all have 512-
dimensional hidden states per layer and dropout
probabilities (Gal and Ghahramani, 2016) of 0.2
between layers. Wikipedia titles are encoded with
the summation of word embeddings due to their
short length. The learning process is driven by
AdaGrad (Duchi et al., 2011) with 0.15 as the
learning rate and 0.1 as the initial accumulator.
We clip the gradient norm to a maximum of 2.0.
The mini-batch size is set to 64. And the optimal
weights are chosen based on the validation loss.

For argument generation, we also pre-train the
encoder and the lower layer of realization decoder
using language model losses. We collect all the
OP posts from the training set, and an extended
set of reply paragraphs, which includes additional
counter-arguments that have non-negative karma.
For Wikipedia, we consider the large collection
of 1.9 million unpaired normal English Wikipedia
paragraphs to pre-train the model for both normal
and simple Wikipedia generation.
Beam Search Decoding. For inference, we uti-
lize beam search with a beam size of 5. We disal-
low the repetition of trigrams, and replace the UNK
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with the keyphrase of the highest attention score.

5.2 Baselines and Comparisons

For all three tasks, we consider a SEQ2SEQ with
attention baseline (Bahdanau et al., 2015), which
encodes the input text and keyphrase bank as a se-
quence of tokens, and generates the output.

For argument generation, we implement a RE-
TRIEVAL baseline, which returns the highest
reranked passage retrieved with OP as the query.
We also compare with our prior model (Hua
and Wang, 2018), which is a multi-task learning
framework to generate both keyphrases and argu-
ments.

For Wikipedia generation, a RETRIEVAL base-
line obtains the most similar paragraph from the
training set with input title and keyphrases as
the query, measured with bigram cosine similar-
ity. We further train a logistic regression model
(LOGREGSEL), which takes the summation of
word embeddings in a phrase and predicts its in-
clusion in the output for a normal or simple Wiki
paragraph.

For abstract generation, we compare with the
state-of-the-art system GRAPHWRITER (Koncel-
Kedziorski et al., 2019), which is a transformer
model enabled with knowledge graph encoding
mechanism to handle both the entities and their
structural relations from the input.

We also report results by our model variants
to demonstrate the usefulness of content plan-
ning and style control: (1) with gold-standard5

keyphrase selection for each sentence (Oracle
Plan.), and (2) without style specification.

6 Results and Analysis

6.1 Automatic Evaluation

We report precesion-oriented BLEU (Papineni
et al., 2002), recall-oriented ROUGE-L (Lin,
2004) that measures the longest common subse-
quence, and METEOR (Denkowski and Lavie,
2014), which considers both precision and recall.
Argument Generation. For each input OP,
there can be multiple possible counter-arguments.
We thus consider the best matched (i.e., highest
scored) reference when reporting results in Ta-
ble 3. Our models yield significantly higher BLEU
and ROUGE scores than all comparisons while

5“Gold-standard” indicates the keyphrases that have con-
tent word overlap with the reference sentence.

BLEU ROUGE MTR Len.

RETRIEVAL 7.81 15.68 10.59 150.0
SEQ2SEQ 3.64 19.00 9.85 51.7
H&W (2018) 5.73 14.44 3.82 36.5

OURS (Oracle Plan.) 16.30∗ 20.25∗ 11.61 65.5
OURS 13.19∗ 20.15∗ 10.42 65.2

w/o Style 12.61∗ 20.28∗ 10.15 64.5
w/o Passage 11.84∗ 19.90∗ 9.03 62.6

Table 3: Results on argument generation with BLEU
(up to bigrams), ROUGE-L, and METEOR (MTR).
Best systems without oracle planning are in bold per
metric. Our models that are significantly better than all
comparisons are marked with ∗ (p < 0.001, approxi-
mate randomization test (Noreen, 1989)).

producing longer arguments than generation-
based approaches. Furthermore, among our model
variants, oracle content planning further improves
the performance, indicating the importance of con-
tent selection and ordering. Taking out style spec-
ification decreases scores, indicating the influence
of style control on generation.6

Wikipedia Generation. Results on Wikipedia
(Table 4) show similar trends, where our models
almost always outperform all comparisons across
metrics. The significant performance drop on
ablated models without style prediction proves
the effectiveness of style usage. Our model, if
guided with oracle keyphrase selection per sen-
tence, again achieves the best performance.

We further show the effect of content selection
on generation on Wikipedia and abstract data in
Figure 3, where we group the test samples into
10 bins based on F1 scores on keyphrase selec-
tion.7 We observe a strong correlation between
keyphrase selection and generation performance,
e.g., for BLEU, Pearson correlations of 0.95 (p <
10−4) and 0.85 (p < 10−2) are established for
Wikipedia and abstract. For ROUGE, the values
are 0.99 (p < 10−8) and 0.72 (p < 10−1).
Abstract Generation. Lastly, we compare with
the state-of-the-art GRAPHWRITER model on
AGENDA dataset in Table 5. Although our model
does not make use of the relational graph encod-

6We do not compare with our recent model in Hua et al.
(2019) due to the training data difference caused by our new
sentence style scheme. However, the newly proposed model
generates arguments with lengths closer to human arguments,
benefiting from the improved content planning module.

7We calculate F1 by aggregating the selections across all
sentences. For argument generation, keyphrases are often
paraphrased, making it difficult to calculate F1 reliably, there-
fore omitted here.
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BLEU ROUGE METEOR Length BLEU ROUGE METEOR Length

Normal Wikipedia Simple Wikipedia

RETRIEVAL 20.10 28.60 12.23 44.5 21.99 33.44 12.97 34.7
SEQ2SEQ 22.62 27.49 14.74 52.9 21.98 29.36 16.94 52.8
LOGREGSEL 29.28 28.65 27.76 34.3 5.59 23.21 13.27 13.0
OURS (Oracle Plan.) 37.70∗ 45.41∗ 31.65∗ 79.8 34.22∗ 45.48∗ 32.84∗ 70.5
OURS 33.76∗ 40.08∗ 25.70 65.4 31.22∗ 40.76∗ 26.76∗ 58.7

w/o Style 31.06∗ 37.72∗ 24.56 71.0 27.94∗ 38.20∗ 25.87∗ 64.5

Table 4: Results on Wikipedia generation. Best results without oracle planning are in bold. ∗: Our models that are
significantly better than all comparisons (p < 0.001, approximate randomization test).
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Figure 3: Effect of keyphrase selection (F1 score)
on generation performance, measured by BLEU and
ROUGE. Positive correlations are observed.

BLEU ROUGE MTR Len.

GRAPHWRITER 29.95 28.56 19.90 130.1
SEQ2SEQ 18.13 21.03 13.95 134.8

OURS (Oracle Plan.) 25.03 26.18 19.21 125.8
OURS 20.32 23.30 15.95 128.3

Table 5: Results on paper abstract generation. Notice
that GRAPHWRITER models rich information about re-
lations and relation types among entities, which is not
utilized by our model.

ing, we achieve competitive ROUGE-L and ME-
TEOR scores given the oracle plans. Our model
also outperforms the seq2seq baseline, which has
the same input, indicating the applicability of our
method across different domains.

6.2 Human Evaluation

We further ask three proficient English speakers
to assess the quality of generated arguments and
Wikipedia paragraphs. Human subjects are asked
to rate on a scale of 1 (worst) to 5 (best) on gram-
maticality, correctness of the text (for arguments,
the stance is also considered), and content rich-
ness (i.e., coverage of relevant points). Detailed
guidelines for different ratings are provided to the
raters (see Supplementary). For both tasks, we
randomly choose 30 samples from the test set; out-

Argument Wikipedia

Gram. Corr. Cont. Gram. Corr. Cont.

HUMAN 4.81 3.90 3.48 4.84 4.73 4.49
OURS 3.99∗ 2.78∗ 2.61∗ 3.38 3.24∗ 3.43

w/o Style 3.03 2.26 2.03 2.99 2.89 3.50
Krippendorff’s α 0.75 0.69 0.33 0.70 0.56 0.55

Table 6: Human evaluation on argument generation
(Upper) and Wikipedia generation (Bottom). Gram-
maticality (Gram), correctness (Corr), and content
richness (Cont) are rated on Likert scale (1 − 5). We
mark our model with ∗ to indicate statistically signifi-
cantly better ratings over the variant without style spec-
ification (p < 0.001, approximate randomization test).

puts from two variants of our models and a human
written text are presented in random order.

According to Krippendorff’s α, the raters
achieve substantial agreement on grammaticality
and correctness, while the agreement on content
richness is only moderate due to its subjectivity.
As shown in Table 6, on both tasks, our models
with style specification produce more fluent and
correct generations, compared to the ones without
such information. However, there is still a gap be-
tween system generations and human edited text.

We further show sample outputs in Figure 4.
The first example is on the topic of abortion, our
model captures the relevant concepts such as “fe-
tuses are not fully developed” and “illegal to kill”.
It also contains fewer repetitions than the seq2seq
baseline. For Wikipedia, our model is not only
better at controlling the global simplicity style,
but also more grammatical and coherent than the
seq2seq output.

6.3 Further Analysis and Discussions

We further investigate the usage of different styles,
and show the top frequent patterns for each argu-
ment style from human arguments and our system
generation (Table 7). We first calculate the most
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Human Our model
C It doesn’t mean that; every-

one should be able to
I don’t believe that it is nec-
essary; don’t need to be
able to

P have the freedom to; is
leagal in the US; imagine
for a moment if; Let’s say
(you/your partner/a friend)

have the right to (bear
arms/cast a ballot vote);
For example, (if you look
at/let’s look at/I don’t think)

F Why is that?; that’s ok;
Would it change your
mind?

I’m not sure (why/if) this is;
TLDR: I don’t care about
this

Table 7: Top frequent patterns captured in style CLAIM
(C), PREMISE (P), and FUNCTIONAL (F) from argu-
ments by human and our model.

frequent 4-grams per style, then extend it with
context. We manually cluster and show the rep-
resentative ones. For both columns, the popular
patterns reflect the corresponding discourse func-
tions: CLAIM is more evaluative, PREMISE lists
out details, and FUNCTIONAL exhibits argumen-
tative stylistic languages. Interestingly, our model
also learns to paraphrase popular patterns, e.g.,
“have the freedom to” vs. “have the right to”.

For Wikipedia, the sentence style is defined by
length. To validate its effect on content selection,
we calculate the average number of keyphrases per
style type. The results on human written para-
graphs are 2.0, 3.8, 5.8, and 9.0 from the sim-
plest to the most complex. A similar trend is ob-
served in our model outputs, which indicates the
challenge of content selection in longer sentences.

For future work, improvements are needed in
both model design and evaluation. As shown
in Figure 4, system arguments appear to over-
fit on stylistic languages and rarely create novel
concepts like humans do. Future work can lead
to improved model guidance and training meth-
ods, such as reinforcement learning-based explo-
rations, and better evaluation to capture diversity.

7 Conclusion

We present an end-to-end trained neural text gen-
eration model that considers sentence-level con-
tent planning and style specification to gain bet-
ter control of text generation quality. Our con-
tent planner first identifies salient keyphrases and
a proper language style for each sentence, then
the realization decoder produces fluent text. We
consider three tasks of different domains on per-
suasive argument generation, paragraph genera-
tion for normal and simple versions of Wikipedia,
and abstract generation for scientific papers. Ex-

Topic: Aborting a fetus has some non-zero negative moral im-
plications
Human: It’s not the birthing process that changes things. It’s
the existence of the baby. Before birth, the baby only exists
inside another human being. After birth, it exists on its own in
the world like every other person in the world.
Seq2seq: i ’m not going to try to change your view here , but i
do n’t want to change your position . i do n’t think it ’s fair to
say that a fetus is not a person . it ’s not a matter of conscious-
ness .
Our model: tl ; dr : i agree with you , but i think it ’s important
to note that fetuses are not fully developed . i do n’t know if this
is the case , but it does n’t seem to be a compelling argument
to me at all , so i ’m not going to try to change your view by
saying that it should be illegal to kill
Topic: Moon Jae-in
Simple Wikipedia: Moon Jae-in is a South Korean politician.
He is the 12th and current President of South Korea since 10
May 2017 after winning the majority vote in the 2017 presi-
dential election.
Seq2seq: moon election park is a election politician who
served as prime minister of korea from 2007 to 2013 . he was
elected as a member of the house of democratic party in the
moon ’s the the moon the first serving president of jae-in , in
office since 2010 .
Our model: moon jae-in is a south korean politician and cur-
rent president of south korea from 2012 to 2017 and again from
2014 to 2017.
Normal Wikipedia: Moon Jae-in is a South Korean politician
serving as the 19th and current President of South Korea since
2017. He was elected after the impeachment of Park Geun-hye
as the candidate of the Democratic Party of Korea.
Seq2seq: moon winning current is a current politician who
served as prime minister of korea from 2007 to 2013 . he was
elected as a member of the house of democratic party in the
moon ’s the the current the first president of pakistan , in office
. prior to that , he also served on the democratic republic of
germany .
Our model: moon jae-in is a south korean politician serving
as the 19th and current president of south korea , since 2019
to 2019 and 2019 to 2017 respectively he has been its current
president ever since .

Figure 4: Sample outputs for argument generation and
Wikipedia generation.

perimental results demonstrate the effectiveness of
our model, where it obtains significantly better
BLEU, ROUGE, and METEOR scores than non-
trivial comparisons. Human subjects also rate our
model generations as more grammatical and cor-
rect when language style is considered.
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