@inproceedings{dou-etal-2018-data2text,
title = "{D}ata2{T}ext Studio: Automated Text Generation from Structured Data",
author = "Dou, Longxu and
Qin, Guanghui and
Wang, Jinpeng and
Yao, Jin-Ge and
Lin, Chin-Yew",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-2003",
doi = "10.18653/v1/D18-2003",
pages = "13--18",
abstract = "Data2Text Studio is a platform for automated text generation from structured data. It is equipped with a Semi-HMMs model to extract high-quality templates and corresponding trigger conditions from parallel data automatically, which improves the interactivity and interpretability of the generated text. In addition, several easy-to-use tools are provided for developers to edit templates of pre-trained models, and APIs are released for developers to call the pre-trained model to generate texts in third-party applications. We conduct experiments on RotoWire datasets for template extraction and text generation. The results show that our model achieves improvements on both tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dou-etal-2018-data2text">
<titleInfo>
<title>Data2Text Studio: Automated Text Generation from Structured Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Longxu</namePart>
<namePart type="family">Dou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guanghui</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinpeng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin-Ge</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chin-Yew</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Data2Text Studio is a platform for automated text generation from structured data. It is equipped with a Semi-HMMs model to extract high-quality templates and corresponding trigger conditions from parallel data automatically, which improves the interactivity and interpretability of the generated text. In addition, several easy-to-use tools are provided for developers to edit templates of pre-trained models, and APIs are released for developers to call the pre-trained model to generate texts in third-party applications. We conduct experiments on RotoWire datasets for template extraction and text generation. The results show that our model achieves improvements on both tasks.</abstract>
<identifier type="citekey">dou-etal-2018-data2text</identifier>
<identifier type="doi">10.18653/v1/D18-2003</identifier>
<location>
<url>https://aclanthology.org/D18-2003</url>
</location>
<part>
<date>2018-nov</date>
<extent unit="page">
<start>13</start>
<end>18</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Data2Text Studio: Automated Text Generation from Structured Data
%A Dou, Longxu
%A Qin, Guanghui
%A Wang, Jinpeng
%A Yao, Jin-Ge
%A Lin, Chin-Yew
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2018
%8 nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F dou-etal-2018-data2text
%X Data2Text Studio is a platform for automated text generation from structured data. It is equipped with a Semi-HMMs model to extract high-quality templates and corresponding trigger conditions from parallel data automatically, which improves the interactivity and interpretability of the generated text. In addition, several easy-to-use tools are provided for developers to edit templates of pre-trained models, and APIs are released for developers to call the pre-trained model to generate texts in third-party applications. We conduct experiments on RotoWire datasets for template extraction and text generation. The results show that our model achieves improvements on both tasks.
%R 10.18653/v1/D18-2003
%U https://aclanthology.org/D18-2003
%U https://doi.org/10.18653/v1/D18-2003
%P 13-18
Markdown (Informal)
[Data2Text Studio: Automated Text Generation from Structured Data](https://aclanthology.org/D18-2003) (Dou et al., EMNLP 2018)
ACL
- Longxu Dou, Guanghui Qin, Jinpeng Wang, Jin-Ge Yao, and Chin-Yew Lin. 2018. Data2Text Studio: Automated Text Generation from Structured Data. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 13–18, Brussels, Belgium. Association for Computational Linguistics.