
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2422–2430
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

2422

An AMR Aligner Tuned by Transition-based Parser

Yijia Liu, Wanxiang Che∗, Bo Zheng, Bing Qin, Ting Liu
Research Center for Social Computing and Information Retrieval

Harbin Institute of Technology, China
{yjliu,car,bzheng,qinb,tliu}@ir.hit.edu.cn

Abstract

In this paper, we propose a new rich resource
enhanced AMR aligner which produces multi-
ple alignments and a new transition system for
AMR parsing along with its oracle parser. Our
aligner is further tuned by our oracle parser via
picking the alignment that leads to the highest-
scored achievable AMR graph. Experimental
results show that our aligner outperforms the
rule-based aligner in previous work by achiev-
ing higher alignment F1 score and consistently
improving two open-sourced AMR parsers.
Based on our aligner and transition system,
we develop a transition-based AMR parser that
parses a sentence into its AMR graph directly.
An ensemble of our parsers with only words
and POS tags as input leads to 68.4 Smatch F1
score, which outperforms the parser of Wang
and Xue (2017).

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic representation
which encodes the meaning of a sentence in a
rooted and directed graph, whose nodes are ab-
stract semantic concepts and edges are semantic
relations between concepts (see Figure 1 for an ex-
ample). Parsing a sentence into its AMR graph has
drawn a lot of research attention in recent years
with a number of parsers being developed (Flani-
gan et al., 2014; Wang et al., 2015b; Pust et al.,
2015; Artzi et al., 2015; Peng et al., 2015; Zhou
et al., 2016; Goodman et al., 2016; Damonte et al.,
2017; Ballesteros and Al-Onaizan, 2017; Foland
and Martin, 2017; Konstas et al., 2017).

The nature of abstracting away the association
between a concept and a span of words compli-
cates the training of the AMR parser. A word-
concept aligner is required to derive such associ-
ation from the sentence-AMR-graph pair and the

∗* Email corresponding.

exchange-01

country

ARG0 freeze-01

ARG1

recieve-01

ARG3

name

name

ARG0

act-02

ARG1

reactor

ARG1

"North"

op1

"Korea"

op2

nucleus~1

mod

2

quant

nucleus~2

mod

Figure 1: AMR graph for the sentence “North Korea
froze its nuclear actions in exchange for two nuclear
reactors.”

alignment output is then used as reference to train
the AMR parser. In previous works, such align-
ment is extracted by either greedily applying a set
of heuristic rules (Flanigan et al., 2014) or adopt-
ing the unsupervised word alignment technique
from machine translation (Pourdamghani et al.,
2014; Wang and Xue, 2017).

The rule-based aligner – JAMR aligner pro-
posed by Flanigan et al. (2014) is widely used in
previous works thanks to its flexibility of incor-
porating additional linguistic resources like Word-
Net. However, achieving good alignments with
the JAMR aligner still faces some difficult chal-
lenges. The first challenge is deriving an opti-
mal alignment in ambiguous situations. Taking
the sentence-AMR-graph pair in Figure 1 for ex-
ample, the JAMR aligner doesn’t distinguish be-
tween the two “nuclear”s in the sentence and can
yield sub-optimal alignment in which the first “nu-
clear” is aligned to the nucleus˜2 concept. The
second challenge is recalling more semantically
matched word-concept pair without harming the

~

2423

alignment precision. The JAMR aligner adopts
a rule that aligns the word-concept pair which at
least have a common longest prefix of 4 charac-
ters, but omitting the shorter cases like aligning
the word “actions” to the concept act-01 and
the semantically matched cases like aligning the
word “example” to the concept exemplify-01.
The final challenge which is faced by both the
rule-based and unsupervised aligners is tuning the
alignment with downstream parser learning. Pre-
vious works treated the alignment as a fixed input.
Its quality is never evaluated and its alternatives
are never explored. All these challenges make the
JAMR aligner achieve only an alignment F1 score
of about 90% and influence the performance of the
trained AMR parsers.

In this paper, we propose a novel method to
solve these challenges and improve the word-to-
concept alignment, which further improves the
AMR parsing performance. A rule-based aligner
and a transition-based oracle AMR parser lie in the
core of our method. For the aligner part, we in-
corporate rich semantic resources into the JAMR
aligner to recall more word-concept pairs and can-
cel its greedily aligning process. This leads to
multiple alignment outputs with higher recall but
lower precision. For the parser part, we propose a
new transition system that can parse the raw sen-
tence into AMR graph directly. Meanwhile, a new
oracle algorithm is proposed which produces the
best achievable AMR graph from an alignment.
Our aligner is tuned by our oracle parser by feed-
ing the alignments to the oracle parser and picking
the one which leads to the highest Smatch F1 score
(Cai and Knight, 2013). The chosen alignment is
used in downstream training of the AMR parser.
Based on the newly proposed aligner and transi-
tion system, we develop a transition-based parser
that directly parses a sentence into its AMR graph
and it can be easily improved through ensemble
thanks to its simplicity.

We conduct experiments on LDC2014T12
dataset.1 Both intrinsic and extrinsic evaluations
are performed on our aligner. In the intrinsic
evaluation, our aligner achieves an alignment F1
score of 95.2%. In the extrinsic evaluation, we
replace the JAMR aligner with ours in two open-
sourced AMR parsers, which leads to consistent
improvements on both parsers. We also evaluate
our transition-based parser on the same dataset.

1catalog.ldc.upenn.edu/ldc2014t12

Using both our aligner and ensemble, a score of
68.1 Smatch F1 is achieved without any additional
resources, which is comparable to the parser of
Wang and Xue (2017). With additional part-of-
speech (POS) tags, our ensemble parser achieves
68.4 Smatch F1 score and outperforms that of
Wang and Xue (2017).

The contributions of this paper come in two
folds:

• We propose a new AMR aligner (§3) which
recalls more semantically matched pairs and
produces multiple alignments. We also pro-
pose a new transition system for AMR pars-
ing (§4.1) and use its oracle (§4.2) to pick
the alignment that leads to the highest-scored
achievable AMR graph (§4.3). Both intrinsic
and extrinsic evaluations (§5) show the effec-
tiveness of our aligner by achieving higher F1
score and consistently improving two open-
sourced AMR parsers.

• We build a new transition-based parser (§4.4)
upon our aligner and transition system which
directly parses a raw sentence into its AMR
graph. Through simple ensemble, our parser
achieves 68.4 Smatch F1 score with only
words and POS tags as input (§6) and out-
performs the parser of Wang and Xue (2017).

Our code and the alignments for LDC2014T12
dataset are publicly available at https://
github.com/Oneplus/tamr

2 Related Work

AMR Parsers. AMR parsing maps a natural
language sentence into its AMR graph. Most
current parsers construct the AMR graph in a
two-staged manner which first identifies concepts
(nodes in the graph) from the input sentence, then
identifies relations (edges in the graph) between
the identified concepts. Flanigan et al. (2014)
and their follow-up works (Flanigan et al., 2016;
Zhou et al., 2016) model the parsing problem as
finding the maximum spanning connected graph.
Wang et al. (2015b) proposes to greedily trans-
duce the dependency tree into AMR graph and
a bunch of works (Wang et al., 2015a; Goodman
et al., 2016; Wang and Xue, 2017) further improve
the transducer’s performance with rich features
and imitation learning.2 Transition-based methods

2Wang et al. (2015b) and the follow-up works refer their
transducing process as “transition-based”. However, to dis-

catalog.ldc.upenn.edu/ldc2014t12
https://github.com/Oneplus/tamr
https://github.com/Oneplus/tamr

2424

that directly parse an input sentence into its AMR
graph have also been studied (Ballesteros and Al-
Onaizan, 2017; Damonte et al., 2017). In these
works, the concept identification and relation iden-
tification are performed jointly.

An aligner which maps a span of words into its
concept serves to the generation of training data
for the concept identifier, thus is important to the
parser training. Missing or incorrect alignments
lead to poor concept identification, which then
hurt the overall AMR parsing performance. Be-
sides the typical two-staged methods, the aligner
also works in some other AMR parsing algorithms
like that using syntax-based machine translation
(Pust et al., 2015), sequence-to-sequence (Peng
et al., 2017; Konstas et al., 2017), Hyperedge Re-
placement Grammar (Peng et al., 2015) and Com-
binatory Category Grammar (Artzi et al., 2015).

Previous aligner works solve the alignment
problem in two different ways. The rule-based
aligner (Flanigan et al., 2014) defines a set of
heuristic rules which align a span of words to the
graph fragment and greedily applies these rules.
The unsupervised aligner (Pourdamghani et al.,
2014; Wang and Xue, 2017) uncovers the word-to-
concept alignment from the linearized AMR graph
through EM. All these approaches yield a single
alignment for one sentence and its effect on the
downstream parsing is not considered.

JAMR Aligner (Flanigan et al., 2014). Two
components exist in the JAMR aligner: 1) a set
of heuristic rules and 2) a greedy search process.

The heuristic rules in the JAMR aligner are a
set of indicator functions ρ(c, ws,e) which take a
concept c and a span of words ws,e starting from
s and ending with e as input and return whether
they should be aligned. These rules can be cat-
egorized into matching rules and updating rules.
The matching rules directly compare c with ws,e

and determine if they should be aligned. The up-
dating rules first retrieve the concept c′ that ws,e

aligns, then determine if c and ws,e should be
aligned by checking whether c and c′ meet some
conditions. Here, we illustrate how update rules
work by applying a rule named Entity Type on
the AMR graph in Figure 1 as an example. When
determining if the entity type concept country
should be aligned to “North Korea”, the Entity

tinguish their work with that of Damonte et al. (2017) and
Ballesteros and Al-Onaizan (2017), we use the term “trans-
duce” instead.

Type rule first retrieve that this span is aligned
to the fragment (name :op1 "North" :op2
"Korea"), then determine if they are aligned by
checking if name is the tail concept of country.

The greedy search process applies rules in a
manually defined order. The results are mutually
exclusive which means once a graph fragment is
aligned by one rule, it cannot be realigned. By
doing so, conflicts between the alignments pro-
duced by different rules are resolved. Flanigan
et al. (2014) didn’t talk about the principle of or-
ders but it generally follows the principle that 1)
the matching rules have higher priorities than the
updating rules, and 2) exact matching rules have
higher priorities than the fuzzy matching rules.

3 Enhanced Rule-based Aligner

3.1 Enhancing Aligner with Rich Semantic
Resources

Error propagates in the greedy search process. An
alignment error can lead to future errors because
of the dependencies and mutual exclusions be-
tween rules. In the JAMR aligner, rules that re-
call more alignments but introduce errors are care-
fully opted out and it influences the aligner’s per-
formance. Our motivation is to use rich semantic
resources to recall more alignments. Instead of re-
solving the resulted conflicts and errors by greedy
search, we keep the multiple alignments produced
by the aligner and let a parser decide the best align-
ment.

In this paper, we use two kinds of semantic re-
sources to recall more alignments, which include
the similarity drawn from Glove embedding (Pen-
nington et al., 2014)3 and the morphosemantic
database (Fellbaum et al., 2009) in the WordNet
project4. Two additional matching schemes se-
mantic match and morphological match are pro-
posed as:

Semantic Match. Glove embedding encodes a
word into its vector representation. We define se-
mantic match of a concept as a word in the sen-
tence that has a cosine similarity greater than 0.7
in the embedding space with the concept striping
off trailing number (e.g. run-01→ run).

Morphological Match. Morphosemantic is a
database that contains links among derivational

3nlp.stanford.edu/projects/glove/
4wordnet.princeton.edu/wordnet/

download/standoff/

nlp.stanford.edu/projects/glove/
wordnet.princeton.edu/wordnet/download/standoff/
wordnet.princeton.edu/wordnet/download/standoff/

2425

(Semantic Named Entity) Applies to name concepts and
their opn children. Matches a span that matches the se-
mantic match of each child in numerical order.
(Morphological Named Entity) Applies to name con-
cepts and their opn children. Matches a span that matches
the morphological match of each child in numerical order.
(Semantic Concept) Applies to any concept. Strips off
trailing ‘-[0-9]+’ from the concept, and matches any se-
mantic matching word.
(Morphological Concept) Applies to any concept. Strips
off trailing ‘-[0-9]+’ from the concept, and matches any
morphological matching word or WordNet lemma.

Table 1: The extended rules.

links connecting noun and verb senses (e.g., “ex-
ample” and exemplify). We define morpholog-
ical match of a concept as a word in the sentence
having the (word, concept) link in the database.

By defining the semantic match and morpho-
logical match, we extend the rules in Flanigan
et al. (2014) with four additional matching rules
as shown in Table 1. These rules are intended to
recall the concepts or entities which either seman-
tically resemble a span of words but differ in the
surface form, or match a span of words in their
morphological derivation.

3.2 Producing Multiple Alignments

Using the rules in the JAMR aligner along with
our four extended matching rules, we propose an
algorithm to draw multiple alignments from a pair
of sentence and AMR graph and it is shown in Al-
gorithm 1. In this algorithm, Ac denotes the set
of candidate alignments for a graph fragment c,
in which each alignment is represented as a tu-
ple (s, e, c′) where s denotes the starting position,
e denotes the ending position, and c′ denotes the
concept that lead to this alignment. At the begin-
ning, Ac is initialized as an empty set (line 1 to 2).
Then all the matching rules are tried to align a span
of words to that fragment (line 3 to 7). After ap-
plying all the matching rules, all the updating rules
are repeatedly applied until no new alignment is
generated in one iteration (line 8 to 16). During
applying the updating rules, we keep track of the
dependencies between fragments. Finally, all the
possible combination of the alignments are enu-
merated without considering the one that violates
the fragment dependencies (line 17 to 26).

4 Transition-based AMR Parser

Our enhanced rule-based aligner produces mul-
tiple alignments, and we would like to use our

Algorithm 1: Our alignment algorithm.
Input: An AMR graph with a set of graph fragments C;

a sentence W ; a set of matching rules PM ; and
a set of updating rules PU .

Output: a set of alignments A.
1 for c ∈ C do
2 Ac ← ∅;
3 for ρM ∈ PM do
4 for ws,e ← spans(W) do
5 for c ∈ C do
6 if ρM (c, ws,e) then
7 Ac ← Ac ∪ (s, e, nil);

8 updated← true ;
9 while updated is true do

10 updated← false;
11 for ρU ∈ PU do
12 for c, c′ ∈ C × C do
13 for (s, e, d) ∈ A′c do
14 if ρU (c, ws,e) ∧ (s, e, c′) /∈ Ac then
15 Ac ← Ac ∪ (s, e, c′);
16 updated← true;

17 A ← ∅ ;
18 for (a1, ..., ac) ∈ CartesianProduct(A1, ..., A|C|) do
19 legal← true;
20 for a ∈ (a1, ..., ac) do
21 (s, e, c′)← a;
22 (s′, e′, d)← ac′ ;
23 if s 6= s′ ∧ e 6= e′ then
24 legal← false ;

25 if legal then
26 A ← A∪ (a1, ..., ac);

parser to evaluate their qualities. A parameter-
ized parser does not accomplish such goal because
training its parameters depends on the aligner’s
outputs. A deterministic parser works in this
situation but is required to consider the associ-
ation between concepts and spans. This stops
the deterministic parsers which build AMR graph
only from the derived concepts5 from being used
because they do not distinguish alignments that
yields to the same set of concepts.6

This discussion shows that to evaluate the qual-
ity of an alignment, we need a deterministic (ora-
cle) parser which builds the AMR graph from the
raw sentence. Ballesteros and Al-Onaizan (2017)
presented a transition-based parser that directly
parses a sentence into its AMR graph. A transition
system which extends the swap-based dependency
parsing system to handle AMR non-projectivities
(Damonte et al., 2017) was proposed in their work.

5e.g. the reference relation identifier in Flanigan et al.
(2014) and the oracle transducer in Wang et al. (2015b).

6recall the “nuclear” example in Section 1.

2426

Transition Current State Resulting State Description
DROP [σ|s0, δ, b0|β, A] [σ|s0, δ, β, A] pops out the word that doesn’t convey

any semantics (e.g., function words and
punctuations).

MERGE [σ|s0, δ, b0|b1|β, A] [σ|s0, δ, b0 b1|β, A] concatenates a sequence of words into a
span, which can be derived as a named
entity (name) or date-entity.

CONFIRM(c) [σ|s0, δ, b0|β, A] [σ|s0, δ, c|β, A] derives the first element of the buffer (a
word or span) into a concept c.

ENTITY(c) [σ|s0, δ, b0|β, A] [σ|s0, δ, c|β, A ∪ relations(c)] a special form of CONFIRM that derives
the first element into an entity and builds
the internal entity AMR fragment.

NEW(c) [σ|s0, δ, b0|β, A] [σ|s0, δ, c|b0|β, A] generates a new concept c and pushes it
to the front of the buffer.

LEFT(r) [σ|s0, δ, b0|β, A] [σ|s0, δ, b0|β, A ∪ {s0
r←− b0}] links a relation r between the top

concepts on the stack and the buffer.RIGHT(r) [σ|s0, δ, b0|β, A] [σ|s0, δ, b0|β, A ∪ {s0
r−→ b0}]

CACHE [σ|s0, δ, b0|β, A] [σ, s0|δ, b0|β, A] passes the top concept of the stack onto
the deque.

SHIFT [σ|s0, δ, b0|β, A] [σ|s0|δ|b0, [], β, A] shifts the first concept of the buffer onto
the stack along with those on the deque.

REDUCE [σ|s0, δ, b0|β, A] [σ, δ, b0|β, A] pops the top concept of the stack.

Table 2: The transition system. The letters in monospace font represent the concepts, the italic letters represent
the word, and the letters in normal font are either concepts or words.

Their work presented the possibility for the oracle
parser, but their oracle parser was not touched ex-
plicitly. What’s more, in the non-projective depen-
dency parsing, Choi and McCallum (2013)’s ex-
tension to the list-based system (Nivre, 2008) with
caching mechanism achieves expected linear time
complexity and requires fewer actions to parse a
non-projective tree than the swap-based system.
Their extension to transition-based AMR parsing
is worth studying.

In this paper, we propose to extend Choi and
McCallum (2013)’s transition system to AMR
parsing and present the corresponding oracle
parser. The oracle parser is used for tuning our
aligner and training our parser. We also present
a comprehensive comparison of our system with
that of Ballesteros and Al-Onaizan (2017) in Sec-
tion 6.3.

4.1 List-based Extension for AMR Parsing

We follow Choi and McCallum (2013) and de-
fine a state in our transition system as a quadruple
s = (σ, δ, β,A), where σ is a stack holding pro-
cessed words, δ is a deque holding words popped
out of σ that will be pushed back in the future, and
β is a buffer holding unprocessed words. A is a
set of labeled relations. A set of actions is defined
to parse sentence into AMR graph. Table 2 gives
a formal illustration of these actions and how they
work. The first five actions in Table 2 are our ex-

tended actions, and they are used to deriving con-
cepts from the input sentence.

4.2 Oracle Parser
Given an alignment and the gold standard AMR
graph, we can build the best AMR graph by re-
peatedly applying one of these actions and this is
what we called oracle parser. Before running the
oracle parser, we first remove the concepts which
aren’t aligned with any span of words from the
AMR graph. During running the oracle parser,
for a state s = (σ|s0, δ, b0|b1|β, A), our oracle
parser decides which action to apply by checking
the following conditions one by one.

1. If b0 is a word and it doesn’t align to any con-
cept, perform DROP.

2. If b1 is within a span in the alignment, per-
form MERGE.

3. If b0 is a word or span and it only aligns to
one entity concept c, perform ENTITY(c).

4. If b0 is a word or span and it aligns to one or
more concepts, perform CONFIRM(c) where
c is the concept b0 aligns and has the longest
graph distance to the root.

5. If b0 is a concept and its head concept c has
the same alignment as b0, perform NEW(c).

6. If b0 is a concept and there is an unprocessed
edge r between s0 and t0, perform LEFT(r)
or RIGHT(r) according to r’s direction.

2427

AlignerTraining
Data

...

a1

an

Oracle

g1

...

gn

Eval.

s1

...

sn

highest-scored, pick

Figure 2: The workflow of tuning the aligner with the
oracle parser. ai denotes the i-th alignment, gi denotes
the i-th AMR graph, and si denotes the score of the i-th
AMR graph.

7. If s0 has unprocessed edge, perform CACHE.

8. If s0 doesn’t have unprocessed edge, perform
REDUCE.

9. perform SHIFT.

We test our oracle parser on the hand-align data
created by Flanigan et al. (2014) and it achieves
97.4 Smatch F1 score.7 Besides the errors re-
sulted from incorrect manual alignments, entity er-
rors made by the limitation of our ENTITY(c) ac-
tion count a lot. Since our ENTITY action directly
converts the surface form of a word span into an
entity. It cannot correctly generate entity names
when they require derivation,8 or where tokeniza-
tion errors exist.9

4.3 Tune the Aligner with Oracle Parser
Using our oracle parser, we tune the aligner by
picking the alignment which leads to the highest-
scored AMR graph from the set of candidates (see
Figure 2 for the workflow). When more than one
alignment achieve the highest score, we choose
the one with the smallest number of actions. In-
tuitively, choosing the one with the smallest num-
ber of actions will encourage structurally coherent
alignment10 because coherent alignment requires
fewer CACHE actions.

4.4 Parsing Model
Based on our aligner and transition system, we
propose a transition-based parser which parse the

7 Since some alignments in hand-align were created on
incorrect AMR annotations, we filter out them and only use
the correct subset which has 136 pairs of alignment and AMR
graph. This data is also used in our intrinsic evaluation.

8e.g., “North Koreans” cannot be parsed into (name
:op1 "North" :op2 "Korea")

9e.g., “Wi Sung - lac” cannot be parsed into (name
:op1 "Wi" :op2 "Sung-lac")

10e.g. the first “nuclear” aligned to nucleus˜1 in Fig. 1

raw sentence directly into its AMR graph. In
this paper, we follow Ballesteros and Al-Onaizan
(2017) and use StackLSTM (Dyer et al., 2015) to
model the states. The score of a transition action a
on state s is calculated as

p(a|s) = exp{ga · STACKLSTM(s) + ba}∑
a′ exp{ga′ · STACKLSTM(s) + ba′}

,

where STACKLSTM(s) encodes the state s into a
vector and ga is the embedding vector of action a.
We encourage the reader to refer Ballesteros and
Al-Onaizan (2017) for more details.

Ensemble. Ensemble has been shown as an ef-
fective way of improving the neural model’s per-
formance (He et al., 2017). Since the transition-
based parser directly parse a sentence into its
AMR graph, ensemble of several parsers is easier
compared to the two-staged AMR parsers. In this
paper, we ensemble the parsers trained with dif-
ferent initialization by averaging their probability
distribution over the actions.

5 Alignment Experiments

5.1 Settings
We evaluate our aligner on the LDC2014T12
dataset. Two kinds of evaluations are carried out
including the intrinsic and extrinsic evaluations.

For the intrinsic evaluation, we follow Flanigan
et al. (2014) and evaluate the F1 score of the align-
ments produced by our aligner against the man-
ually aligned data created in their work (hand-
align). We also use our oracle parser’s perfor-
mance as an intrinsic evaluation assuming that bet-
ter alignment leads to higher scored oracle parser.

For the extrinsic evaluation, we plug our align-
ment into two open-sourced AMR parsers: 1)
JAMR (Flanigan et al., 2014, 2016) and 2) CAMR
(Wang et al., 2015b,a) and evaluate the final
performances of the AMR parsers on both the
newswire proportion and the entire dataset of
LDC2014T12. We use the configuration in Flani-
gan et al. (2016) for JAMR and the configuration
in Wang et al. (2015a) without semantic role label-
ing (SRL) features for CAMR.

5.2 Results
Intrinsic Evaluation. Table 3 shows the intrin-
sic evaluation results, in which our alignment in-
trinsically outperforms JAMR aligner by achiev-
ing better alignment F1 score and leading to a
higher scored oracle parser.

~

2428

Aligner Alignment F1 Oracle’s Smatch
(on hand-align) (on dev. dataset)

JAMR 90.6 91.7
Our 95.2 94.7

Table 3: The intrinsic evaluation results.

model newswire all
JAMR parser: Word, POS, NER, DEP

+ JAMR aligner 71.3 65.9
+ Our aligner 73.1 67.6

CAMR parser: Word, POS, NER, DEP
+ JAMR aligner 68.4 64.6
+ Our aligner 68.8 65.1

Table 4: The parsing results.

Extrinsic Evaluation. Table 4 shows the results.
From this table, we can see that our alignment con-
sistently improves all the parsers by a margin rang-
ing from 0.5 to 1.7. Both the intrinsic and the
extrinsic evaluations show the effectiveness our
aligner.

5.3 Ablation
To have a better understanding of our aligner, we
conduct ablation test by removing the semantic
matching and oracle parser tuning respectively
and retrain the JAMR parser on the newswire pro-
portion. The results are shown in Table 5. From
this table, we can see that removing either of these
components harms the performance. Removing
oracle parser tuning leads to severe performance
drop and the score is even lower than that with
JAMR aligner. We address this observation to
that alignment noise is introduced by the semantic
matching especially by the word embedding sim-
ilarity component. Without filtering the noise by
our oracle parser, just introducing more matching
rules will harm the performance.

6 Parsing Experiments

6.1 Settings
We use the same settings in our aligner extrinsic
evaluation for the experiments on our transition-
based parser. For the input to the parser, we tried
two settings: 1) using only words as input, and
2) using words and POS tags as input. Auto-
matic POS tags are assigned with Stanford POS
tagger (Manning et al., 2014). Word embedding
from Ling et al. (2015) is used in the same way
with Ballesteros and Al-Onaizan (2017). To opt

model newswire
JAMR parser + Our aligner 73.1

- Semantic matching 72.7
- Oracle Parser Tuning 67.6

JAMR parser + JAMR aligner 71.3

Table 5: The ablation test results.

out the effect of different initialization in training
the neural network, we run 10 differently seeded
runs and report their average performance follow-
ing Reimers and Gurevych (2017).

6.2 Results

Table 6 shows the performance of our transition-
based parser along with comparison to the parsers
in the previous works. When compared with our
transition-based counterpart (Ballesteros and Al-
Onaizan, 2017), our word-only model outperforms
theirs using the same JAMR alignment. The same
trend is witnessed using words and POS tags as
input. When replacing the JAMR alignments with
ours, the parsing performances are improved in the
same way as in Table 4, which further confirms the
effectiveness of our aligner.

The second block in Table 6 shows the results
of our ensemble parser, in which ensemble signifi-
cantly improves the performance and more parsers
ensembled, more improvements are achieved. An
ensemble of 10 parsers with only words as input
achieves 68.1 Smatch F1 score which is compara-
ble to the AMR parser of Wang and Xue (2017).
Using the minimal amount of additional syntactic
information – POS tags, the performance of the
ensemble of 10 parsers is further pushed to 68.4,
which surpasses that of Wang and Xue (2017)
which relied on named entity recognition (NER)
and dependency parsing (DEP).

A further study on the speed shows that our 10
parser ensemble can parse 43 tokens per second
which is faster than JAMR (7 tokens/sec.) and
CAMR (24 tokens/sec.) thanks to the simplicity
of our model and independence of preprocessing,
like NER and DEP.11

6.3 Comparison to Ballesteros and
Al-Onaizan (2017)

To explain the improved performance against
Ballesteros and Al-Onaizan (2017) in Table 6, we

11In our speed comparison, we also count the time of pre-
processing for JAMR and CAMR. All the comparison is per-
formed in the same single-threaded settings.

2429

model newswire all
Our single parser: Word only

+ JAMR aligner 68.6 63.9
+ Our aligner 69.3 64.7

Our single parser: Word, POS
+ JAMR aligner 68.8 64.6
+ Our aligner 69.8 65.2

Our ensemble: Word only + Our aligner
x3 71.9 67.4
x10 72.5 68.1

Our ensemble: Word, POS + Our aligner
x3 72.5 67.7
x10 73.3 68.4

BA17: Word only† 68 63
+ POS 68 63
+ POS, DEP 69 64

Damonte et al. (2017)‡ - 66
Artzi et al. (2015) 66.3 -
Wang et al. (2015a) 70 66
Pust et al. (2015) - 67.1
Zhou et al. (2016) 71 66
Goodman et al. (2016) 70 -
Wang and Xue (2017) - 68.1

Table 6: The parsing results. xn denotes the ensem-
ble of n differently initialized parsers. The differ-
ence in rounding is due to previous works report dif-
ferently rounded results. † BA17 represents the re-
sult of Ballesteros and Al-Onaizan (2017), ‡ Damonte
et al. (2017)’s result is drawn from Ballesteros and Al-
Onaizan (2017).

give a comprehensive comparison between our
transition system and that of Ballesteros and Al-
Onaizan (2017).

Capability. In both these two systems, a span of
words can only be derived into concept for one
time. “Patch” actions are required to generate new
concepts from the one that is aligned to the same
span.12 Ballesteros and Al-Onaizan (2017) uses
a DEPENDENT action to generate one tail concept
for one hop and cannot deal with the cases which
have a chain of more than two concepts aligned to
the same span. Our list-based system differs theirs
by using a NEW action to deal these cases. Since
the new concept is pushed onto the buffer, NEW

action can be repeatedly applied and used to gen-
erate arbitrary concepts that aligned to the same

12 e.g., three concepts in the fragment (person
:source (country :name (name :op1
"North" :op2 "Korea"))) are aligned to “North
Koreans”.

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

50

100

150

200

250

0 10 20 30 40 50

of tokens

#
 o

f
a

c
ti
o

n
s

● BA17

Ours

Figure 3: Number of actions required to parse the de-
velopment set by two systems.

span. On the development set of LDC2014T12,
our oracle achieves 91.7 Smatch F1 score over the
JAMR alignment, which outperforms Ballesteros
and Al-Onaizan (2017)’s oracle (89.5 in their pa-
per) on the same alignment. This result confirms
that our list-based system is more powerful.

Number of Actions. Our list-based system also
differs theirs in the number of oracle actions re-
quired to parse the same AMR graphs. We use
the oracles from two systems to parse the devel-
opment set of LDC2014T12 on the same JAMR
alignments. Figure 3 shows the comparison in
which our system clearly uses fewer actions (the
average number of our system is 63.7 and that of
Ballesteros and Al-Onaizan (2017) is 86.4). Us-
ing fewer actions makes the parser learned from
the oracle less prone to error propagation. We at-
tribute the improved performance in Table 6 to this
advantage of transition system.

7 Conclusion

In this paper, we propose a new AMR aligner
which is tuned by a novel transition-based AMR
oracle parser. Our aligner is also enhanced by
rich semantic resource and recalls more align-
ments. Both the intrinsic and extrinsic evaluations
show the effectiveness of our aligner by achiev-
ing higher alignment F1 score and consistently im-
proving two open-sourced AMR parsers. We also
develop transition-based AMR parser based on our
aligner and transition system and it achieves a per-
formance of 68.4 Smatch F1 score via ensemble
with only words and POS tags as input.

Acknowledgments

We thank the anonymous reviewers for their help-
ful comments and suggestions. This work was

2430

supported by the National Key Basic Research
Program of China via grant 2014CB340503 and
the National Natural Science Foundation of China
(NSFC) via grant 61632011 and 61772153.

References
Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.

Broad-coverage CCG semantic parsing with AMR.
In Proc. of EMNLP.

Miguel Ballesteros and Yaser Al-Onaizan. 2017. AMR
parsing using Stack-LSTMs. In Proc. of EMNLP.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proc. of the 7th Linguistic An-
notation Workshop and Interoperability with Dis-
course.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Proc.
of ACL.

Jinho D. Choi and Andrew McCallum. 2013.
Transition-based dependency parsing with selec-
tional branching. In Proc. of ACL.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for abstract meaning
representation. In Proc. of EACL.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proc. of ACL.

Christiane Fellbaum, Anne Osherson, and Peter E.
Clark. 2009. Putting semantics into WordNet’s
“morphosemantic” links. In Human Language Tech-
nology. Challenges of the Information Society.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016. CMU at SemEval-2016 task
8: Graph-based AMR parsing with infinite ramp
loss. In Proc. of the 10th International Workshop
on Semantic Evaluation (SemEval-2016).

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. In Proc. of ACL.

William Foland and James H. Martin. 2017. Abstract
meaning representation parsing using LSTM recur-
rent neural networks. In Proc. of ACL.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. Noise reduction and targeted explo-
ration in imitation learning for abstract meaning rep-
resentation parsing. In Proc. of ACL.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and whats next. In Proc. of ACL.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gen-
eration. In Proc. of ACL.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proc. of NAACL.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In ACL System Demon-
strations.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4).

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for amr parsing. In Proc. of
CoNLL.

Xiaochang Peng, Chuan Wang, Daniel Gildea, and Ni-
anwen Xue. 2017. Addressing the data sparsity is-
sue in neural amr parsing. In Proc. of EACL.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proc. of EMNLP.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning english strings with
abstract meaning representation graphs. In Proc. of
EMNLP.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing English
into abstract meaning representation using syntax-
based machine translation. In Proc. of EMNLP.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of LSTM-networks for sequence tagging. In
Proc. of EMNLP.

Chuan Wang and Nianwen Xue. 2017. Getting the
most out of amr parsing. In Proc. of EMNLP.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015a. Boosting transition-based AMR parsing
with refined actions and auxiliary analyzers. In
Proc. of ACL.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015b. A transition-based algorithm for amr pars-
ing. In Proc. of NAACL.

Junsheng Zhou, Feiyu Xu, Hans Uszkoreit, Weiguang
QU, Ran Li, and Yanhui Gu. 2016. AMR pars-
ing with an incremental joint model. In Proc. of
EMNLP.

