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Abstract

We propose a fast and scalable method for
semi-supervised learning of sequence models,
based on anchor words and moment matching.
Our method can handle hidden Markov mod-
els with feature-based log-linear emissions.
Unlike other semi-supervised methods, no de-
coding passes are necessary on the unlabeled
data and no graph needs to be constructed—
only one pass is necessary to collect moment
statistics. The model parameters are estimated
by solving a small quadratic program for each
feature. Experiments on part-of-speech (POS)
tagging for Twitter and for a low-resource lan-
guage (Malagasy) show that our method can
learn from very few annotated sentences.

1 Introduction

Statistical learning of NLP models is often lim-
ited by the scarcity of annotated data. Weakly su-
pervised methods have been proposed as an alter-
native to laborious manual annotation, combining
large amounts of unlabeled data with limited re-
sources, such as tag dictionaries or small annotated
datasets (Merialdo, 1994; Smith and Eisner, 2005;
Garrette et al., 2013). Unfortunately, most semi-
supervised learning algorithms for the structured
problems found in NLP are computationally expen-
sive, requiring multiple decoding passes through the
unlabeled data, or expensive similarity graphs. More
scalable learning algorithms are in demand.

In this paper, we propose a moment-matching
method for semi-supervised learning of sequence
models. Spectral learning and moment-matching
approaches have recently proved a viable alternative

to expectation-maximization (EM) for unsupervised
learning (Hsu et al., 2012; Balle and Mohri, 2012;
Bailly et al., 2013), supervised learning with latent
variables (Cohen and Collins, 2014; Quattoni et al.,
2014; Stratos et al., 2013) and topic modeling (Arora
et al., 2013; Nguyen et al., 2015). These methods
have learnability guarantees, do not suffer from lo-
cal optima, and are computationally less demanding.

Unlike spectral methods, ours does not require an
orthogonal decomposition of any matrix or tensor.
Instead, it considers a more restricted form of super-
vision: words that have unambiguous annotations,
so-called anchor words (Arora et al., 2013). Rather
than identifying anchor words from unlabeled data
(Stratos et al., 2016), we extract them from a small
labeled dataset or from a dictionary. Given the an-
chor words, the estimation of the model parameters
can be made efficient by collecting moment statistics
from unlabeled data, then solving a small quadratic
program for each word.

Our contributions are as follows:

• We adapt anchor methods to semi-supervised
learning of generative sequence models.

• We show how our method can also handle log-
linear feature-based emissions.

• We apply this model to POS tagging. Our ex-
periments on the Twitter dataset introduced by
Gimpel et al. (2011) and on the dataset in-
troduced by Garrette et al. (2013) for Mala-
gasy, a low-resource language, show that our
method does particularly well with very little la-
beled data, outperforming semi-supervised EM
and self-training.
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2 Sequence Labeling

In this paper, we address the problem of sequence
labeling. Let x1:L = 〈x1, . . . , xL〉 be a sequence of
L input observations (for example, words in a sen-
tence). The goal is to predict a sequence of labels
h1:L = 〈h1, . . . , hL〉, where each hi is a label for the
observation xi (for example, the word’s POS tag).

We start by describing two generative sequence
models: hidden Markov models (HMMs, §2.1), and
their generalization with emission features (§2.2).
Later, we propose a weakly-supervised method for
estimating these models’ parameters (§3–§4) based
only on observed statistics of words and contexts.

2.1 Hidden Markov Models

We define random variables X := 〈X1, . . . , XL〉
andH := 〈H1, . . . ,HL〉, corresponding to observa-
tions and labels, respectively. Each Xi is a random
variable over a set X (the vocabulary), and each Hi

ranges over H (a finite set of “states” or “labels”).
We denote the vocabulary size by V = |X |, and the
number of labels by K = |H|. A first-order HMM
has the following generative scheme:

p(X = x1:L,H = h1:L) := (1)
L∏

`=1

p(X`=x` | H`=h`)
L∏
`=0

p(H`+1=h`+1 | H`=h`),

where we have defined h0 = START and hL+1 =
STOP. We adopt the following notation for the pa-
rameters:

• The emission matrix O ∈ RV×K , defined as
Ox,h := p(X` = x | H` = h), ∀h ∈ H, x ∈ X .

• The transition matrix T ∈ R(K+2)×(K+2), de-
fined as Th,h′ := p(H`+1 = h | H` = h′), for
every h, h′ ∈ H ∪ {START, STOP}. This matrix
satisfies T>1 = 1.1

Throughout the rest of the paper we will adopt
X ≡ X` and H ≡ H` to simplify notation, when-
ever the index ` is clear from the context. Under
this generative process, predicting the most proba-
ble label sequence h1:L given observations x1:L is

1That is, it satisfies
∑K

h=1 p(H`+1 = h | H` = h′) +

p(H`+1 = STOP | H` = h′) = 1; and also
∑K

h=1 p(H1 =
h | H0 = START) = 1.

accomplished with the Viterbi algorithm inO(LK2)
time.

If labeled data are available, the model param-
eters O and T can be estimated with the maxi-
mum likelihood principle, which boils down to a
simple counting of events and normalization. If
we only have unlabeled data, the traditional ap-
proach is the expectation-maximization (EM) algo-
rithm, which alternately decodes the unlabeled ex-
amples and updates the model parameters, requiring
multiple passes over the data. The same algorithm
can be used in semi-supervised learning when la-
beled and unlabeled data are combined, by initial-
izing the model parameters with the supervised esti-
mates and interpolating the estimates in the M-step.

2.2 Feature-Based Hidden Markov Models
Sequence models with log-linear emissions have
been considered by Smith and Eisner (2005), in a
discriminative setting, and by Berg-Kirkpatrick et
al. (2010), as generative models for POS induc-
tion. Feature-based HMMs (FHMMs) define a fea-
ture function for words, φ(X) ∈ RW , which can be
discrete or continuous. This allows, for example, to
indicate whether an observation, corresponding to a
word, starts with an uppercase letter, contains digits
or has specific affixes. More generally, it helps with
the treatment of out-of-vocabulary words. The emis-
sion probabilities are modeled as K conditional dis-
tributions parametrized by a log-linear model, where
the θh ∈ RW represent feature weights:

p(X = x | H = h) := exp(θ>hφ(x))/Z(θh). (2)

Above, Z(θh) :=
∑

x′∈X exp(θ>hφ(x′)) is a nor-
malization factor. We will show in §4 how our
moment-based semi-supervised method can also be
used to learn the feature weights θh.

3 Semi-Supervised Learning via Moments

We now describe our moment-based semi-
supervised learning method for HMMs. Through-
out, we assume the availability of a small labeled
dataset DL and a large unlabeled dataset DU .

The full roadmap of our method is shown as Al-
gorithm 1. Key to our method is the decomposition
of a context-word moment matrix Q ∈ RC×V ,
which counts co-occurrences of words and contexts,

288



Algorithm 1 Semi-Supervised Learning of HMMs with
Moments
Input: Labeled dataset DL, unlabeled dataset DU

Output: Estimates of emissions O and transitions T
1: Estimate context-word moments Q̂ from DU (Eq. 5)
2: for each label h ∈ H do
3: Extract set of anchor words A(h) from DL (§3.2)
4: end for
5: Estimate context-label moments R̂ from anchors and
DU (Eq. 12)

6: for each word w ∈ [V ] do
7: Solve the QP in Eq. 14 to obtain γw from Q̂, R̂
8: end for
9: Estimate emissions O from Γ via Eq. 15

10: Estimate transitions T from DL

11: Return 〈O,T〉

Figure 1: HMM, context (green) conditionally indepen-
dent of present (red) w` given state h`.

and will be formally defined in §3.1. Such co-
occurrence matrices are often collected in NLP, for
various problems, ranging from dimensionality re-
duction of documents using latent semantic index-
ing (Deerwester et al., 1990; Landauer et al., 1998),
distributional semantics (Schütze, 1998; Levy et al.,
2015) and word embedding generation (Dhillon et
al., 2015; Osborne et al., 2016). We can build such a
moment matrix entirely from the unlabeled dataDU .
The same unlabeled data is used to build an estimate
of a context-label moment matrix R ∈ RC×K , as
explained in §3.3. This is done by first identifying
words that are unambiguously associated with each
label h, called anchor words, with the aid of a few
labeled data; this is outlined in §3.2. Finally, given
empirical estimates of Q and R, we estimate the
emission matrix O by solving a small optimization
problem independently per word (§3.4). The transi-
tion matrix T is obtained directly from the labeled
dataset DL by maximizing the likelihood.

3.1 Moments of Contexts and Words
To formalize the notion of “context,” we introduce
the shorthand Z` := 〈X1:(`−1),X(`+1):L〉. Impor-
tantly, the HMM in Eq. 1 entails the following con-
ditional independence assumption: X` is condition-
ally independent of the surrounding contextZ` given
the hidden state H`. This is illustrated in Figure 1,
using POS tagging as an example task.

We introduce a vector of context features
ψ(Z`) ∈ RC , which may look arbitrarily within
the context Z` (left or right), but not at X` itself.
These features could be “one-hot” representations
or other reduced-dimensionality embeddings (as de-
scribed later in §5). Consider the word w ∈ X an
instance of X ≡ X`. A pivotal matrix in our formu-
lation is the matrix Q ∈ RC×V , defined as:

Qc,w := E[ψc(Z) | X = w]. (3)

Expectations here are taken with respect to the prob-
abilistic model in Eq. 1 that generates the data. The
following quantities will also be necessary:

qc := E[ψc(Z)], pw := p(X = w). (4)

Since all the variables in Eqs. 3–4 are observed, we
can easily obtain empirical estimates by taking ex-
pectations over the unlabeled data:

Q̂c,w =

∑
x,z∈DU

ψc(z)1(x = w)∑
x,z∈DU

1(x = w)
, (5)

q̂c =
∑

x,z∈DU
ψc(z)

/
|DU |, (6)

p̂w =
∑

x,z∈DU
1(x = w)

/
|DU |. (7)

where we take 1(x = w) to be the indicator for word
w. Note that, under our modeling assumptions, Q
decomposes in terms of its hidden states:

E[ψc(Z) | X = w] = (8)
∑

h∈H
p(H = h | X = w)E[ψc(Z) | H = h]

The reason why this holds is that, as stated above,Z
and X are conditionally independent given H .

3.2 Anchor Words
Following Arora et al. (2013) and Cohen and Collins
(2014), we identify anchor words whose hidden
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state is assumed to be deterministic, regardless of
context. In this work, we generalize this notion to
more than one anchor word per label, for improved
context estimates. This allows for more flexible
forms of anchors with weak supervision. For each
state h ∈ H, let its set of anchor words be

A(h)= {w ∈ X : p(H = h | X = w) = 1} (9)

=
{
w ∈ X : Ow,h>0 ∧Ow,h′=0, ∀h′ 6=h

}
.

That is, A(h) is the set of unambiguous words that
always take the label h. This can be estimated from
the labeled dataset DL by collecting the most fre-
quent unambiguous words for each label.

Algorithms for identifying A(h) from unlabeled
data alone were proposed by Arora et al. (2013) and
Zhou et al. (2014), with application to topic models.
Our work differs in which we do not aim to discover
anchor words from pure unlabeled data, but rather
exploit the fact that small amounts of labeled data
are commonly available in many NLP tasks—better
anchors can be extracted easily from such small la-
beled datasets. In §5 we give a more detailed de-
scription of the selection process.

3.3 Moments of Contexts and Labels

We define the matrix R ∈ RC×K as follows:

Rc,h := E[ψc(Z) | H = h]. (10)

Since the expectation in Eq. 10 is conditioned on the
(unobserved) label h, we cannot directly estimate it
using moments of observed variables, as we do for
Q. However, if we have identified sets of anchor
words for each label h ∈ H, we have:

E[ψc(Z) | X ∈ A(h)] =

=
∑

h′
E[ψc(Z) | H = h′] p(H = h′ | X ∈ A(h))︸ ︷︷ ︸

=1(h′=h)

= Rc,h. (11)

Therefore, given the set of anchor words A(h), the
hth column of R can be estimated in a single pass
over the unlabeled data, as follows:

R̂c,h =

∑
x,z∈DU

ψc(z)1(x ∈ A(h))∑
x,z∈DU

1(x ∈ A(h))
(12)

3.4 Emission Distributions
We can now put all the ingredients above together
to estimate the emission probability matrix O. The
procedure we propose here is computationally very
efficient, since only one pass is required over the un-
labeled data, to collect the co-occurrence statistics Q̂
and R̂. The emissions will be estimated from these
moments by solving a small problem independently
for each word. Unlike EM and self-training, no de-
coding is necessary, only counting and normalizing;
and unlike label propagation methods, there is re-
quirement to build a graph with the unlabeled data.

The crux of our method is the decomposition in
Eq. 8, which is combined with the one-to-one cor-
respondence between labels h and anchor words
A(h). We can rewrite Eq. 8 as:

Qc,w =
∑

h

Rc,h p(H = h | X = w). (13)

In matrix notation, we have Q = RΓ, where Γ ∈
RK×V is defined as Γh,w := p(H = h | X = w).

If we had infinite unlabeled data, our moment es-
timates Q̂ and R̂ would be perfect and we could
solve the system of equations in Eq. 13 to obtain
Γ exactly. Since we have finite data, we resort to
a least squares solution. This corresponds to solv-
ing a simple quadratic program (QP) per word, in-
dependent from all the other words, as follows. De-
note by qw := E[ψ(Z) | X = w] ∈ RC and by
γw := p(H = · | X = w) ∈ RK the wth columns
of Q and Γ, respectively. We estimate the latter dis-
tribution following Arora et al. (2013):

γ̂w = arg min
γw

‖qw −Rγw‖22
s.t. 1>γw = 1, γw ≥ 0.

(14)

Note that this QP is very small—it has only K
variables—hence, we can solve it very quickly (1.7
ms on average, in Gurobi, with K = 12).

Given the probability tables for p(H = h | X =
w), we can estimate the emission probabilities O by
direct application of Bayes rule:

Ôw,h =
p(H = h | X = w)× p(X = w)

p(H = h)
(15)

=
γ̂w,c ×

Eq. 7︷︸︸︷
p̂w∑

w′ γ̂w′,c × p̂w′
. (16)
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These parameters are guaranteed to lie in the prob-
ability simplex, avoiding the need of heuristics for
dealing with “negative” and “unnormalized” prob-
abilities required by prior work in spectral learn-
ing (Cohen et al., 2013).

3.5 Transition Distributions

It remains to estimate the transition matrix T. For
the problems tackled in this paper, the number of
labels K is small, compared to the vocabulary size
V . The transition matrix has only O(K2) degrees of
freedom, and we found it effective to estimate it us-
ing the labeled sequences in DL alone, without any
refinement. This was done by smoothed maximum
likelihood estimation on the labeled data, which
boils down to counting occurrences of consecutive
labels, applying add-one smoothing to avoid zero
probabilities for unobserved transitions, and normal-
izing.

For problems with numerous labels, a possible al-
ternative is the composite likelihood method (Cha-
ganty and Liang, 2014). Given Ô, the maximization
of the composite log-likelihood function leads to a
convex optimization problem that can be efficiently
optimized with an EM algorithm. A similar proce-
dure was carried out by Cohen and Collins (2014).2

4 Feature-Based Emissions

Next, we extend our method to estimate the param-
eters of the FHMM in §2.2. Other than contextual
features ψ(Z) ∈ RC , we also assume a feature
encoding function for words, φ(X) ∈ RW . Our
framework, illustrated in Algorithm 2, allows for
both discrete and continuous word and context fea-
tures. Lines 2–5 are the same as in Algorithm 1,
replacing word occurrences with expected values of
word features (we redefine Q and Γ to cope with
features instead of words). The main difference
with respect to Algorithm 1 is that we do not es-
timate emission probabilities; rather, we first esti-
mate the mean parameters (feature expectations
E[φ(X) | H = h]), by solving one QP for each

2In preliminary experiments, the compositional likelihood
method was not competitive with estimating the transition ma-
trices directly from the labeled data, on the datasets described
in §6; results are omitted due to lack of space. However, this
may be a viable alternative if there is no labeled data and the
anchors are extracted from gazetteers or a dictionary.

Algorithm 2 Semi-Supervised Learning of Feature-
Based HMMs with Moments
Input: Labeled dataset DL, unlabeled dataset DU

Output: Emission log-linear parameters Θ and transi-
tions T

1: Estimate context-word moments Q̂ from DU

(Eq. 20)
2: for each label h ∈ H do
3: Extract set of anchor words A(h) from DL (§3.2)
4: end for
5: Estimate context-label moments R̂ from the anchors

and DU (Eq. 12)
6: for each word feature j ∈ [W ] do
7: Solve the QP in Eq. 22 to obtain γj from Q̂, R̂
8: end for
9: for each label h ∈ H do

10: Estimate the mean parameters µh from Γ (Eq. 24)
11: Estimate the canonical parameters θh from µh by

solving Eq. 25
12: end for
13: Estimate transitions T from DL

14: Return 〈Θ,T〉

emission feature; and then we solve a convex op-
timization problem, for each label h, to recover
the log-linear weights over emission features (called
canonical parameters).

4.1 Estimation of Mean Parameters
First of all, we replace word probabilities by expec-
tations over word features. We redefine the matrix
Γ ∈ RK×W as follows:

Γh,j :=
p(H = h)× E[φj(X) | H = h]

E[φj(X)]
. (17)

Note that, with one-hot word features, we have
E[φw(X) | H = h] = P (X = w | H = h),
E[φw(X)] = p(X = w), and therefore Γh,w =
p(H = h | X = w), so this can be regarded as a
generalization of the framework in §3.4.

Second, we redefine the context-word moment
matrix Q as the following matrix in RC×W :

Qc,j = E [ψc(Z)× φj(X)]/E[φj(X)]. (18)

Again, note that we recover the previous Q if we use
one-hot word features. We then have the following
generalization of Eq. 13:

E [ψc(Z)× φj(X)]/E[φj(X)] = (19)
∑

h E [ψc(Z) | H = h]
P (H=h)E[φj(X)|H=h]

E[φj(X)] ,
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or, in matrix notation, Q = RΓ.
Again, matrices Q and R can be estimated from

data by collecting empirical feature expectations
over unlabeled sequences of observations. For R
use Eq. 12 with no change; for Q replace Eq. 5 by

Q̂c,j =
∑

x,z∈DU
ψc(z)φj(x)

/∑
x,z∈DU

φj(x). (20)

Let qj ∈ RC and γj ∈ RK be columns of Q̂ and Γ̂,
respectively. Note that we must have

1>γj =
∑

h

P (H=h)E[φj(X)|H=h]
E[φj(X)] = 1, (21)

since E[φj(X)] =
∑

h P (H =
h)E [φj(X) | H = h]. We rewrite the QP to
minimize the squared difference for each dimension
j independently:

γ̂j = arg min
γj

∥∥qj −Rγj
∥∥2

2
s.t. 1>γj = 1.

(22)
Note that, if φ(x) ≥ 0 for all x ∈ X , then we must
have γj ≥ 0, and therefore we may impose this in-
equality as an additional constraint.

Let γ̄ ∈ RK be the vector of state probabilities,
with entries γ̄h := p(H = h) for h ∈ H. This vec-
tor can also be recovered from the unlabeled dataset
and the set of anchors, by solving another QP that
aggregates information for all words:

γ̄ = arg min
γ̄
‖q̄ −Rγ̄‖22 s.t. 1>γ̄ = 1, γ̄ ≥ 0.

(23)
where q̄ := Ê[ψ(Z)] ∈ RC is the vector whose
entries are defined in Eq. 6.

Let µh := E[φ(X) | H = h] ∈ RW be the
mean parameters of the distribution for each state h.
These parameters are computed by solving W inde-
pendent QPs (Eq. 22), yielding the matrix Γ defined
in Eq. 17, and then applying the formula:

µh,j = Γj,h × E[φj(X)]/ γ̄h, (24)

with γ̄h = p(H = h) estimated as in Eq. 23.

4.2 Estimation of Canonical Parameters
To compute a mapping from mean parameters µh
to canonical parameters θh, we use the well-known
Fenchel-Legendre duality between the entropy and
the log-partition function (Wainwright and Jordan,

2008). Namely, we need to solve the following con-
vex optimization problem:

θ̂h = arg max
θh

θ>hµh − logZ(θh) + ε‖θh‖, (25)

where ε is a regularization constant.3 In practice,
this regularization is important, since it prevents θh
from growing unbounded whenever µh falls outside
the marginal polytope of possible mean parameters.
We solve Eq. 25 with the limited-memory BFGS al-
gorithm (Liu and Nocedal, 1989).

5 Method Improvements

In this section we detail three improvements to our
moment-based method that had a practical impact.

Supervised Regularization. We add a supervised
penalty term to Eq. 22 to keep the label posteriors γj
close to the label posteriors estimated in the labeled
set, γ ′j , for every feature j ∈ [W ]. The regularized
least-squares problem becomes:

min
γj

(1− λ)‖qj −Rγj‖2 + λ‖γj−γ ′j‖2

s.t. 1>γj = 1. (26)

CCA Projections. A one-hot feature representa-
tion of words and contexts has the disadvantage that
it grows with the vocabulary size, making the mo-
ment matrix Q too sparse. The number of contex-
tual features and words can grow rapidly on large
text corpora. Similarly to Cohen and Collins (2014)
and Dhillon et al. (2015), we use canonical correla-
tion analysis (CCA) to reduce the dimension of these
vectors. We use CCA to form low-dimensional pro-
jection matrices for features of words PW ∈ RW×D
and features of contexts PC ∈ RC×D, with D �
min{W,C}. We use these projections on the origi-
nal feature vectors and replace the these vectors with
their projections.

Selecting Anchors. We collect counts of each
word-label pair, and select up to 500 anchors with
high conditional probability on the anchoring state
p̂(h | w). We tuned the probability threshold to

3As shown by Xiaojin Zhu (1999) and Yasemin Altun
(2006), this regularization is equivalent, in the dual, to a “soft”
constraint ‖Eθh [φ(X) | H = h]− µh‖2 ≤ ε, as opposed to a
strict equality.
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select the anchors on the validation set, using steps
of 0.1 in the unit interval, and making sure that all
tags have at least one anchor. We also considered
a frequency threshold, constraining anchors to oc-
cur more than 500 times in the unlabeled corpus,
and four times in the labeled corpus. Note that
past work used a single anchor word per state (i.e.,
|A(h)| = 1). We found that much better results are
obtained when |A(h)| � 1, as choosing more an-
chors increases the number of samples used to esti-
mate the context-label moment matrix R̂, reducing
noise.

6 Experiments

We evaluated our method on two tasks: POS tagging
of Twitter text (in English), and POS tagging for a
low-resource language (Malagasy). For all the ex-
periments, we used the universal POS tagset (Petrov
et al., 2012), which consists of K = 12 tags.
We compared our method against supervised base-
lines (HMM and FHMM), which use the labeled
data only, and two semi-supervised baselines that
exploit the unlabeled data: self-training and EM.
For the Twitter experiments, we also evaluated a
stacked architecture in which we derived features
from our model’s predictions to improve a state-of-
the-art POS tagger (MEMM).4

6.1 Twitter POS Tagging

For the Twitter experiment, we used the Oct27
dataset of Gimpel et al. (2011), with the provided
partitions (1,000 tweets for training and 328 for val-
idation), and tested on the Daily547 dataset (547
tweets). Anchor words were selected from the train-
ing partition as described in §5. We used 2.7M
unlabeled tweets (O’Connor et al., 2010) to train
the semi-supervised methods, filtering the English
tweets as in Lui and Baldwin (2012), tokenizing
them as in Owoputi et al. (2013), and normalizing
at-mentions, URLs, and emoticons.

We used as word features φ(X) the word iself,
as well as binary features for capitalization, titles,
and digits (Berg-Kirkpatrick et al., 2010), the word
shape, and the Unicode class of each character. Sim-
ilarly to Owoputi et al. (2013), we also used suf-
fixes and prefixes (up to length 3), and Twitter-

4http://www.ark.cs.cmu.edu/TweetNLP/
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Figure 2: POS tagging accuracy in the Twitter data versus
the number of labeled training sequences.

specific features: whether the word starts with @,
#, or http://. As contextual features ψ(Z), we de-
rive analogous features for the preceding and fol-
lowing words, before reducing dimensionality with
CCA. We collect feature expectations for words and
contexts that occur more than 20 times in the un-
labeled corpus. We tuned hyperparameters on the
development set: the supervised interpolation co-
efficient in Eq. 26, λ ∈ {0, 0.1, . . . , 1.0}, and,
for all systems, the regularization coefficient ε ∈
{0.0001, 0.001, 0.01, 0.1, 1, 10}. (Underlines indi-
cate selected values.) The former controls how
much we rely on the supervised vs. unsupervised es-
timates. For λ = 1.0 we used supervised estimates
only for words that occur in the labeled corpus, all
the remaining words rely solely on unsupervised es-
timates.

Varying supervision. Figure 2 compares the
learning curves of our anchor-word method for the
FHMM with the supervised baselines. We show
the performance of the anchor methods without in-
terpolation (λ = 0), and with supervised interpo-
lation coefficient (λ = 1). When the amount of
supervision is small, our method with and without
interpolation outperforms all the supervised base-
lines. This improvement is gradually attenuated
when more labeled sequences are used, with the su-
pervised FHMM catching up when the full labeled
dataset is used. The best model λ = 1.0 relies on
supervised estimates for words that occur in the la-
beled corpus, and on anchor estimates for words that
occur only in the unlabeled corpus. The unregular-
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HMM FHMM
Models / #sequences 150 1000 150 1000
Supervised baseline
HMM 71.7 81.1 81.8 89.1
Semi-supervised baselines
EM 77.2 83.1 81.8 89.1
self-training 78.2 86.1 83.4 89.4
Anchor Models
anchors, λ = 0.0 83.0 85.5 84.1 86.7
anchors, λ = 1.0 84.3 88.0 85.3 89.1

Table 1: Tagging accuracies on Twitter. Shown are
the supervised and semi-supervised baselines, and our
moment-based method, trained with 150 training labeled
sequences, and the full labeled corpus (1000 sequences).

ized model λ = 0.0 relies solely on unsupervised
estimates given the set of anchors.

Semi-supervised comparison. Next, we compare
our method to two other semi-supervised baselines,
using both HMMs and FHMMs: EM and self-
training. EM requires decoding and counting in
multiple passes over the full unlabeled corpus. We
initialized the parameters with the supervised esti-
mates, and selected the iteration with the best ac-
curacy on the development set.5 The self-training
baseline uses the supervised system to tag the unla-
beled data, and then retrains on all the data.

Results are shown in Table 1. We observe that,
for small amounts of labeled data (150 tweets), our
method outperforms all the supervised and semi-
supervised baselines, yielding accuracies 6.1 points
above the best semi-supervised baseline for a simple
HMM, and 1.9 points above for the FHMM. With
more labeled data (1,000 instances), our method out-
performs all the baselines for the HMM, but not with
the more sophisticated FHMM, in which our accura-
cies are 0.3 points below the self-training method.6

These results suggest that our method is more effec-
tive when the amount of labeled data is small.

5The FHMM with EM did not perform better than the su-
pervised baseline, so we consider the initial value as the best
accuracy under this model.

6According to a word-level paired Kolmogorov-Smirnov
test, for the FHMM with 1,000 tweets, the self-training method
outperforms the other methods with statistical significance at
p < 0.01; and for the FHMM with 150 tweets the anchor-based
and self-training methods outperform the other baselines with
the same p-value. Our best HMM outperforms the other base-
lines at a significance level of p < 0.01 for 150 and 1000 se-
quences.

150 1000
MEMM (same+clusters) 89.57 93.36
MEMM (same+clusters+posteriors) 91.14 93.18
MEMM (all+clusters) 91.55 94.17
MEMM (all+clusters+posteriors) 92.06 94.11

Table 2: Tagging accuracy for the MEMM POS tagger of
Owoputi et al. (2013) with additional features from our
model’s posteriors.

Stacking features. We also evaluated a stacked ar-
chitecture in which we use our model’s predictions
as an additional feature to improve the state-of-the-
art Twitter POS tagger of Owoputi et al. (2013). This
system is based on a semi-supervised discriminative
model with Brown cluster features (Brown et al.,
1992). We provide results using their full set of fea-
tures (all), and using the same set of features in our
anchor model (same). We compare tagging accuracy
on a model with these features plus Brown clusters
(+clusters) against a model that also incorporates
the posteriors from the anchor method as an addi-
tional feature in the MEMM (+clusters+posteriors).
The results in Table 2 show that using our model’s
posteriors are beneficial in the small labeled case,
but not if the entire labeled data is used.

Runtime comparison. The training time of an-
chor FHMM is 3.8h (hours), for self-training HMM
10.3h, for EM HMM 14.9h and for Twitter MEMM
(all+clusters) 42h. As such, the anchor method is
much more efficient than all the baselines because
it requires a single pass over the corpus to collect
the moment statistics, followed by the QPs, with-
out the need to decode the unlabeled data. EM and
the Brown clustering method (the latter used to ex-
tract features for the Twitter MEMM) require several
passes over the data; and the self-training method in-
volves decoding the full unlabeled corpus, which is
expensive when the corpus is large. Our analysis
adds to previous evidence that spectral methods are
more scalable than learning algorithms that require
inference (Parikh et al., 2012; Cohen et al., 2013).

6.2 Malagasy POS Tagging

For the Malagasy experiment, we used the small la-
beled dataset from Garrette et al. (2013), which con-
sists of 176 sentences and 4,230 tokens. We also
make use of their tag dictionaries with 2,773 types
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Models Accuracies
supervised FHMM 90.5
EM FHMM 90.5
self-training FHMM 88.7
anchors FHMM (token), λ=1.0 89.4
anchors FHMM (type+token), λ=1.0 90.9

Table 3: Tagging accuracies for the Malagasy dataset.

and 23 tags, and their unlabeled data (43.6K se-
quences, 777K tokens). We converted all the orig-
inal POS tags to universal tags using the mapping
proposed in Garrette et al. (2013).

Table 3 compares our method with semi-
supervised EM and self-training, for the FHMM.We
tested two supervision settings: token only, and
type+token annotations, analogous to Garrette et al.
(2013). The anchor method outperformed the base-
lines when both type and token annotations were
used to build the set of anchor words.7

7 Conclusion

We proposed an efficient semi-supervised sequence
labeling method using a generative log-linear model.
We use contextual information from a set of an-
chor observations to disambiguate state, and build
a weakly supervised method from this set. Our
method outperforms other supervised and semi-
supervised methods, with small supervision in POS-
tagging for Malagasy, a scarcely annotated lan-
guage, and for Twitter. Our anchor method is most
competitive for learning with large amounts of un-
labeled data, under weak supervision, while training
an order of magnitude faster than any of the base-
lines.
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