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Abstract

We present EpiReader, a novel model for ma-
chine comprehension of text. Machine com-
prehension of unstructured, real-world text is a
major research goal for natural language pro-
cessing. Current tests of machine comprehen-
sion pose questions whose answers can be in-
ferred from some supporting text, and evaluate
a model’s response to the questions. EpiReader
is an end-to-end neural model comprising two
components: the first component proposes a
small set of candidate answers after compar-
ing a question to its supporting text, and the
second component formulates hypotheses us-
ing the proposed candidates and the question,
then reranks the hypotheses based on their esti-
mated concordance with the supporting text.
We present experiments demonstrating that
EpiReader sets a new state-of-the-art on the
CNN and Children’s Book Test benchmarks,
outperforming previous neural models by a sig-
nificant margin.

1 Introduction

When humans reason about the world, we tend to for-
mulate a variety of hypotheses and counterfactuals,
then test them in turn by physical or thought exper-
iments. The philosopher Epicurus first formalized
this idea in his Principle of Multiple Explanations: if
several theories are consistent with the observed data,
retain them all until more data is observed. In this pa-
per, we argue that the same principle can be applied
to machine comprehension of natural language. We
propose a deep neural comprehension model, trained
end-to-end, that we call EpiReader.

Comprehension of natural language by machines,
at a near-human level, is a prerequisite for an ex-
tremely broad class of useful applications of artificial
intelligence. Indeed, most human knowledge is col-
lected in the natural language of text. Machine com-
prehension (MC) has therefore garnered significant
attention from the machine learning research commu-
nity. Machine comprehension is typically evaluated
by posing a set of questions based on a supporting
text passage, then scoring a system’s answers to those
questions. Such tests are objectively gradable and
may assess a range of abilities, from basic understand-
ing to causal reasoning to inference (Richardson et
al., 2013).

In the past year, two large-scale MC datasets have
been released: the CNN/Daily Mail corpus, consist-
ing of news articles from those outlets (Hermann
et al., 2015), and the Children’s Book Test (CBT),
consisting of short excerpts from books available
through Project Gutenberg (Hill et al., 2016). The
size of these datasets (on the order of 105 distinct
questions) makes them amenable to data-intensive
deep learning techniques. Both corpora use Cloze-
style questions (Taylor, 1953), which are formulated
by replacing a word or phrase in a given sentence
with a placeholder token. The task is then to find the
answer that “fills in the blank”.

In tandem with these corpora, a host of neu-
ral machine comprehension models has been devel-
oped (Weston et al., 2015b; Hermann et al., 2015;
Hill et al., 2016; Kadlec et al., 2016; Chen et al.,
2016). We compare EpiReader to these earlier mod-
els through training and evaluation on the CNN and
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CBT datasets.1

EpiReader factors into two components. The first
component extracts a small set of potential answers
based on a shallow comparison of the question with
its supporting text; we call this the Extractor. The sec-
ond component reranks the proposed answers based
on deeper semantic comparisons with the text; we
call this the Reasoner. We can summarize this pro-
cess as Extract → Hypothesize → Test2. The se-
mantic comparisons implemented by the Reasoner
are based on the concept of recognizing textual en-
tailment (RTE) (Dagan et al., 2006), also known as
natural language inference. This process is computa-
tionally demanding. Thus, the Extractor serves the
important function of filtering a large set of poten-
tial answers down to a small, tractable set of likely
candidates for more thorough testing. The two-stage
process is an analogue of structured prediction cas-
cades (Weiss and Taskar, 2010), wherein a sequence
of increasingly complex models progressively filters
the output space in order to trade off between model
complexity and limited computational resources. We
demonstrate that this cascade-like framework is appli-
cable to machine comprehension and can be trained
end-to-end with stochastic gradient descent.

The Extractor follows the form of a pointer net-
work (Vinyals et al., 2015), and uses a differentiable
attention mechanism to indicate words in the text
that potentially answer the question. This approach
was used (on its own) for question answering with
the Attention Sum Reader (Kadlec et al., 2016). The
Extractor outputs a small set of answer candidates
along with their estimated probabilities of correct-
ness. The Reasoner forms hypotheses by inserting
the candidate answers into the question, then esti-
mates the concordance of each hypothesis with each
sentence in the supporting text. We use these esti-
mates as a measure of the evidence for a hypothesis,
and aggregate evidence over all sentences. In the
end, we combine the Reasoner’s evidence with the
Extractor’s probability estimates to produce a final
ranking of the answer candidates.

1The CNN and Daily Mail datasets were released together
and have the same form. The Daily Mail dataset is signifi-
cantly larger; therefore, models consistently score higher when
trained/tested on it.

2The Extractor performs extraction, while the Reasoner both
hypothesizes and tests.

This paper is organized as follows. In Section 2
we formally define the problem to be solved and give
some background on the datasets used in our tests.
In Section 3 we describe EpiReader, focusing on its
two components and how they combine. Section 4
discusses related work, and Section 5 details our
experimental results and analysis. We conclude in
Section 6.

2 Problem definition, notation, datasets

EpiReader’s task is to answer a Cloze-style question
by reading and comprehending a supporting passage
of text. The training and evaluation data consist of
tuples (Q, T , a∗, A), where Q is the question (a se-
quence of words {q1, ...q|Q|}), T is the text (a se-
quence of words {t1, ..., t|T |}), A is a set of possible
answers {a1, ..., a|A|}, and a∗ ∈ A is the correct an-
swer. All words come from a vocabulary V , and
A ⊂ T . In each question, there is a placeholder
token indicating the missing word to be filled in.

2.1 Datasets

CNN This corpus is built using articles scraped
from the CNN website. The articles themselves form
the text passages, and questions are generated syn-
thetically from short summary statements that ac-
company each article. These summary points are
(presumably) written by human authors. Each ques-
tion is created by replacing a named entity in a sum-
mary point with a placeholder token. All named
entities in the articles and questions are replaced with
anonymized tokens that are shuffled for each (Q, T )
pair. This forces the model to rely only on the text,
rather than learning world knowledge about the en-
tities during training. The CNN corpus (henceforth
CNN) was presented by Hermann et al. (2015).

Children’s Book Test This corpus is constructed
similarly to CNN, but from children’s books avail-
able through Project Gutenberg. Rather than articles,
the text passages come from book excerpts of 20
sentences. Since no summaries are provided, a ques-
tion is generated by replacing a single word in the
next (i.e. 21st) sentence. The corpus distinguishes
questions based on the type of word that is replaced:
named entity, common noun, verb, or preposition.
Like Kadlec et al. (2016), we focus only on the first
two classes since Hill et al. (2016) showed that stan-
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dard LSTM language models already achieve human-
level performance on the latter two. Unlike in the
CNN corpora, named entities are not anonymized
and shuffled in the Children’s Book Test (CBT). CBT
was presented by Hill et al. (2016).

The different methods of construction for ques-
tions in each corpus mean that CNN and CBT assess
different aspects of comprehension. The summary
points of CNN are a condensed paraphrasing of infor-
mation in the text; thus, determining the correct an-
swer relies mostly on recognizing textual entailment.
On the other hand, CBT is about story prediction. It
is a comprehension task insofar as comprehension is
likely necessary for story prediction, but comprehen-
sion alone may not be sufficient. Indeed, there are
some CBT questions that are unanswerable given the
preceding context.

3 EpiReader

3.1 Overview and intuition
EpiReader explicitly leverages the observation that
the answer to a question is often a word or phrase
from the related text passage. This condition holds
for the CNN and CBT datasets. EpiReader’s first
module, the Extractor, can thus select a small set of
candidate answers by pointing to their locations in
the supporting passage. This mechanism is detailed
in Section 3.2, and was used previously by the At-
tention Sum Reader (Kadlec et al., 2016). Pointing
to candidate answers removes the need to apply a
softmax over the entire vocabulary as in Weston et al.
(2015b), which is computationally more costly and
uses less-direct information about the context of a
predicted answer in the supporting text.

EpiReader’s second module, the Reasoner, begins
by formulating hypotheses using the extracted answer
candidates. It generates each hypothesis by replacing
the placeholder token in the question with an answer
candidate. Cloze-style questions are ideally-suited
to this process, because inserting the correct answer
at the placeholder location produces a well-formed,
grammatical statement. Thus, the correct hypothesis
will “make sense” to a language model.

The Reasoner then tests each hypothesis individu-
ally. It compares a hypothesis to the text, split into
sentences, to measure textual entailment, and then ag-
gregates entailment over all sentences. This compu-

tation uses a pair of convolutional encoder networks
followed by a recurrent neural network. The convo-
lutional encoders generate abstract representations of
the hypothesis and each text sentence; the recurrent
network estimates and aggregates entailment. This
is described formally in Section 3.3. The end-to-
end EpiReader model, combining the Extractor and
Reasoner modules, is depicted in Figure 1.

Throughout our model, words will be represented
with trainable embeddings (Bengio et al., 2000). We
represent these embeddings using a matrix W ∈
RD×|V |, where D is the embedding dimension and
|V | is the vocabulary size.

3.2 The Extractor
The Extractor is a Pointer Network (Vinyals et al.,
2015). It uses a pair of bidirectional recurrent neural
networks, f(θT ,T) and g(θQ,Q), to encode the text
passage and the question. θT represents the param-
eters of the text encoder, and T ∈ RD×N is a ma-
trix representation of the text (comprising N words),
whose columns are individual word embeddings ti.
Likewise, θQ represents the parameters of the ques-
tion encoder, and Q ∈ RD×NQ is a matrix represen-
tation of the question (comprisingNQ words), whose
columns are individual word embeddings qj .

We use a recurrent neural network with gated recur-
rent units (GRU) (Bahdanau et al., 2015) to scan over
the columns (i.e. word embeddings) of the input ma-
trix. We selected the GRU because it is computation-
ally simpler than Long Short-Term Memory (Hochre-
iter and Schmidhuber, 1997), while still avoiding
the problem of vanishing/exploding gradients often
encountered when training recurrent networks.

The GRU’s hidden state gives a representation of
the ith word conditioned on preceding words. To
include context from proceeding words, we run a
second GRU over T in the reverse direction. We
refer to the combination as a biGRU. At each step the
biGRU outputs two d-dimensional encoding vectors,
one for the forward direction and one for the back-
ward direction. We concatenate these to yield a vector
f(ti) ∈ R2d. The question biGRU is similar, but we
form a single-vector representation of the question
by concatenating the final forward state with the final
backward state, which we denote g(Q) ∈ R2d.

As in Kadlec et al. (2016), we model the probabil-
ity that the ith word in text T answers question Q
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Figure 1: The complete EpiReader framework. The Extractor is above, the Reasoner below. Propagating the Extractor’s probability

estimates forward and combining them with the Reasoner’s entailment estimates renders the model end-to-end differentiable.

using
si ∝ exp(f(ti) · g(Q)), (1)

which takes the inner product of the text and question
representations followed by a softmax. In many cases
unique words repeat in a text. Therefore, we compute
the total probability that word w is the correct answer
using a sum:

P (w | T ,Q) =
∑

i: ti=w

si. (2)

This probability is evaluated for each unique word in
T . Finally, the Extractor outputs the set {p1, ..., pK}
of the K highest word probabilities from 2, along

with the corresponding set of K most probable an-
swer words {â1, ..., âK}.

3.3 The Reasoner

The indicial selection involved in gathering
{â1, ..., âK}, which is equivalent to a K-best
argmax, is not a continuous function of its inputs.
To construct an end-to-end differentiable model, we
bypass this by propagating the probability estimates
of the Extractor directly through the Reasoner.

The Reasoner begins by inserting the answer can-
didates, which are single words or phrases, into the
question sequence Q at the placeholder location.
This forms K hypotheses {H1, ...,HK}. At this
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point, we consider each hypothesis to have proba-
bility p(Hk) ≈ pk, as estimated by the Extractor.
The Reasoner updates and refines this estimate.

The hypotheses represent new information in some
sense—they are statements we have constructed, al-
beit from words already present in the question and
text passage. The Reasoner estimates entailment be-
tween the statements Hk and the passage T . We
denote these estimates using ek = F (Hk, T ), with
F to be defined. We start by reorganizing T into
a sequence of Ns sentences: T = {t1, . . . , tN} →
{S1, . . . ,SNs}, where Si is a sequence of words.

For each hypothesis and each sentence of the
text, Reasoner input consists of two matrices: Si ∈
RD×|Si|, whose columns are the embedding vectors
for each word of sentence Si, and Hk ∈ RD×|Hk|,
whose columns are the embedding vectors for each
word in the hypothesisHk. The embedding vectors
themselves come from matrix W, as before.

These matrices feed into a convolutional architec-
ture based on that of Severyn and Moschitti (2016).
The architecture first augments Si with matrix M ∈
R2×|Si|. The first row of M contains the inner prod-
uct of each word embedding in the sentence with the
candidate answer embedding, and the second row
contains the maximum inner product of each sen-
tence word embedding with any word embedding in
the question. These word-matching features were
inspired by similar approaches in Wang and Jiang
(2016) and Trischler et al. (2016), where they were
shown to improve entailment estimates.

The augmented Si is then convolved with a bank
of filters FS ∈ R(D+2)×m, while Hk is convolved
with filters FH ∈ RD×m, where m is the convolu-
tional filter width. We add a bias term and apply a
nonlinearity (we use a ReLU) following the convo-
lution. Maxpooling over the sequences then yields
two vectors: the representation of the text sentence,
rSi ∈ RNF , and the representation of the hypothesis,
rHk
∈ RNF , where NF is the number of filters.

We then compute a scalar similarity score between
these vector representations using the bilinear form

ς = rTSiRrHk
, (3)

where R ∈ RNF×NF is a matrix of trainable parame-
ters. We then concatenate the similarity score with
the sentence and hypothesis representations to get a

vector, xik = [ς; rSi ; rHk
]T . There are more pow-

erful models of textual entailment that could have
been used in place of this convolutional architecture.
We adopted the approach of Severyn and Moschitti
(2016) for computational efficiency.

The resulting sequence of Ns vectors feeds into
yet another GRU for synthesis, of hidden dimension
dS . Intuitively, it is often the case that evidence
for a particular hypothesis is distributed over several
sentences. For instance, if we hypothesize that the
football is in the park, perhaps it is because one sen-
tence tells us that Sam picked up the football and a
later one tells us that Sam ran to the park.3 The Rea-
soner synthesizes distributed information by running
a GRU network over xik, where i indexes sentences
and represents the step dimension.4 The final hidden
state of the GRU is fed through a fully-connected
layer, yielding a single scalar yk. This value repre-
sents the collected evidence forHk based on the text.
In practice, the Reasoner processes all K hypotheses
in parallel and the estimated entailment of each is
normalized by a softmax, ek ∝ exp(yk).

As pointed out in Kadlec et al. (2016), it is a
strength of the pointer framework that it does not
blend the representations that are being attended.
Contrast this with typical attention mechanisms
where such a blended representation is used down-
stream to make similarity comparisons with, e.g.,
output vectors.

Differentiable attention mechanisms (as in Bah-
danau et al. (2015), for example) typically blend in-
ternal representations together through a weighted
sum, then use this ‘blend’ downstream for similarity
comparisons. The pointer framework does not resort
to this blending; Kadlec et al. (2016) explain that this
is an advantage, since in comprehension tasks the
goal is to select the correct answer among semanti-
cally similar candidates and more exact matching is
necessary. The reranking function performed by the
Reasoner entails this advantage, by examining the
separate hypotheses individually without blending.

3This example is characteristic of the bAbI dataset (Weston
et al., 2015a).

4Note a benefit of forming the hypothesis: it renders bidirec-
tional aggregation unnecessary, since knowing both the question
and the putative answer "closes the loop" the same way that a
bidirectional encoding would.
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3.4 Combining components
Finally, we combine the evidence from the Reasoner
with the probability from the Extractor. We com-
pute the output probability of each hypothesis, πk,
according to the product

πk ∝ ekpk, (4)

whereby the evidence of the Reasoner can be inter-
preted as a correction to the Extractor probabilities,
applied as an additive shift in log-space. We experi-
mented with other combinations of the Extractor and
Reasoner, but we found the multiplicative approach
to yield the best performance.

After combining results from the Extractor and
Reasoner to get the probabilities πk described in
Eq. 4, we optimize the parameters of the full
EpiReader to minimize a cost comprising two terms,
LE and LR. The first term is a standard negative log-
likelihood objective, which encourages the Extractor
to rate the correct answer above other answers. This
is the same loss term used in Kadlec et al. (2016). It
is given by:

LE = E
(Q,T ,a∗,A)

[− logP (a∗ | T ,Q)] , (5)

where P (a∗ | T ,Q) is as defined in Eq. 2, and a∗

denotes the true answer. The second term is a margin-
based loss on the end-to-end probabilities πk. We
define π∗ as the probability πk corresponding to the
true answer word a∗. This term is given by:

LR = E
(Q,T ,a∗,A)


 ∑

âi∈{â1,...,âK}\a∗
[γ − π∗ + πâi ]+


 ,

(6)
where γ is a margin hyperparameter, {â1, ..., âK}
is the set of K answers proposed by the Extractor,
and [x]+ indicates truncating x to be non-negative.
Intuitively, this loss says that we want the end-to-end
probability π∗ for the correct answer to be at least γ
larger than the probability πâi for any other answer
proposed by the Extractor. During training, the cor-
rect answer is occasionally missed by the Extractor,
especially in early epochs. We counter this issue by
forcing the correct answer into the top K set while
training. When evaluating the model on validation
and test examples we rely fully on the top K answers
proposed by the Extractor.

To get the final loss term LER, minus `2 regular-
ization terms on the model parameters, we take a
weighted combination of LE and LR:

LER = LE + λLR, (7)

where λ is a hyperparameter for weighting the rela-
tive contribution of the Extractor and Reasoner losses.
In practice, we found that λ should be fairly large
(e.g., 10 < λ < 100). Empirically, we observed
that the output probabilities from the Extractor of-
ten peak and saturate the first softmax; hence, the
Extractor term can come to dominate the Reasoner
term without the weight λ (we discuss the Extractor’s
propensity to overfit in Section 5).

4 Related Work

The Impatient and Attentive Reader models were
proposed by Hermann et al. (2015). The Attentive
Reader applies bidirectional recurrent encoders to the
question and supporting text. It then uses the atten-
tion mechanism described in Bahdanau et al. (2015)
to compute a fixed-length representation of the text
based on a weighted sum of the text encoder’s output,
guided by comparing the question representation to
each location in the text. Finally, a joint representa-
tion of the question and supporting text is formed by
passing their separate representations through a feed-
forward MLP and an answer is selected by comparing
the MLP output to a representation of each possible
answer. The Impatient Reader operates similarly, but
computes attention over the text after processing each
consecutive word of the question. The two models
achieved similar performance on the CNN and Daily
Mail datasets.

Memory Networks were first proposed by Weston
et al. (2015b) and later applied to machine compre-
hension by Hill et al. (2016). This model builds
fixed-length representations of the question and of
windows of text surrounding each candidate answer,
then uses a weighted-sum attention mechanism to
combine the window representations. As in the previ-
ous Readers, the combined window representation is
then compared with each possible answer to form a
prediction about the best answer. What distinguishes
Memory Networks is how they construct the ques-
tion and text window representations. Rather than
a recurrent network, they use a specially-designed,
trainable transformation of the word embeddings.
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Most of the details for the very recent AS Reader
are provided in the description of our Extractor mod-
ule in Section 3.2, so we do not summarize it further
here. This model (Kadlec et al., 2016) set the previ-
ous state-of-the-art on the CBT dataset.

During the write-up of this paper, another very re-
cent model came to our attention. Chen et al. (2016)
propose using a bilinear term instead of a tanh layer
to compute the attention between question and pas-
sage words, and also uses the attended word encod-
ings for direct, pointer-style prediction as in Kadlec
et al. (2016). This model set the previous state-of-the-
art on the CNN dataset. However, this model used
embedding vectors pretrained on a large external cor-
pus (Pennington et al., 2014).

EpiReader borrows ideas from other models as
well. The Reasoner’s convolutional architecture is
based on Severyn and Moschitti (2016) and Blunsom
et al. (2014). Our use of word-level matching was in-
spired by the Parallel-Hierarchical model of Trischler
et al. (2016) and the natural language inference model
of Wang and Jiang (2016). Finally, the idea of formu-
lating and testing hypotheses for question-answering
was used to great effect in IBM’s DeepQA system
for Jeopardy! (Ferrucci et al., 2010) (although that
was a more traditional information retrieval pipeline
rather than an end-to-end neural model), and also
resembles the framework of structured prediction
cascades (Weiss and Taskar, 2010).

5 Evaluation

5.1 Implementation and training details

To train our model we used stochastic gradient de-
scent with the ADAM optimizer (Kingma and Ba,
2015), with an initial learning rate of 0.001. The
word embeddings were initialized randomly, draw-
ing from the uniform distribution over [−0.05, 0.05).
We used batches of 32 examples, and early stopping
with a patience of 2 epochs. Our model was imple-
mented in Theano (Bergstra et al., 2010) using the
Keras framework (Chollet, 2015).

The results presented below for EpiReader were
obtained by searching over a small grid of hyperpa-
rameter settings. We selected the model that, on each
dataset, maximized accuracy on the validation set,
then evaluated it on the test set. We record the best
settings for each dataset in Table 1. As has been

Table 1: Hyperparameter settings for best EpiReaders. D is

the embedding dimension, d is the hidden dimension in the

Extractor GRUs, K is the number of candidates to consider, m

is the filter width, NF is the number of filters, and dS is the

hidden dimension in the Reasoner GRU.

Hyperparameters

Dataset D d K m NF dS

CBT-NE 300 128 5 3 16 32
CBT-CN 300 128 5 3 32 32
CNN 384 256 10 3 32 32

done previously, we train separate models on CBT’s
named entity (CBT-NE) and common noun (CBT-
CN) splits. All our models used `2-regularization
at 0.001, λ = 50, and γ = 0.04. We did not use
dropout but plan to investigate its effect in the future.
Hill et al. (2016) and Kadlec et al. (2016) also present
results for ensembles of their models. Time did not
permit us to generate an ensemble of EpiReaders on
the CNN dataset so we omit those measures; how-
ever, EpiReader ensembles (of seven models) demon-
strated improved performance on the CBT dataset.

5.2 Results

In Table 5.2, we compare the performance of
EpiReader against that of several baselines, on the
validation and test sets of the CBT and CNN corpora.
We measure EpiReader performance at the output
of both the Extractor and the Reasoner. EpiReader
achieves state-of-the-art performance across the
board for both datasets. On CNN, we score 2.2%
higher on test than the best previous model of Chen
et al. (2016). Interestingly, an analysis of the CNN
dataset by Chen et al. (2016) suggests that approxi-
mately 25% of the test examples contain coreference
errors or questions which are “ambiguous/hard” even
for a human analyst. If this estimate is accurate, then
EpiReader, achieving an absolute test accuracy of
74.0%, is operating close to expected human perfor-
mance. On the other hand, ambiguity is unlikely to
be distributed evenly over entities, so a good model
should be able to perform at better-than-chance levels
even on questions where the correct answer is uncer-
tain. If, on the 25% of “noisy” questions, the model
can shift its hit rate from, e.g., 1/10 to 1/3, then there
is still a fair amount of performance to gain.
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CBT-NE CBT-CN

Model valid test valid test

Humans (context + query) 1 - 81.6 - 81.6

LSTMs (context + query) 1 51.2 41.8 62.6 56.0

MemNNs 1 70.4 66.6 64.2 63.0

AS Reader 2 73.8 68.6 68.8 63.4

EpiReader Extractor 73.2 69.4 69.9 66.7
EpiReader 75.3 69.7 71.5 67.4

AS Reader (ensemble) 2 74.5 70.6 71.1 68.9
EpiReader (ensemble) 76.6 71.8 73.6 70.6

CNN

Model valid test

Deep LSTM Reader 3 55.0 57.0
Attentive Reader 3 61.6 63.0
Impatient Reader 3 61.8 63.8

MemNNs 1 63.4 66.8

AS Reader 2 68.6 69.5

Stanford AR 4 72.4 72.4

EpiReader Extractor 71.8 72.0
EpiReader 73.4 74.0

Table 2: Model comparison on the CBT and CNN datasets. Results marked with 1 are from Hill et al. (2016), with 2 are from

Kadlec et al. (2016), with 3 are from Hermann et al. (2015), and with 4 are from Chen et al. (2016).

Ablated component Validation accuracy (%)

- 71.5
Word-match scores 70.3
Bilinear similarity 70.0

Reasoner 68.7

Convolutional encoders 71.0

Table 3: Ablation study on CBT-CN validation set.

On CBT-CN our single model scores 4.0% higher
than the previous best of the AS Reader. The improve-
ment on CBT-NE is more modest at 1.1%. Looking
more closely at our CBT-NE results, we found that
the validation and test accuracies had relatively high
variance even in late epochs of training. We discov-
ered that many of the validation and test questions
were asked about the same named entity, which may
explain this issue.

5.3 Analysis

We measure the contribution of several components
of the Reasoner by ablating them. Results on the
validation set of CBT-CN are presented in Table 3.
The word-match scores (cosine similarities stored in
the first two rows of matrix M, see Section 3.3) make
a contribution of 1.2% to the validation performance,
indicating that they are useful. Similarly, the bilinear
similarity score ς , which is passed to the final GRU
network, contributes 1.5%.

Removing the Reasoner altogether reduces our
model to the AS Reader, whose results we have

reproduced to within negligible difference. Aside
from achieving state-of-the-art results at its final out-
put, the EpiReader framework gives a boost to its
Extractor component through the joint training pro-
cess. This can be seen by referring back to Table 5.2,
wherein we also provide accuracy scores evaluated
at the output of the Extractor. These are all higher
than the analogous scores reported for the AS Reader.
Based on our own work with that model, we found
it to overfit the training set rapidly and significantly,
achieving training accuracy scores upwards of 98%
after only 2 epochs. We suspect that the Reasoner
module had a regularizing effect on the Extractor, but
leave the confirmation for future work.

Although not exactly an ablation, we also tried
bypassing the Reasoner’s convolutional encoders al-
together, along with the word-match scores and the
bilinear similarity. This was done as follows: from
the Extractor, we pass to the Reasoner’s final GRU (i)
the bidirectional hidden representation of the ques-
tion; (ii) the bidirectional hidden representations of
the end of each story sentence (recall that the Rea-
soner operates on sentence representations). Thus,
we reuse (parts of) the original biGRU encodings.
This cuts down on the number of model parameters
and on the length of the graph through which gra-
dients must flow, potentially providing a stronger
learning signal to the initial encoders. We found that
this change yielded a relatively small reduction in per-
formance on CBT-CN, perhaps for the reasons just
discussed—only 0.5%, as given in the final line of
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Mr. Blacksnake grinned and started after him, not very fast 
because he knew that he wouldn't have to run very fast to catch 
old Mr. Toad, and he thought the exercise would do him good. 
… 

“Still, the green meadows wouldn't be quite the same without old 
Mr. Toad. 
I should miss him if anything happened to him. 
I suppose it would be partly my fault, too, for if I hadn't pulled 
over that piece of bark, he probably would have stayed there the 
rest of the day and been safe.” 

QUESTION: 
“Maybe he won't meet Mr. XXXXX,” said a little voice inside of 
Jimmy. 

EXTRACTOR: Toad 
REASONER: Blacksnake

1.

18.

21.

19.
20.

Figure 2: An abridged example from CBT-NE demonstrating

corrective reranking by the Reasoner.

Table 3. This suggests that competitive performance
may be achieved with other, simpler architectures for
the Reasoner’s entailment system and this will be the
subject of future research.

An analysis by Kadlec et al. (2016) indicates that
the trained AS Reader includes the correct answer
among its five most probable candidates on approxi-
mately 95% of test examples for both datasets. We
verified that our Extractor achieved a similar rate,
and of course this is vital for performance of the full
system, since the Reasoner cannot recover when the
correct answer is not among its inputs.

Our results show that the Reasoner often corrects
erroneous answers from the Extractor. Figure 2 gives
an example of this correction. In the text passage,
from CBT-NE, Mr. Blacksnake is pursuing Mr. Toad,
presumably to eat him. The dialogue in the question
sentence refers to both: Mr. Toad is its subject, re-
ferred to by the pronoun “he”, and Mr. Blacksnake is
its object. In the preceding sentences, it is clear (to
a human) that Jimmy is worried about Mr. Toad and
his potential encounter with Mr. Blacksnake. The
Extractor, however, points most strongly to “Toad”,
possibly because he has been referred to most re-
cently. The Reasoner corrects this error and selects
“Blacksnake” as the answer. This relies on a deeper
understanding of the text. The named entity can, in
this case, be inferred through an alternation of the
entities most recently referred to. This kind alterna-
tion is typical of dialogues, when two actors interact
in turns. The Reasoner can capture this behavior
because it examines sentences in sequence.

6 Conclusion

We presented the novel EpiReader framework for
machine comprehension and evaluated it on two
large, complex datasets: CNN and CBT. Our model
achieves state-of-the-art results on these corpora, out-
performing all previous approaches. In future work,
we plan to test our framework with alternative models
for natural language inference (e.g., Wang and Jiang
(2016)), and explore the effect of pretraining such a
model specifically on an inference task.

As a general framework that consists in a two-
stage cascade, EpiReader can be implemented using a
variety of mechanisms in the Extractor and Reasoner
stages. We have demonstrated that this cascade-like
framework is applicable to machine comprehension
and can be trained end-to-end. As more powerful
machine comprehension models inevitably emerge,
it may be straightforward to boost their performance
using EpiReader’s structure.
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