@inproceedings{ge-etal-2018-fine,
title = "Fine-grained Coordinated Cross-lingual Text Stream Alignment for Endless Language Knowledge Acquisition",
author = "Ge, Tao and
Dou, Qing and
Ji, Heng and
Cui, Lei and
Chang, Baobao and
Sui, Zhifang and
Wei, Furu and
Zhou, Ming",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1271",
doi = "10.18653/v1/D18-1271",
pages = "2496--2506",
abstract = "This paper proposes to study fine-grained coordinated cross-lingual text stream alignment through a novel information network decipherment paradigm. We use Burst Information Networks as media to represent text streams and present a simple yet effective network decipherment algorithm with diverse clues to decipher the networks for accurate text stream alignment. Experiments on Chinese-English news streams show our approach not only outperforms previous approaches on bilingual lexicon extraction from coordinated text streams but also can harvest high-quality alignments from large amounts of streaming data for endless language knowledge mining, which makes it promising to be a new paradigm for automatic language knowledge acquisition.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ge-etal-2018-fine">
<titleInfo>
<title>Fine-grained Coordinated Cross-lingual Text Stream Alignment for Endless Language Knowledge Acquisition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Ge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qing</namePart>
<namePart type="family">Dou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Baobao</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhifang</namePart>
<namePart type="family">Sui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Furu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct"-"nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes to study fine-grained coordinated cross-lingual text stream alignment through a novel information network decipherment paradigm. We use Burst Information Networks as media to represent text streams and present a simple yet effective network decipherment algorithm with diverse clues to decipher the networks for accurate text stream alignment. Experiments on Chinese-English news streams show our approach not only outperforms previous approaches on bilingual lexicon extraction from coordinated text streams but also can harvest high-quality alignments from large amounts of streaming data for endless language knowledge mining, which makes it promising to be a new paradigm for automatic language knowledge acquisition.</abstract>
<identifier type="citekey">ge-etal-2018-fine</identifier>
<identifier type="doi">10.18653/v1/D18-1271</identifier>
<location>
<url>https://aclanthology.org/D18-1271</url>
</location>
<part>
<date>2018-oct"-"nov</date>
<extent unit="page">
<start>2496</start>
<end>2506</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fine-grained Coordinated Cross-lingual Text Stream Alignment for Endless Language Knowledge Acquisition
%A Ge, Tao
%A Dou, Qing
%A Ji, Heng
%A Cui, Lei
%A Chang, Baobao
%A Sui, Zhifang
%A Wei, Furu
%A Zhou, Ming
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct" "nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F ge-etal-2018-fine
%X This paper proposes to study fine-grained coordinated cross-lingual text stream alignment through a novel information network decipherment paradigm. We use Burst Information Networks as media to represent text streams and present a simple yet effective network decipherment algorithm with diverse clues to decipher the networks for accurate text stream alignment. Experiments on Chinese-English news streams show our approach not only outperforms previous approaches on bilingual lexicon extraction from coordinated text streams but also can harvest high-quality alignments from large amounts of streaming data for endless language knowledge mining, which makes it promising to be a new paradigm for automatic language knowledge acquisition.
%R 10.18653/v1/D18-1271
%U https://aclanthology.org/D18-1271
%U https://doi.org/10.18653/v1/D18-1271
%P 2496-2506
Markdown (Informal)
[Fine-grained Coordinated Cross-lingual Text Stream Alignment for Endless Language Knowledge Acquisition](https://aclanthology.org/D18-1271) (Ge et al., EMNLP 2018)
ACL
- Tao Ge, Qing Dou, Heng Ji, Lei Cui, Baobao Chang, Zhifang Sui, Furu Wei, and Ming Zhou. 2018. Fine-grained Coordinated Cross-lingual Text Stream Alignment for Endless Language Knowledge Acquisition. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2496–2506, Brussels, Belgium. Association for Computational Linguistics.