
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 982–992,
Lisbon, Portugal, 17-21 September 2015. c©2015 Association for Computational Linguistics.

Mise en Place: Unsupervised Interpretation of Instructional Recipes

Chloé Kiddon†, Ganesa Thandavam Ponnuraj‡, Luke Zettlemoyer†, and Yejin Choi†

† Computer Science & Engineering, University of Washington, Seattle, WA
{chloe, lsz, yejin}@cs.washington.edu

‡ Department of Computer Science, Stony Brook University, Stony Brook, NY
gthandavam@gmail.com

Abstract

We present an unsupervised hard EM ap-
proach to automatically mapping instruc-
tional recipes to action graphs, which de-
fine what actions should be performed on
which objects and in what order. Recov-
ering such structures can be challenging,
due to unique properties of procedural lan-
guage where, for example, verbal argu-
ments are commonly elided when they can
be inferred from context and disambigua-
tion often requires world knowledge. Our
probabilistic model incorporates aspects
of procedural semantics and world knowl-
edge, such as likely locations and selec-
tional preferences for different actions.
Experiments with cooking recipes demon-
strate the ability to recover high quality
action graphs, outperforming a strong se-
quential baseline by 8 points in F1, while
also discovering general-purpose knowl-
edge about cooking.

1 Introduction

Instructional language describes how to achieve a
wide variety of goals, from traveling successfully
to a desired location to cooking a particular dish
for dinner. Despite the fact that such language is
important to our everyday lives, there has been rel-
atively little effort to design algorithms that can
automatically convert it into an actionable form.
Existing methods typically assume labeled train-
ing data (Lau et al., 2009; Maeta et al., 2015) or
access to a physical simulator that can be used to
test understanding of the instructions (Branavan et
al., 2009; Chen and Mooney, 2011; Bollini et al.,
2013). In this paper, we present the first approach
for unsupervised learning to interpret instructional
recipes using text alone, with application to cook-
ing recipes.

Given a recipe, our task is to segment it into
text spans that describe individual actions and con-
struct an action graph whose nodes represent ac-
tions and edges represent the flow of arguments
across actions, for example as seen in Fig. 1. This
task poses unique challenges for semantic anal-
ysis. First, null arguments and ellipses are ex-
tremely common (Zwicky, 1988). For example,
sentences such as “Bake for 50 minutes” do not
explicitly mention what to bake or where. Second,
we must reason about how properties of the phys-
ical objects are changed by the described actions,
for example to correctly resolve what the phrase
“the wet mixture” refers to in a baking recipe. Al-
though linguistic context is important to resolving
both of these challenges, more crucial is common
sense knowledge about how the world works, in-
cluding what types of things are typically baked or
what ingredients could be referred to as “wet.”1

These challenges seemingly present a chicken
and egg problem — if we had a high quality se-
mantic analyzer for instructions we could learn
common sense knowledge simply by reading large
bodies of text. However, correctly understand-
ing instructions requires reasoning with exactly
this desired knowledge. We show that this con-
flict can be resolved with an unsupervised learn-
ing approach, where we design models to learn
various aspects of procedural knowledge and then
fit them to unannotated instructional text. Cook-
ing recipes are an ideal domain to study these
two challenges simultaneously, as vast amounts of
recipes are available online today, with significant
redundancy in their coverage that can help boot-
strap the overall learning process. For example,
there are over 400 variations on “macaroni and
cheese” recipes on allrecipes.com, from “chipotle

1The goal of representing common sense world knowl-
edge about actions and objects also drives theories of frame
semantics (Fillmore, 1982) and script knowledge (Schank
and Abelson, 1977). However, our focus is on inducing this
style of knowledge automatically from procedural texts.

982

a52a51

a42a41

brown sugar

raw ingredientsraw ingredientsraw ingredientsraw ingredientsv1:preheat oven

v2: mix

v3: press

v4: lay

v5: bake implicit
 preposition

implicit
object

ground beef …

over the topbacon

implicit
object

into loaf pan

a11

a21

a31 a32

e1

e2

e3

e4

e5

Ingredients
2 pounds ground beef
2 1/2 cups crushed butter-flavored crackers
1 small onion, chopped
2 eggs
3/4 cup ketchup
1/4 cup brown sugar
2 slices bacon

Preheat the oven to 350 degrees F (175 degrees C).
In a medium bowl, mix together ground beef, crushed
crackers, onion, eggs, ketchup, and brown sugar until
well blended.
Press into a 9x5 inch loaf pan.
Lay the two slices of bacon over the top.
Bake for 1 hour, or until cooked through.

(recipe condensed)

Amish Meatloaf (http://allrecipes.com/recipe/amish-meatloaf/)
s1s11

s1s21 s6s21

s1s32

s1s42s1s41

s1s31

s1s51 s1s52

Figure 1: An input recipe (left) and a partial corresponding output action graph (right). Each rectangle
(ei) represents an action. The leftmost oval (vi) in each action is the action’s verb and the following
ovals (aij) represents the verb’s arguments. The yellow ovals represent foods; the grey ovals represent
locations. Argument ovals with dotted boundaries are implicit, i.e., not present in text. The inner white
ovals (sk

ij) are string spans. The red dashed lines represent connections to string spans from their origi-
nating verb or raw ingredient. The string spans also connect to their associated verb in the action diagram
to model the flow of ingredients. For example, there is a directed path from each raw ingredient to the
implicit object of bake, representing that the object being baked is composed of all of the raw ingredients.

macaroni and cheese,” to “cheesy salsa mac.”
We present two models that are learned with

hard EM algorithms: (1) a segmentation model to
extract the actions from the recipe text, and (2) a
graph model that defines a distribution over the
connections between the extracted actions. The
common sense knowledge is encoded in the sec-
ond model which can, for example, prefer graphs
that model implicit verb arguments when they
better match the learned selectional preferences.
The final action graph is constructed with a local
search algorithm, that allows for global reasoning
about ingredients as they flow through the recipe.

Experiments demonstrate the ability to recover
high quality action graphs, gaining up to 8 points
in F1 over a strong baseline where the ingredients
flow sequentially through the verbs. The learned
models are also highly interpretable, specifying
for example that “dough” likely contains “flour”
and that “add” generally requires two food argu-
ments, even if only one is mentioned in the sen-
tence.

2 Task Definition

Procedural text such as a recipe defines a set of
actions, i.e. predicates, applied to a set of objects,
i.e. arguments. A unique challenge in procedu-
ral text understanding is to recover how different

arguments flow through a chain of actions; the re-
sults of intermediate actions (e.g., “Boil the pasta
until al dente.”) provide the inputs for future ac-
tions (e.g., “Drain.”). We represent these corre-
spondences with an action graph. In this section,
we first describe our structured representation of
recipe text, then we define how components of the
recipe connect. Finally, we will show how given
a recipe and a set of connections we can construct
an action graph that models the flow of ingredi-
ents through the recipe. Fig. 1 provides a detailed
running example for the section.

2.1 Recipe R

A recipe R is a piece of text that describes a list
of instructions and a (possibly-empty) set of raw
ingredients that are required to perform the in-
structions. The first step is to segment the text
into a list of verb-argument tuples, called actions,
ER = {e1 = (v1,a1), . . . , en = (vn,an)}. Sec. 6
will describe an unsupervised approach for learn-
ing to segment recipes. Each action ei pairs a verb
vi with a list of arguments ai, where aij is the jth

argument of verb vi. In Fig. 1, each row contains
an action with a verb in the white oval and its ar-
guments in the yellow and gray ovals.

Each argument is a tuple aij = (tsyn
ij , tsemij , Sij)

with a syntactic type tsyn(a) ∈ T syn =
{DOBJ,PP}, a semantic type tsem(a) ∈

983

T sem = {food, location, other}, and a list of
text string spans Sij = {s1

ij , . . . , s
|Sij |
ij }, where

sk
ij is the kth span in the jth argument of verb vi.

In Fig. 1, the spans of each argument are repre-
sented by the white ovals inside of the argument
ovals. For example, a21 contains a span for each
raw ingredient being mixed in the second action
(e.g., s1

21 =“ground beef,” s6
21 =“brown sugar”).

The syntactic type determines whether the argu-
ment is the direct object or a prepositional phrase
argument of the verb in the recipe text. All other
syntactic constructs are ignored and left for future
work. The semantic types include food, location,
and other. In Fig. 1, yellow ovals represent foods
and gray ovals represent locations. Arguments of
other semantic types are marked as other (e.g.,
“Mash using a fork”).

We also augment the set of arguments for each
verb to include implicit arguments with empty
string spans. This allows making connections to
arguments that the author does not mention explic-
itly (e.g., the elided direct object of “bake” in e5).
Every verb is assigned one implicit PP argument,
and, if a verb has no argument with syntactic type
DOBJ , an implicit direct object. These argu-
ments have indeterminate semantic types, which
are to be determined based on how they connect
to other actions. For example, in Fig. 1, when the
implicit object of “bake” is connected to the out-
put of the “lay” action, it is inferred to be of type
food since that is what is created by the “lay” ac-
tion. However, when the implicit PP argument
of “bake” is connected to the output of the “pre-
heat” action, it is inferred to be a location since
“preheat” does not generate a food.

2.2 Connections C

Given a segmented recipe, we can build graph con-
nections. A connection identifies the origin of a
given string span as either the output of a previ-
ous action or as a new ingredient or entity being
introduced into the recipe. A connection is a six-
tuple (o, i, j, k, tsyn, tsem) indicating that there is
a connection from the output of vo to the argu-
ment span sk

ij with syntactic type tsyn ∈ T syn

and semantic type tsem ∈ T sem. We call o the
origin index and i the destination index. For ex-
ample, in Fig. 1, the connection from the output of
the “press” verb (e3) to “over the top” (s1

42) would
be (3, 4, 2, 1, PP, food). If a span introduces raw
ingredient or new location into the recipe, then

o = 0; in Fig. 1, this occurs for each of the spans
that represent raw ingredients as well as “oven”
and “into loaf pan.”

Given a recipe R, a set of connections C is valid
for R if there is a one-to-one correspondence be-
tween spans in R and connections in C, and if
the origin indexes of connections in C are 0 or
valid verb indexes in R, ∀(o, i, j, k, tsyn, tsem) ∈
C, o ∈ {Z | 0 ≤ o ≤ |ER|}.

2.3 Action graph G

A recipe R and a set of connections C define
an action graph, which is a directed graph G =
(V,E). Each raw ingredient, verb, and argu-
ment span is represented by a vertex in V . Each
argument span vertex is connected to its asso-
ciated verb vertex, and each connection c =
(o, i, j, k, tsyn, tsem) adds a corresponding edge
to E. Edges from connections with seman-
tic type food propagate ingredients through the
recipe; edges from connections with semantic type
location propagate a location. Fig. 1 shows an ac-
tion graph. By following the edges, we can tell
that the implicit food entity that is being baked
in the final action has been formed from the set
of ingredients in the mixing action and the bacon
from e4 and that the baking action occurs inside
the oven preheated in e1.

3 Probabilistic connection model

Our goal is, given a segmented recipe R, to deter-
mine the most likely set of connections, and thus
the most likely action graph. We model (1) a prior
probability over C, P (C) (Sec. 3.1), and (2) the
probability of seeing a segmented recipe R given
a set of connections C, P (R|C) (Sec. 3.2). The
most likely set of connections will maximize the
joint probability: P (R|C)P (C). A summary of
this model is presented in Fig. 2, and the details
are described in the this section.

3.1 Connections prior model

The probability of a set of connections C depends
on features of the incoming set of connections for
each action. Let a destination subset di ⊆ C be
the subset of C that contains all connections that
have i as the destination index. In Fig. 1, d3 con-
tains the connection from v2 to the implicit object
as well as a connection to “into loaf pan” with an
origin index of 0. Using the chain rule, the proba-
bility of C is equal to the product of the probability

984

• Input: A set of connections C and a recipe R segmented (Sec. 6) into its actions {e1 = (v1,a1), . . . , en = (vn,an)}
• The joint probability of C and R is P (C, R) = P (C)P (R|C), each defined below:

1. Connections Prior (Sec. 3.1): P (C) =
∏

i P (di|d1, . . . ,di−1)
Define di as the list of connections with destination index i. Let cp = (o, i, j, k, tsyn, tsem) ∈ di. Then,

• P (di|d1, . . . ,di−1) = P (vs(di))
∏

cp∈di
P (1(o→ sk

ij)|vs(di),d1, . . . ,di−1, c1, . . . , cp−1)

(a) P (vs(di)): multinomial verb signature model (Sec. 3.1.1)
(b) P (1(o → sk

ij)|vs(di),d1, . . . ,di−1, c1, . . . , cp−1): multinomial connection origin model, conditioned on
the verb signature of di and all previous connections (Sec. 3.1.2)

2. Recipe Model (Sec. 3.2): P (R|C) =
∏

i P (ei|C, e1, . . . , ei−1)
For brevity, define hi = (e1, . . . , ei−1).
• P (ei|C,hi) = P (vi|C,hi)

∏
j P (aij |C,hi) (Sec. 3.2)

Define argument aij by its types and spans, aij = (tsyn
ij , tsem

ij , Sij).
(a) P (vi|C,hi) = P (vi|gi): multinomial verb distribution conditioned on verb signature (Sec. 3.2)
(b) P (aij |C,hi) = P (tsyn

ij , tsem
ij |C,hi)

∏
sk

ij∈Sij
P (sk

ij |tsyn
ij , tsem

ij , C,hi)

i. P (tsyn
ij , tsem

ij |C,hi): deterministic argument types model given connections (Sec. 3.2.1)
ii. P (sk

ij |tsyn
ij , tsem

ij , C,hi): string span model computed by case (Sec. 3.2.2):
A. tsem

ij =food and origin(sk
ij) 6=0: IBM Model 1 generating composites (Part-composite model)

B. tsem
ij =food and origin(sk

ij)=0: naı̈ve Bayes model generating raw food references (Raw food model)
C. tsem

ij = location: model for generating location referring expressions (Location model)

Figure 2: Summary of the joint probabilistic model P (C, R) over connection set C and recipe R.

of each of the destination subsets:

P (C) =
∏

i

P (di|d1, . . . ,di−1).

The probability of each destination subset de-
composes into two distributions, a verb signature
model and a connection origin model:

P (di|d1, . . . ,di−1) = P (vs(di))

×
∏

cp∈di

P (1(o→ sk
ij)|vs(di),di−1

1 , cp−1
1).

We define each of these distributions below.

3.1.1 Verb signature model
A destination subset di deterministically defines a
verb signature gi for verb vi based on the syntac-
tic and semantic types of the connections in di as
well as whether or not each connection has a non-
zero origin index. If the origin index is 0 for all
connections in di, we call vi a leaf. (In Fig, 1,
v1 (preheat) and v2 (mix) are leafs.) The formal
definition of a verb signature is as follows:

Definition 1 The verb signature gi for a verb vi

given a destination set di consists of two parts:

1. type: {tsyn | ∃(o, i, j, k, tsyn, food) ∈ di}
2. leaf: true iff (o, i, j, k, tsyn, tsem) ∈ di ⇒

o = 0

For example, in Fig. 1, the signature for the
“mix” action is g2 = ({DOBJ}, true) and

the signature for the “lay” action is g4 =
({DOBJ,PP}, false). Given that there are two
syntactic types (i.e., DOBJ and PP) and each
verb signature can either be labeled as a leaf or
not, there are eight possible verb signatures.

We define a deterministic function that re-
turns the verb signature of a destination subset:
vs(di) = gi. P (vs(di)) is a multinomial distri-
bution over the possible verb signatures.

3.1.2 Connection origin model
We define 1(o→ sk

ij) as an indicator function that
is 1 if there is a connection from the action with in-
dex o to the span sk

ij . The probability that a string
span has a particular origin depends on (1) the verb
signature of the span’s corresponding verb, and (2)
the previous connections. If, for example, gi has
leaf= true, then the origin of sk

ij must be 0. If an
origin has been used in a previous connection, it is
much less likely to be used again.2

We assume that a destination subset is a list of
connections: if cp ∈ di, we define cp−1

1 as the con-
nections that are prior to cp in the list. Similarly,
di−1

1 is the set of destination sets (d1, . . . ,di−1).
The connection origin model is a multinomial dis-
tribution that defines the probability of an origin
for a span conditioned on the verb signature and
all previous connections:

P (1(o→ sk
ij)|vs(di),di−1

1 , cp−1
1),

2A counterexample in the cooking domain is separating
egg yolks from egg whites to be used in separate components,
only to be incorporated again in a later action.

985

where cp = (o, i, j, k, tsyn, tsem).

3.2 Recipe model

Given a set of connections C for a recipe R, we
can determine how the actions of the recipe inter-
act and we can calculate the probability of gen-
erating a set of recipe actions ER = {e1 =
(v1,a1), . . . , en = (vn,an)}. Intuitively, R is
more likely given C if the destinations of the con-
nections are good text representations of the ori-
gins. For example, a string span “oven” is much
more likely to refer to the output of the action
“Preheat the oven” than “Mix flour and sugar.”

We define the history hi of an action to be the
set of all previous actions: hi = (e1, . . . , ei−1).
The probability of a recipe R given a set of con-
nections C can be factored by the chain rule:

P (R|C) =
∏

i

P (ei|C,hi).

Given C and a history hi, we assume the verb and
arguments of an action are independent:

P (ei|C,hi) = P (vi|C,hi)
∏
j

P (aij |C,hi).

Since the set of connections deterministically de-
fines a verb signature gi for a verb vi, we can sim-
plify P (vi|C,hi) to the multinomial distribution
P (vi|gi). For example, if gi defines the verb to
have an ingredient direct object, then the probabil-
ity of “preheat” given that signature will be lower
than the probability of “mix.”

The probability of an argument aij =
(tsyn

ij , tsemij , Sij) given the connections and history
decomposes as follows:

P (aij |C,hi) = P (tsyn
ij , tsemij |C,hi)

× P (Sij |tsyn
ij , tsemij , C,hi).

3.2.1 Argument types model

The first distribution, P (tsyn
ij , tsemij |C,hi), ensures

that the syntactic and semantic types of the argu-
ment match the syntactic and semantic type of the
incoming connections to spans of that argument.
The probability is 1 if all the types match, 0 oth-
erwise. For example, in Fig. 1, this distribution
would prevent a connection from the “preheat” ac-
tion to the food argument a42, i.e., “over the top,”
since the semantic types would not match.

3.2.2 String span models
The second distribution, P (Sij |tsyn

ij , tsemij , C,hi),
models how likely it is to generate a particular
string span given the types of its encompassing ar-
gument, the connections, and history. We assume
the probability of each span is independent:

P (Sij |tsyn
ij , tsem

ij , C,hi) =
∏

sk
ij∈Sij

P (sk
ij |tsyn

ij , tsem
ij , C,hi).

We break this distribution into three cases. To
help describe the separate cases we define the
function origin(s, C) to determine the origin in-
dex of the connection in C to the span s. That is,
origin(sk

ij , C)=o⇔ ∃(o, i, j, k, tsyn, tsem) ∈ C.

Part-composite model When the encompassing
argument is a food and the origin is a previous verb
(i.e., P (sk

ij |tsyn
ij , tsemij = food, origin(sk

ij) 6=
0, C,hi)), then the probability of the span depends
on the ingredients that the span represents given
the connections in C. For example, “dressing” is
more likely given ingredients “oil” and “vinegar”
than given “chicken” and “noodles”. We use IBM
Model 1 (Brown et al., 1993) to model the prob-
ability of a composite destination phrase given a
set of origin food tokens. Let food(sk

ij , C) be the
set of spans in food arguments such that there is
a directed path from those arguments to sk

ij . IBM
Model 1 defines the probability of a span given the
propagated food spans, P (sk

ij |food(sk
ij , C)).3

Raw food model When the encompassing ar-
gument is a food but the origin index is 0
(i.e., P (sk

ij |tsyn
ij , tsemij = food, origin(sk

ij) =
0, C,hi)), then there is no flow of ingredients into
the span. A span that represents a newly intro-
duced raw ingredient (e.g., “bacon” in e4 of Fig. 1)
should have a high probability. However, spans
that denote the output of actions (e.g, ‘batter,” “ba-
nana mixture”) should have low probability. We
use a naı̈ve Bayes model over the tokens in the
span P (s|is raw) =

∏
` P (w`|is raw) where w` is

the `th token in s (e.g., “mixture” would have a
very low probability but “flour” would be likely).

Location model When the encompassing ar-
gument is a location (i.e., tsemij = location),

3IBM Model 1 cannot handle implicit arguments. In this
case, we model the probability of having an implicit food ar-
gument given the length of the connection (i.e., implicit food
arguments nearly deterministically connect to the previous
action). The probability of non-empty string spans is scaled
accordingly to ensure a valid probability distribution.

986

v

s s’

v

s s’

v

s s’

v

s s’

v’ v’

v

s s’

v

s s’

v’ v’

s’’ s’’

v’’ v’’

Add

3-way swap

2-way swap

Figure 3: The three types of search operators. For
swaps, one of the origins can be 0.

P (Sij |tsyn
ij , tsemij , C,h) models the appropriate-

ness of the origin action’s location for the destina-
tion. If the string span is not implicit, the model
deterministically relies on string match between
the span and the location argument of the verb
at the origin index. For example, the probability
of “the preheated oven” conditioned on an origin
with location “oven” is 1, but 0 for an origin with
location “bowl.” If the span sk

ij is empty, we use
a multinomial model P (loc(origin(sk

ij , C))|vi)
that determines how likely it is that an action vi

occurs in the location of the origin verb. For ex-
ample, baking generally happens in an oven and
grilling on a grill, but not vice versa. For example,
in Fig. 1, the probability of the location span of
“bake” is determined by P (“oven” | “bake”).

4 Local Search

Connections among actions and arguments iden-
tify which ingredients are being used by which
action. For example, in Fig. 1, we know that we
are baking something that contains all the ingre-
dients introduced in e2 and e4 because there is a
path of connections from the introduction of the
raw ingredients to the implicit object of “bake”. We
cannot make decisions about the origins of argu-
ments independently; the likelihood of each edge
depends on the other edges. Identifying the most
likely set of connections is, therefore, intractable.

We adopt a local search approach to infer the
best set of connections.4 We initialize the set of

4Similar local search methods have been shown to work
well for other NLP tasks, including recent work on depen-

Algorithm 1 Pseudocode for learning P (C, R)
Input: Initialized P (C, R), recipe datasetR
Repeat until convergence:

E-step: Update C ←− arg maxC P (C, R)
for each R ∈ R using local search (Sec. 4)
M-step: Update parameters of P (C, R)
using action graphs generated in E-step

Return P (C, R)

connections using a sequential algorithm that con-
nects the output of each event to an argument of
the following event, which is a strong baseline as
shown in Sec. 8. We score potential local search
operators that can be applied to the current set of
connections C and make a greedy selection that
improves P (C, R) the most until no search opera-
tor can improve the probability. We constrain the
search so all verbs have a direct object (i.e., im-
plicit direct objects connect to a previous action).

We employ three types of search operators (see
Fig. 3 for details). OP ADD changes the origin in-
dex of a connection in C from 0 to the index of
an event. OP 2SWAP swaps the origin indexes of
two connections. This works even if one of the
origin indexes is 0. OP 3SWAP rotates the origin
indexes of three connections. This works even if
one of the origin indexes is 0. For efficiency rea-
sons, we only allow 3-way swaps with destination
indexes within 4 events of each other.

5 Learning

We use hard EM to learn the probabilistic mod-
els. Pseudocode is given in Alg. 1. At each itera-
tion, we use our local search algorithm and the cur-
rent probabilistic models to annotate each recipe
in the data set with its most likely set of connec-
tions C (Sec. 4). Then, we re-estimate the param-
eters of the probabilistic models using the recipe-
connections pairs as training data. A small (33
recipes) development set was used to determine
when to stop the iterations. Experimental details
and model initialization are described in Sec. 7.

6 Segmentation

Our inference and learning algorithms assume as
input a recipe segmented into a set of events ER =
{(v1,a1), . . . , (vn,an)}. We designed a segmen-
tation system that could be trained on our un-
annotated data set of mostly imperative sentences.

dency parsing (Zhang et al., 2014).

987

Our system achieves an F1 score of 95.6% on the
task of identifying the correct verbs in the test set.5

Segmentation model We define a generative
model for recipes as:

P (R) = P (n)
n∏
i

P (vi)P (m | vi)
m∏

j=1

P (aij).

We first select a number of verbs n in the recipe
from a geometric distribution. Given the number
of verbs, we select a set of verbs V = {v1, . . . , vn}
using a multinomial distribution. For each verb vi,
we select a number of arguments m from a sep-
arate multinomial distribution that has the prob-
ability of 0, 1, 2, or 3+ arguments given the
verb, P (m | vi). For each argument, we gen-
erate a string using a bigram model, P (aij) =∏

` P (w`|w`−1), where w` is the `th word of aij .

Inference Given tokenized sentence T =
(w1, . . . , wk), we enumerate all possible segmen-
tations and choose the one with the highest prob-
ability. To keep this efficient, we use a closed set
of possible verbs and assume a closed set of words
(e.g., prepositions, adverbs) can only follow the
start token in the argument bigram model. Thus,
annotating the verbs in a sentence determines a
unique set of argument strings. Despite scoring
the segmentations for all possible sets of verbs, we
found the process to be very efficient in practice.

Learning For unsupervised learning, we again
employ a hard EM approach. We initialize our
models, segment all of the training data, re-
estimate the parameters, and iterate these steps un-
til performance on a development set converges.

We estimate the initial verb multinomial model
using counts from the first word of each sentence
in the dataset, which are normally verbs in imper-
ative sentences, and filter out any words that have
no verb synsets in WordNet (Miller, 1995). All
other models are initialized to be uniform.

7 Experimental Setup

Data Set We collected 2456 recipes (with over
23,000 sentences) from allrecipes.com by search-
ing for 20 dish names (e.g., including “banana
muffins”, and “deviled eggs”). We randomly sam-
pled, removed, and hand labeled 33 recipes for a

5Early efforts using a state-of-the-art parser could only
achieve an F1 score of 73.6% for identifying verbs, likely due
to a lack of imperative sentences in the training data. This
result motivated us to develop our segmentation system.

development set and 100 recipes for test. All mod-
els were trained on the unannotated recipes; the
dev set was used to determine the stopping point
for training. Each recipe in the test set has 13 ac-
tions on average.

Recipe pre-processing To pre-process each
recipe, we first use the segmentation system de-
scribed in Sec. 6. Then, we use a string classifi-
cation model to determine the semantic type (e.g.,
food, location, or other) of an argument based
on its spans. We identify spans as raw ingredients
based on string match heuristics (e.g., in Fig. 1, the
span “crushed crackers” represents the ingredients
“crushed butter-flavored crackers”). We stem all
words and ignore function words.

Sequential Baseline Because most connections
are sequential – i.e., argument spans are most of-
ten connected to the output of the previous verb
– sequential connections make a strong baseline;
we connect the output of each predicate to the first
available argument span of the following predi-
cate. If no argument exists, an implicit argument is
created. We run this baseline with and without first
identifying raw ingredients in the recipe; if raw in-
gredient spans are identified, the baseline will not
connect the previous event to those spans. Perfor-
mance suffers significantly if the raw ingredients
are not identified beforehand.

Evaluation metrics We report F-measure by
comparing the predicted connections from actions
to spans (i.e., where the origin index > 0) against
gold standard annotations. We don’t evaluate con-
nections to raw ingredients as we create those con-
nections during pre-processing (see Sec. 7).

Model initialization The verb signature model
(Sec. 3.2) is initialized by first identifying food
arguments using string overlap with the ingredi-
ent list. All other arguments’ types are considered
unknown, and partial counts were awarded to all
verb signatures consistent with the partial infor-
mation. The first verb in each recipe was assumed
to be the only leaf. The string classification model
for the pre-processing step was initialized by us-
ing the initialized verb signature model to identify
the types of DOBJ arguments. The string classi-
fication model was estimated using the argument
tokens given the types. We initialized the part-
composite model (Sec. 3.2.2) so that exact string
matches between ingredients and spans are given

988

Algorithm Prec Rec F1
Automatic segmentations

Sequential baseline 55.7 52.7 54.1
Sequential baseline w/ ingredients 60.4 57.2 58.8
Our model before EM 65.8 62.7 64.2
Our model after EM 68.7 65.0 66.8

Oracle segmentations
Sequential baseline 67.8 65.2 66.5
Sequential baseline w/ ingredients 73.5 70.7 72.0
Our model before EM 77.1 74.8 75.9
Our model after EM 81.6 78.5 80.0

Table 1: Performance of our algorithm against the
sequential baselines.

Verb Top location tokens

bake oven - 55.4% min - 0.7%
mix bowl - 32.6% hand - 0.9%
press pan - 24.7% dish - 6.5%
stir bowl - 5.5% skillet - 2.0%
fry heat - 11.9% skillet - 10.2%
cool rack - 10.5% pan - 3.8%
boil water - 15.5% saucepan - 5.2%

Table 2: The top scoring location token for exam-
ple verbs. The percentage is the percent of times
the verb has that as a visible location token.

high probabilities and those without are given low
probabilities. Given the initialized string classifi-
cation model, the raw food model (Sec. 3.2.2) is
initialized counting whether or not tokens in food
arguments occur in the ingredient list. The proba-
bility of an implicit location (Sec. 3.2.2) is initial-
ized to a hand-tuned value using the dev set.

8 Results

Quantitative Results We trained our model for
four iterations of hard EM until performance con-
verged on the development set. Table 1 presents
our results on the test set. We compare our model
to the sequential baselines using both the output
of our segmentation system and oracle segmen-
tations. We perform significantly better than the
sequential baselines, with an increase in F1 of
8 points over the more competitive baseline us-
ing our segmentation system and an increase of 8
points using the oracle segmentations.

Qualitative Results We find that the learned
models demonstrate interpretable cooking knowl-
edge. Table 3 shows the top composite tokens
for different ingredients as learned by the part-
composite model (Sec. 3.2.2). The composite
tokens show parts of the ingredient (e.g., after
“eggs” can be split into “whites” or “yolks”) or

Verb Top verb signature (%)

add {DOBJ, PP} 58%
{DOBJ} 27%

combine {DOBJ}:leaf 68%
{DOBJ} 17%

bake {DOBJ} 95%
grease {}:leaf 75%
pour {DOBJ, PP} 68%

{DOBJ} 27%
reduce {PP} 90%

{DOBJ} 8%

Table 4: The top verb signatures for example
verbs. The syntactic types identify which argu-
ments of the verb are foods and “leaf” means no
arguments of the verb connect to previous actions.

composites that are likely to contain an ingredi-
ent (e.g., “flour” is generally found in “batter”
and “dough”). Unsurprisingly, the word “mixture”
is one of the top words to describe a combina-
tion of ingredients, regardless of the ingredient.
The model also learns modifiers that describe key
properties of ingredients (e.g., flour is “dry” but
bananas are “wet”) which is important when eval-
uating connections for sentences such as “Fold the
wet mixture into the dry ingredients.”

Table 2 shows the location preferences of verbs
learned by the location model (Sec. 3.2.2). Some
verbs show strong preferences on locations (e.g.,
“bake” occurs in an oven, “mix” in a bowl). The
top location for a “boil” action is in “water,” but in
other recipes “water” is an ingredient.

Finally, Table 4 shows learned verb signatures.
For example, “add” tends to be a non-leaf action,
and can take one or two food arguments (e.g.,
one food argument: “Heat the pan. Add onions.”
vs. two food arguments: “Add the wet mixture
to the dry mixture.”) We learn that the most likely
verb signature for “add” has two food arguments;
since over 74% of the occurrences of “add” in the
dataset only have one visible argument, the seg-
mentation alone is not enough to determine the
signature.

Errors Finally, we performed an error analysis
on the development set. 24% of the errors were
due to missing or incorrect actions caused by seg-
mentation errors. Among the actions that were
segmented correctly, 82% of the outgoing connec-
tions were sequential. Of those, our system missed
17.6% of the sequential connections and 18.3% of
the non-sequential connections.

989

Ingredient Top composite tokens

eggs egg, yolk, mixture, noodles, whites, cook, top, potato, cold, fill
beef beef, mixture, grease, meat, excess, cook, top, loaf, sauce, ground
flour flour, mixture, dough, batter, top, crust, ingredients, sauce, dry, pie
noodles noodles, cook, mixture, egg, sauce, top, meat, drain, pasta, layer
chicken chicken, mixture, salad, cook, dressing, pasta, soup, breast, vegetables, noodles
pumpkin pumpkin, mixture, pie, filling, temperature, seeds, mash, oven, crust, dough
bananas banana, mixture, batter, muffin, bread, egg, wet, cup, ingredients, slice

Table 3: Examples of ingredients with their top inferred composite words.

9 Related work

Our work relates to a substantial body of research
that transforms natural language instructions into
actionable plans (Artzi and Zettlemoyer, 2013,
Chen and Mooney, 2011, Branavan et al., 2011,
Branavan et al., 2009, McMahon et al., 2006).
Most of these approaches do interactive learning
in virtual environments or simulations, while we
learn from the redundancy seen in the text of dif-
ferent instances of similar recipes.

There is also significant related work on su-
pervised learning for instructions. A recent se-
ries of studies have explored parsing of cook-
ing recipes (Mori et al., 2012; Mori et al., 2014;
Maeta et al., 2015). However, they assume anno-
tated data, study Japanese recipes, and make edge
connections independently without taking into ac-
count the flow of ingredients. Tasse and Smith
(2008) develops annotation for English recipes,
but do not mark connections from implicit roles,
and only studied segmentation models. Lau et
al. (2009) develop models to interpret how-to in-
structions, but also assume supervision, and do not
make connections between different actions.

Data-driven extraction of cooking knowledge
has been explored in the context of building a
cooking ontology (Gaillard et al., 2012; Nanba et
al., 2014). In contrast, our work induces prob-
abilistic cooking knowledge as part of unsuper-
vised learning process for understanding recipes.
Cooking knowledge is also closely related to
script knowledge, but most prior work focus on
newswire and children’s books rather than proce-
dural language (Fujiki et al., 2003; Chambers and
Jurafsky, 2009; Pichotta and Mooney, 2014; Bala-
subramanian et al., 2013) or rely on crowdsourced
descriptions to learn procedural knowledge (Reg-
neri et al., 2010; Regneri et al., 2011; Frermann
et al., 2014). There is work on related, but dis-
tinct, tasks that use recipes, including identifying
actionable refinements from online recipe reviews
(Druck and Pang, 2012) and extracting structured

information from ingredient lists (Greene, 2015)
Cooking recipes have also been studied in the

context of grounded language learning, e.g., to
build robots that can cook (e.g., Bollini et al.,
2013, Beetz et al., 2011), or to align cooking
videos to natural language descriptions of actions
(Regneri et al., 2013) or recipe texts (Malmaud et
al., 2014; Malmaud et al., 2015). Our work com-
plements these efforts by recovering fine-grained
procedural semantics from text alone.

Finally, detection and resolution of implicit ar-
guments is an instance of zero anaphora detec-
tion and resolution (Silberer and Anette, 2012,
Tetreault 2002, Whittemore et al., 1991, Palmer et
al., 1986). We present an empirical approach for
understanding these phenomena in instructions.

10 Conclusion

We presented unsupervised methods for segment-
ing and identifying latent connections among ac-
tions in recipe text. Our model outperformed a
strong linear baseline, while learning a variety of
domain knowledge, such as verb signatures and
probable ingredient components for different com-
posites. Future work includes learning a more
comprehensive model of locations (e.g., identify-
ing nested locations such as an oven and a pan in
the oven), enriching action graphs with greater se-
mantic coverage (e.g., durations, tools, amounts),
and training and evaluating on larger datasets. We
also plan to use our techniques to support related
tasks, such as instructional recipe generation.

Acknowledgments

We thank the anonymous reviewers, Mike Lewis,
Dan Weld, Yoav Artzi, Antoine Bosselut, Kenton
Lee, Luheng He, Mark Yatskar, and Gagan Bansal
for helpful comments, and Polina Kuznetsova for
the preliminary work. This research was sup-
ported in part by the Intel Science and Technol-
ogy Center for Pervasive Computing (ISTC-PC)
and the NSF (IIS-1252835 and IIS-1524371).

990

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1(1):49–62.

Niranjan Balasubramanian, Stephen Soderland,
Mausam, and Oren Etzioni. 2013. Generating
coherent event schemas at scale. In Proceedings
of the 2013 Conference on Empirical Methods on
Natural Language Processing, pages 1721–1731.

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Mal-
donado, Lorenz Mosenlechner, Dejan Pangercic,
Thomas Ruhr, and Moritz Tenorth. 2011. Robotic
roommates making pancakes. In Proceedings of
the 11th IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids), pages 529–536.

Mario Bollini, Stefanie Tellex, Tyler Thompson,
Nicholas Roy, and Daniela Rus. 2013. Interpreting
and executing recipes with a cooking robot. Experi-
mental Robotics, 88:481–495.

S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and
Regina Barzilay. 2009. Reinforcement learning for
mapping instructions to actions. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP: Vol-
ume 1 - Volume 1, pages 82–90.

S.R.K. Branavan, David Silver, and Regina Barzilay.
2011. Non-linear monte-carlo search in civiliza-
tion ii. In Proceedings of the Twenty-Second Inter-
national Joint Conference on Artificial Intelligence,
pages 2404–2410.

Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993.
The mathematics of statistical machine translation:
parameter estimation. Computational Linguistics,
19:263–311.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the Association for
Computational Linguistics and the 4th International
Joint Conference on Natural Language Processing
of the Asian Federation of Natural Language Pro-
cessing, pages 602–610.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the 25th
AAAI Conference on Artificial Intelligence (AAAI-
2011), pages 859–865.

Gregory Druck and Bo Pang. 2012. Spice it up? Min-
ing refinements to online instructions from user gen-
erated content. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics, pages 545–553.

Charles J. Fillmore, 1982. Frame semantics, pages
111–137. Hanshin Publishing Co., Seoul, South Ko-
rea.

Lea Frermann, Ivan Titov, and Manfred Pinkal. 2014.
A hierarchical bayesian model for unsupervised in-
duction of script knowledge. In Proceedings of the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 49–
57.

Toshiaki Fujiki, Hidetsugu Nanba, and Manabu Oku-
mura. 2003. Automatic acquisition of script knowl-
edge from a text collection. In Proceedings of the
Tenth Conference on European Chapter of the As-
sociation for Computational Linguistics - Volume 2,
pages 91–94.

Emmanuelle Gaillard, Emmanuel Nauer, Marie
Lefevre, and Amélie Cordier. 2012. Extracting
generic cooking adaptation knowledge for the
TAAABLE case-based reasoning system. In
Proceedings of the 1st Workshop on Cooking with
Computers (CwC).

Erica Greene. 2015. Extracting structured data from
recipes using conditional random fields. The New
York Times Open Blog.

TA Lau, Clemens Drews, and Jeffrey Nichols. 2009.
Interpreting written how-to instructions. In Pro-
ceedings of the Twenty-First International Joint
Conference on Artificial Intelligence, pages 1433–
1438.

Matt MacMahon, Brian Stankiewicz, and Benjamin
Kuipers. 2006. Walk the talk: Connecting language,
knowledge, and action in route instructions. In Pro-
ceedings of the 21st National Conference on Artifi-
cial Intelligence - Volume 2, AAAI’06, pages 1475–
1482. AAAI Press.

Hirokuni Maeta, Tetsuro Sasada, and Shinsuke Mori.
2015. A framework for procedural text understand-
ing. In Proceedings of the 14th International Con-
ference on Parsing Technologies, pages 50–60.

Jon Malmaud, Earl J. Wagner, Nancy Chang, and
Kevin Murphy. 2014. Cooking with semantics. In
Proceedings of the ACL 2014 Workshop on Semantic
Parsing, pages 33–38.

Jonathan Malmaud, Jonathan Huang, Vivek Rathod,
Nick Johnston, Andrew Rabinovich, and Kevin
Murphy. 2015. What’s cookin’? Interpreting cook-
ing videos using text, speech and vision. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
143–152.

George A. Miller. 1995. WordNet: A lexical
database for english. Communications of the ACM,
38(11):39–41.

991

Shinsuke Mori, Tetsuro Sasada, Yoko Yamakata, and
Koichiro Yoshino. 2012. A machine learning ap-
proach to recipe text processing. In Proceedings
of the 1st Workshop on Cooking with Computers
(CwC).

Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and
Tetsuro Sasada. 2014. Flow graph corpus from
recipe texts. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’14), pages 26–31.

Hidetsugu Nanba, Yoko Doi, Miho Tsujita, Toshiyuki
Takezawa, and Kazutoshi Sumiya. 2014. Construc-
tion of a cooking ontology from cooking recipes and
patents. In Proceedings the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Com-
puting: Adjunct Publication, pages 507–516.

Martha S. Palmer, Deborah A. Dahl, Rebecca J. Schiff-
man, Lynette Hirschman, Marcia Linebarger, and
John Dowding. 1986. Recovering implicit infor-
mation. In Proceedings of the 24th Annual Meeting
on Association for Computational Linguistics, pages
10–19.

Karl Pichotta and Raymond Mooney. 2014. Statisti-
cal script learning with multi-argument events. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 220–229.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 979–988.

Michaela Regneri, Alexander Koller, Josef Ruppen-
hofer, and Manfred Pinkal. 2011. Learning script
participants from unlabeled data. In Proceedings of
the Conference on Recent Advances in Natural Lan-
guage Processing, pages 463–470.

Michaela Regneri, Marcus Rohrbach, Dominikus Wet-
zel, Stefan Thater, Bernt Schiele, and Manfred
Pinkal. 2013. Grounding action descriptions in
videos. Transactions of the Association for Com-
putational Linguistics (TACL), Volume 1., 1:25–36.

Roger Carl Schank and Robert P. Abelson. 1977.
Scripts, plans, goals and understanding : an inquiry
into human knowledge structures. The Artificial in-
telligence series. L. Erlbaum, Hillsdale, N.J.

Carina Silberer and Anette Frank. 2012. Casting im-
plicit role linking as an anaphora resolution task. In
Proceedings of the First Joint Conference on Lexical
and Computational Semantics - Volume 1: Proceed-
ings of the Main Conference and the Shared Task,
and Volume 2: Proceedings of the Sixth Interna-
tional Workshop on Semantic Evaluation, pages 1–
10.

Dan Tasse and Noah A. Smith. 2008. SOUR CREAM:
Toward semantic processing of recipes. Technical
Report CMU-LTI-08-005, Carnegie Mellon Univer-
sity, Pittsburgh, PA.

Joel R. Tetreault. 2002. Implicit role reference. In
Proceedings of the International Symposium on Ref-
erence Resolution for Natural Language Processing,
pages 109–115.

Greg Whittemore, Melissa Macpherson, and Greg
Carlson. 1991. Event-building through role-filling
and anaphora resolution. In Proceedings of the 29th
Annual Meeting on Association for Computational
Linguistics, pages 17–24.

Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2014. Greed is good if randomized: New
inference for dependency parsing. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1013–
1024.

Arnold M. Zwicky. 1988. On the subject of bare im-
peratives in english. In C. Duncan-Rose and T. Ven-
nemann, editors, On Language: Rhetorica, Phono-
logica, Syntactica - A Festschrift for Robert P. Stock-
well from His Friends and Colleagues, pages 437–
450. Routledge, London.

992

