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Preface by the General Chair
August 25, 2015

Welcome to the 2015 Conference on Empirical Methods in Natural Language Processing. EMNLP is
annually organized by SIGDAT, the Association for Computational Linguistics’ special interest group on
linguistic data and corpus-based approaches to NLP. This year the conference will be held on September
17-21 in the enchanting city of Lisbon, Portugal.!

EMNLP has continued to increase in prominence as one of the most important conferences in Natural
Language Processing (NLP). This year the conference has experienced an unprecedented boost in submit-
ted papers. I believe that this reflects both the growth of the NLP field and also the health and strength of
the conference itself, with a history of many years of solid work. With this level of interest at submission
time, we are also expecting a record attendance. The conference will span a five-day period this year, and
it requires a growing organization structure.

Some of the features introduced in EMNLP 2014 will continue this year (e.g., tutorials, new chairs,
posters as parallel sessions, flat rates and flexibility for tutorials and workshops, etc.). We also introduce
some innovations, like a revised selection process for which talks are presented as talks versus posters.

This year I had the privilege of coordinating the conference from my General Chair position. This has
been a very instructive and enriching exercise which showed me the conference as a whole, from many
different angles. Prefaces in the proceedings invariably praise the team of organizers. This one will not
be an exception. Organizing a large conference as EMNLP requires excellent people working as a team
in multiple interrelated tasks. I have been lucky to work with an outstanding team of people, from whom
I learnt a lot. These aren’t empty words. I would like to thank each and every chair for the hard work that
made the conference a reality.

The Program Chairs, Jian Su and Chris Callison-Burch, did an excellent job at putting together a very
interesting program with over 300 papers. They had to deal with a very large number of submissions,
which exceeded even our most optimistic expectations. As a consequence, they were forced to be creative
and to find solutions on the fly to adapt to the situation. They recruited the largest ever program committee
and successfully managed a huge reviewing and decision making process under a very tight schedule. A
real gift for the general chair. They complemented the program with very interesting keynote speakers,
Yoshua Bengio and Justin Grimmer who will present exciting research topics for our community.

The EMNLP 2015 main conference is accompanied by 7 workshops and 8 tutorials during the first two
days. The Workshops Chairs, Zornitsa Kozareva and Jorg Tiedemann, and the Tutorials Chairs, Maggie
Li and Khalil Sima’an, conducted the selection processes in a joint effort with the other ACL conferences
in 2015 (NAACL and ACL-IJCNLP). This has been the standard procedure from last years. It has the
advantage of starting early, avoiding duplicated reviewing and allowing a more balanced selection among
conferences. EMNLP attracted a varied and interesting set of workshops and tutorials, which gives more
value to the conference.

Daniele Pighin and Yuval Marton were responsible for the always difficult and sometimes thankless
task of putting together the conference publications. This is a very complex effort which involves coordi-
nation with almost everyone in the team under the pressure of hard publication deadlines. Yuval is serving
in this position for a second year. Staggered two year terms for publication chairs is a new addition for
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EMNLP starting this year, and we hope that it will be a permanent feature. In the first year, publication
chairs will learn and do the bulk of proceedings compilation. During the second year their role will be
more advisory, instructing and helping the first-year chair. This procedure will help the transmission of
the necessary know-how from year to year. Thanks to Yuval and Daniele for accepting the challenge and
making it work wonderfully. Finally, this is the second year that EMNLP uses a mobile app for the confer-
ence program (Conference4me). The publication chairs also coordinated the integration of the app with
SoftConf, which is now smoother and more seamless.

The local organization team was led by André Martins and Jodo Graga. They did an amazing job,
working hard and with all the complexities and subtleties of local arrangements. One of the keys for the
success was the creation of a large team of local organizers with clearly defined roles and responsibilities.
They appointed very committed people: Isabel Trancoso (Local Publicity Chair), Fernando Batista (Hand-
book Chair), Bruno Martins (Website and App Chair), Luisa Coheur (Student Volunteer Coordinator), and
Helena Moniz (Local Arrangements Chair). Thanks to all. I am especially pleased about the new website,
which was revamped and looks more professional everyday. This is certainly a good investment for the
future.

A large conference as EMNLP needs to focus on dissemination activities too. Barbara Plank acted as
the international Publicity Chair. She did a fantastic job and coordinated very well with the local publicity
and the website chairs. The calls for papers, calls for participation, and main news of the conference were
timely distributed through ACL, the usual distribution lists, and also through the conference website and
two Facebook and Twitter accounts. The EMNLP2015 Twitter account garnered more followers than in
previous years.

I am really grateful to SIGDAT. Its secretary, Noah Smith, acted as the liasion between SIGDAT and
the conference organizers. He was always available and ready to help with very good advice. SIGDAT
also provided the funds for the student scholarship program. These grants help covering traveling expenses
to a dozen of students. The committee appointed for collecting the applications and making the decisions
was formed by Francisco Guzman and Llufs Padr6, who had to analyze all the information and decide the
awardees in only a few days.

Another sign of the health of EMNLP and the field in general is the interest showed by sponsors.
Thanks to the work of our sponsorship team, formed by Jodo Graga and Hang Li, in coordination with the
ACL International Sponsorship Committee, we got a record number of 13 sponsors for EMNLP 2015 (2
platinum, 3 gold, 6 silver and 2 bronze). In addition to these direct sponsors, we also have several smaller
supporters, exhibitors, and institutional partners. We are extremely grateful to all these companies and
institutions, which make a better conference possible at a more affordable registration fee.

Additionally, we counted on the invaluable help of Priscilla Rasmussen, supporting the local organiza-
tion in all fronts with her broad experience. She took care of the registration process too. We also got very
good advice, know-how, and helpful software and forms from last year general chair and local organizers,
Alessandro Moschitti and Kareem Darwish. Thank you.

Finally, I would like to thank the authors of submitted and accepted papers, and all the attendees to the
conference, who will be the main actors from September 17 to September 21, 2015. I am convinced that
we will experience a fantastic conference, scientifically exciting and full of fond memories, in the unique
environment of Lisbon.

Lluis Marquez
EMNLP 2015 General Chair
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Preface by the Program Committee Co-Chairs
August 25, 2015

Welcome to the 2015 Conference on Empirical Methods in Natural Language Processing! This year we
received a record number of submissions. There were 1300 valid submissions. The 600 long papers and
700 short papers were allocated to one of 15 areas. The most popular areas this year were Semantics,
Statistical Models and Machine Learning Methods, Text Mining and NLP applications, and Machine
Translation.

Reviewing for a conference this size involves an enormous volunteer effort from many individuals. We
are very grateful to our 30 area chairs and to the more than 900 researchers who reviewed the submissions.
We accepted 312 papers (157 long and 155 short papers), representing a global acceptance rate of 24%.
An additional 17 papers accepted by the TACL journal were presented at the conference as well.

To decide whether the accepted papers should be presented as talks or posters, we asked the area chairs,
the reviewers, and the authors of accepted papers to vote on which papers they would like to attend. We
showed the title of each paper and its abstract, but not its authors. 400 people provided their input. We
selected talks based on popularity, while ensuring that each area was represented by at least one session.
Our rationale for taking a vote was that papers that many people wanted to attend would be better served
by presenting a talk in a large room, while papers with more specialized interest would benefit from the
one-on-one interactions facilitated by posters. Rather than doing large plenary poster sessions, we have
scheduled two parallel poster sessions with small batches of thematically similar papers that will be run
simultaneously with the talks.

We selected best papers from a shortlist of 20 papers that were nominated by the area chairs. The best
paper committee ranked the nominees, and based on their rankings we selected the following papers for
the best paper awards:

e Best paper - Broad-coverage CCG Semantic Parsing with AMR by Yoav Artzi, Kenton Lee and
Luke Zettlemoyer.

e Best paper - Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dia-

logue Systems by Tsung-Hsien Wen, Milica Gasic, Nikola Mrksi¢, Pei-Hao Su, David Vandyke and
Steve Young.

IBM has provided a cash scholarship for us to award to the best student paper. This will go to Tsung-
Hsien Wen, since he is currently a student. The following papers received an honorable mention for the
best paper award:

e Honorable mention for best paper - Traversing Knowledge Graphs in Vector Space by Kelvin Guu,
John Miller and Percy Liang.

e Honorable mention for best paper - Building a shared world: mapping distributional to model-
theoretic semantic spaces by Aurélie Herbelot and Eva Maria Vecchi.

e Honorable mention for best paper - Language Understanding for Text-based Games using Deep
Reinforcement Learning by Karthik Narasimhan, Tejas Kulkarni and Regina Barzilay.

e Honorable mention for best short paper - Joint Lemmatization and Morphological Tagging with
Lemming by Thomas Miiller, Ryan Cotterell, Alexander Fraser and Hinrich Schiitze.
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e Honorable mention for best short paper - Semi-Supervised Bootstrapping of Relationship Extractors
with Distributional Semantics by David S. Batista, Bruno Martins and Mario J. Silva.

This year we created a new “Best data set or resource” award, since so much work in our community is
driven by data. The paper that receiving this inaugural distinction is:

e Best data set or resource - A large annotated corpus for learning natural language inference by
Samuel R. Bowman, Gabor Angeli, Christopher Potts and Christopher D. Manning.

With two honorable mentions:

e Notable data set or resource - That’s So Annoying!!!: A Lexical and Frame-Semantic Embedding
Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors using
#petpeeve Tweets by William Yang Wang and Diyi Yang.

e Notable data set or resource - Modeling Reportable Events as Turning Points in Narrative by Jessica
Ouyang and Kathy McKeown.

We decided to give more awards than in past years by recognizing papers with honorable mentions and by
creating the new best data or resource award. Our goal was to recognize roughly the top 1% of all of the
submissions to the conference with awards (recognizing approximately the top 5% of accepted papers).
We are very grateful to our invited speakers Yoshua Bengio and Justin Grimmer.

Yoshua Bengio is professor of Computer Science and Operations Research at the Université de Mon-
tréal. He is the author of two books and more than 200 publications, the most cited being in the areas of
deep learning, recurrent neural networks, probabilistic learning algorithms, natural language processing
and manifold learning. He co-directs the Canadian Institute for Advanced Research’s program on deep
learning. He is on the board of NIPS. Professor Bengio’s research into deep learning has had a dramatic
impact on the field of NLP in the past few years, and has invigorated interest in Al through machine
learning.

Justin Grimmer is an associate professor of Political Science at Stanford University. His research uses
statistical methods to examine American politics. He is the author of two books on the topic “Represen-
tational Style in Congress: What Legislators Say and Why It Matters” and “The Impression of Influence:
How Legislator Communication and Government Spending Cultivate a Personal Vote.” His work has
appeared in the American Political Science Review, American Journal of Political Science, Journal of
Politics, Political Analysis, Proceedings of the National Academy of Sciences, Regulation and Gover-
nance, and Poetics. Professor Grimmer’s research points to exciting new directions for computational
social science and how the field of NLP can facilitate research in many areas.

We thank them in advance for coming to the conference and sharing their insights.

We would also like to thank our general chair Lluis Marquez, André Martins and Jodo Graca and
colleagues for their excellent work with the local organization, and Yuval Marton and Daniele Pighin for
doing an excellent job assembling these proceedings.

We thank SIGDAT for inviting us to serve as Program Co-Chairs of EMNLP 2015. We hope that the
conference is an excellent one. Enjoy your stay in Lisbon!

Chris Callison-Burch and Jian Su
EMNLP 2015 Program Committee Co-Chairs
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Invited Speaker: Yoshua Bengio

Deep Learning of Semantic Representations

Abstract: The core ingredient of deep learning is the notion of distributed representation. This
talk will start by explaining its theoretical advantages, in comparison with non-parametric meth-
ods based on counting frequencies of occurrence of observed tuples of values (like with n-
grams). The talk will then explain how having multiple levels of representation, i.e., depth, can
in principle give another exponential advantage. Neural language models have been extremely
successful in recent years but extending their reach from language modeling to machine trans-
lation is very appealing because it forces the learned intermediate representations to capture
meaning, and we found that the resulting word embeddings are qualitatively different. Recently,
we introduced the notion of attention-based encoder-decoder systems, with impressive results
on machine translation several language pairs and for mapping an image to a sentence, and these
results will conclude the talk.

Biography: Yoshua Bengio received a PhD in Computer Science from McGill University,
Canada in 1991. After two post-doctoral years, one at M.I.'T. with Michael Jordan and one
at AT&T Bell Laboratories with Yann LeCun and Vladimir Vapnik, he became professor at
the Department of Computer Science and Operations Research at Université de Montréal. He
is the author of two books and more than 200 publications, the most cited being in the areas
of deep learning, recurrent neural networks, probabilistic learning algorithms, natural language
processing and manifold learning. He is among the most cited Canadian computer scientists
and is or has been associate editor of the top journals in machine learning and neural networks.
Since *2000 he holds a Canada Research Chair in Statistical Learning Algorithms, since *2006
an NSERC Industrial Chair, since 2005 his is a Senior Fellow of the Canadian Institute for Ad-
vanced Research and since 2014 he co-directs its program focused on deep learning. He is on the
board of the NIPS foundation and has been program chair and general chair for NIPS. He has co-
organized the Learning Workshop for 14 years and co-created the new International Conference
on Learning Representations. His current interests are centered around a quest for Al through
machine learning, and include fundamental questions on deep learning and representation learn-
ing, the geometry of generalization in high-dimensional spaces, manifold learning, biologically
inspired learning algorithms, and challenging applications of statistical machine learning.
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Invited Speaker: Justin Grimmer

Measuring How Elected Officials and Constituents Communicate

Abstract: This talk will show how elected officials use communication to cultivate support with
constituents, how constituents express their views to elected officials, and why biases in both
kinds of communication matter for political representation. To demonstrate the bias and its ef-
fects, I propose to use novel collections of political texts and new text as data methods. Using
the new data and methods, I will show how the incentives of communication contribute to per-
ceptions of an angry public and vitriolic politicians. Among elected officials, the ideologically
extreme members of Congress disproportionately participate in policy debates, resulting in polit-
ical debates that occur between the most extreme members of each party. Among constituents,
the most ideologically extreme and angry voters disproportionately contact their member of
Congress, creating the impression of a polarized and vitriolic public. The talk will explain how
the findings help us to understand how representation occurs in American politics, while also
explaining how computational tools can help address questions in the social sciences.

Biography: Justin Grimmer is an associate professor of political science at Stanford Univer-
sity. His research examines how representation occurs in American politics using new statistical
methods. His first book Representational Style in Congress: What Legislators Say and Why It
Matters (Cambridge University Press, 2013) shows how senators define the type of representa-
tion they provide constituents and how this affects constituents’ evaluations and was awarded
the 2014 Richard Fenno Prize. His second book The Impression of Influence: How Legisla-
tor Communication and Government Spending Cultivate a Personal Vote (Princeton University
Press, 2014 with Sean J. Westwood and Solomon Messing) demonstrates how legislators ensure
they receive credit for government actions. His work has appeared in the American Political
Science Review, American Journal of Political Science, Journal of Politics, Political Analysis,
Proceedings of the National Academy of Sciences, Regulation and Governance, and Poetics.
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Majid Yazdani and James Henderson

Modeling Tweet Arrival Times using Log-Gaussian Cox Processes
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Pre-Computable Multi-Layer Neural Network Language Models
Jacob Devlin, Chris Quirk and Arul Menezes

Birds of a Feather Linked Together: A Discriminative Topic Model using Link-based
Priors

Weiwei Yang, Jordan Boyd-Graber and Philip Resnik
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Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan and Zheng Chen
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Yi Yang, Doug Downey and Jordan Boyd-Graber

Traversing Knowledge Graphs in Vector Space
Kelvin Guu, John Miller and Percy Liang
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Dat Quoc Nguyen, Richard Billingsley, Lan Du and Mark Johnson

Session 2B: Tagging, Chunking and Parsing 1 (Long +TACL Papers)

Density-Driven Cross-Lingual Transfer of Dependency Parsers
Mohammad Sadegh Rasooli and Michael Collins

A Neural Network Model for Low-Resource Universal Dependency Parsing
Long Duong, Trevor Cohn, Steven Bird and Paul Cook

Improved Transition-based Parsing by Modeling Characters instead of Words with
LSTMs
Miguel Ballesteros, Chris Dyer and Noah A. Smith

[TACL] Approximation-Aware Dependency Parsing by Belief Propagation
Matthew R. Gormley, Mark Dredze and Jason Eisner

Session 2C: Summarization (Long Papers)

Sentence Compression by Deletion with LSTMs
Katja Filippova, Enrique Alfonseca, Carlos A. Colmenares, Lukasz Kaiser and
Oriol Vinyals

An Empirical Comparison Between N-gram and Syntactic Language Models for
Word Ordering
Jiangming Liu and Yue Zhang

A Neural Attention Model for Abstractive Sentence Summarization
Alexander M. Rush, Sumit Chopra and Jason Weston

Scientific Article Summarization Using Citation-Context and Article’s Discourse

Structure
Arman Cohan and Nazli Goharian
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13:30-15:10 Session 2D (P1-9): Text Mining and NLP Applications (Long Paper Posters)

Hashtag Recommendation Using Dirichlet Process Mixture Models Incorporating

Types of Hashtags
Yeyun Gong, Qi Zhang and Xuanjing Huang

A Graph-based Readability Assessment Method using Word Coupling
Zhiwei Jiang, Gang Sun, Qing Gu, Tao Bai and Daoxu Chen

More Features Are Not Always Better: Evaluating Generalizing Models in Incident

Type Classification of Tweets
Axel Schulz, Christian Guckelsberger and Benedikt Schmidt

Flexible Domain Adaptation for Automated Essay Scoring Using Correlated Linear

Regression
Peter Phandi, Kian Ming A. Chai and Hwee Tou Ng

Show Me Your Evidence - an Automatic Method for Context Dependent Evidence

Detection
Ruty Rinott, Lena Dankin, Carlos Alzate Perez, Mitesh M. Khapra, Ehud Aharoni

and Noam Slonim

Spelling Correction of User Search Queries through Statistical Machine Translation
Sasa Hasan, Carmen Heger and Saab Mansour

Human Evaluation of Grammatical Error Correction Systems
Roman Grundkiewicz, Marcin Junczys-Dowmunt and Edward Gillian

Learning a Deep Hybrid Model for Semi-Supervised Text Classification
Alexander Ororbia II, C. Lee Giles and David Reitter

Joint Embedding of Query and Ad by Leveraging Implicit Feedback
Sungjin Lee and Yifan Hu
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Saturday, September 19, 2015 (continued)

13:30-15:10 Session 2E (P1-11): Information Extraction (Short Paper Posters)

Automatic Extraction of Time Expressions Accross Domains in French Narratives
Mike Donald Tapi Nzali, Xavier Tannier and Aurelie Neveol

Semi-Supervised Bootstrapping of Relationship Extractors with Distributional Se-
mantics
David S. Batista, Bruno Martins and Mario J. Silva

Extraction and generalisation of variables from scientific publications
Erwin Marsi and Pinar Oztiirk

Named entity recognition with document-specific KB tag gazetteers
Will Radford, Xavier Carreras and James Henderson

"A Spousal Relation Begins with a Deletion of engage and Ends with an Addition of
divorce": Learning State Changing Verbs from Wikipedia Revision History
Derry Tanti Wijaya, Ndapandula Nakashole and Tom Mitchell

Improving Distant Supervision for Information Extraction Using Label Propagation
Through Lists
Lidong Bing, Sneha Chaudhari, Richard Wang and William Cohen

An Entity-centric Approach for Overcoming Knowledge Graph Sparsity
Manjunath Hegde and Partha P. Talukdar

Semantic Relation Classification via Convolutional Neural Networks with Simple
Negative Sampling
Kun Xu, Yansong Feng, Songfang Huang and Dongyan Zhao

A Baseline Temporal Tagger for all Languages
Jannik Strétgen and Michael Gertz

Named Entity Recognition for Chinese Social Media with Jointly Trained Embed-
dings
Nanyun Peng and Mark Dredze

Inferring Binary Relation Schemas for Open Information Extraction
Kangqi Luo, Xusheng Luo and Kenny Zhu
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16:30-16:55

16:55-17:20

Session 2E (P12-16): Information Retrieval and Question Answering (Short
Paper Posters)

LDTM: A Latent Document Type Model for Cumulative Citation Recommendation
Jingang Wang, Dandan Song, Zhiwei Zhang, Lejian Liao, Luo Si and Chin-Yew Lin

Online Sentence Novelty Scoring for Topical Document Streams
Sungjin Lee

Global Thread-level Inference for Comment Classification in Community Question
Answering

Shafiq Joty, Alberto Barrén-Cedefio, Giovanni Da San Martino, Simone Filice,
Lluis Marquez, Alessandro Moschitti and Preslav Nakov

Key Concept Identification for Medical Information Retrieval
Jiaping Zheng and Hong Yu

Image-Mediated Learning for Zero-Shot Cross-Lingual Document Retrieval
Ruka Funaki and Hideki Nakayama

Coffee break

Session 3A: Sentiment Analysis and Opinion Mining 1 (Long Papers)

Detecting Risks in the Banking System by Sentiment Analysis
Clemens Nopp and Allan Hanbury

Sentiment Flow - A General Model of Web Review Argumentation
Henning Wachsmuth, Johannes Kiesel and Benno Stein

Neural Networks for Open Domain Targeted Sentiment
Meishan Zhang, Yue Zhang and Duy Tin Vo

Extracting Condition-Opinion Relations Toward Fine-grained Opinion Mining
Yuki Nakayama and Atsushi Fujii
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Session 3B: Semantics 2 (Long +TACL Papers)

A large annotated corpus for learning natural language inference
Samuel R. Bowman, Gabor Angeli, Christopher Potts and Christopher D. Manning

Question-Answer Driven Semantic Role Labeling: Using Natural Language to An-
notate Natural Language
Luheng He, Mike Lewis and Luke Zettlemoyer

[TACL] It’s All Fun and Games until Someone Annotates: Video Games with a

Purpose for Linguistic Annotation.
David Jurgens and Roberto Navigli

[TACL] Semantic Proto-Roles
Drew Reisinger, Rachel Rudinger, Francis Ferraro, Kyle Rawlins and Benjamin Van
Durme

Session 3C: Information Retrieval and Question Answering (Long Papers)

Name List Only? Target Entity Disambiguation in Short Texts
Yixin Cao, Juanzi Li, Xiaofei Guo, Shuanhu Bai, Heng Ji and Jie Tang

Biography-Dependent Collaborative Entity Archiving for Slot Filling
Yu Hong, Xiaobin Wang, Yadong Chen, Jian Wang, Tongtao Zhang and Heng Ji

Stochastic Top-k ListNet
Tianyi Luo, Dong Wang, Rong Liu and Yiqiao Pan

Exploring Markov Logic Networks for Question Answering

Tushar Khot, Niranjan Balasubramanian, Eric Gribkoff, Ashish Sabharwal, Peter
Clark and Oren Etzioni
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Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun, Siwei Rao and Song Liu
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Yadollah Yaghoobzadeh and Hinrich Schiitze

Knowledge Base Unification via Sense Embeddings and Disambiguation
Claudio Delli Bovi, Luis Espinosa Anke and Roberto Navigli

Open-Domain Name Error Detection using a Multi-Task RNN
Hao Cheng, Hao Fang and Mari Ostendorf

Extracting Relations between Non-Standard Entities using Distant Supervision and
Imitation Learning
Isabelle Augenstein, Andreas Vlachos and Diana Maynard

Sieve-Based Spatial Relation Extraction with Expanding Parse Trees
Jennifer D’Souza and Vincent Ng

[TACL] Cross-Document Co-Reference Resolution using Sample-Based Clustering

with Knowledge Enrichment
Sourav Dutta and Gerhard Weikum

[TACL] Combining Minimally-supervised Methods for Arabic Named Entity Recog-

nition
Maha Althobaiti, Udo Kruschwitz and Massimo Poesio
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Saturday, September 19, 2015 (continued)

15:40-17:20 Session 3E (P1-13): Text Mining and NLP Applications (Short Paper Posters)

Mpr. Bennet, his coachman, and the Archbishop walk into a bar but only one of them

gets recognized: On The Difficulty of Detecting Characters in Literary Texts
Hardik Vala, David Jurgens, Andrew Piper and Derek Ruths

Convolutional Sentence Kernel from Word Embeddings for Short Text Categoriza-
tion
Jonghoon Kim, Francois Rousseau and Michalis Vazirgiannis

Predicting the Structure of Cooking Recipes
Jermsak Jermsurawong and Nizar Habash

TSDPMM: Incorporating Prior Topic Knowledge into Dirichlet Process Mixture
Models for Text Clustering
Linmei Hu, Juanzi Li, Xiaoli Li, Chao Shao and Xuzhong Wang

Sentence Modeling with Gated Recursive Neural Network
Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Shiyu Wu and Xuanjing Huang

Learning Timeline Difference for Text Categorization
Fumiyo Fukumoto and Yoshimi Suzuki

Summarizing Topical Contents from PubMed Documents Using a Thematic Analysis
Sun Kim, Lana Yeganova and W John Wilbur

Recognizing Biographical Sections in Wikipedia
Alessio Palmero Aprosio and Sara Tonelli

Learn to Solve Algebra Word Problems Using Quadratic Programming
Lipu Zhou, Shuaixiang Dai and Liwei Chen

An Unsupervised Method for Discovering Lexical Variations in Roman Urdu Infor-

mal Text
Abdul Rafae, Abdul Qayyum, Muhammad Moeenuddin, Asim Karim, Hassan Saj-
jad and Faisal Kamiran

Component-Enhanced Chinese Character Embeddings
Yanran Li, Wenjie Li, Fei Sun and Sujian Li

Multi-label Text Categorization with Joint Learning Predictions-as-Features
Method
Li Li, Houfeng Wang, Xu Sun, Baobao Chang, Shi Zhao and Lei Sha

A Framework for Comparing Groups of Documents
Arun Maiya
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Saturday, September 19, 2015 (continued)

Sunday, September 20, 2015

07:30-18:00

09:00-10:00

10:00-10:30

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

Registration

Session P2: Plenary Session

Invited Talk: Measuring How Elected Officials and Constituents Communicate
Justin Grimmer

Coffee break

Session 4A: Information Extraction 1 (Long Papers)

C3EL: A Joint Model for Cross-Document Co-Reference Resolution and Entity
Linking

Sourav Dutta and Gerhard Weikum

Joint Mention Extraction and Classification with Mention Hypergraphs
Wei Lu and Dan Roth

FINET: Context-Aware Fine-Grained Named Entity Typing
Luciano Del Corro, Abdalghani Abujabal, Rainer Gemulla and Gerhard Weikum

Joint Entity Recognition and Disambiguation
Gang Luo, Xiaojiang Huang, Chin-Yew Lin and Zaiqing Nie
Session 4B: Statistical Modeling and Machine Learning 2 (Long Papers)

How Much Information Does a Human Translator Add to the Original?
Barret Zoph, Marjan Ghazvininejad and Kevin Knight

Hierarchical Recurrent Neural Network for Document Modeling
Rui Lin, Shujie Liu, Muyun Yang, Mu Li, Ming Zhou and Sheng Li

Auto-Sizing Neural Networks: With Applications to n-gram Language Models
Kenton Murray and David Chiang

Dual Decomposition Inference for Graphical Models over Strings
Nanyun Peng, Ryan Cotterell and Jason Eisner
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Sunday, September 20, 2015 (continued)

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

10:30-12:10

Session 4C: Discourse (Long +TACL Papers)

Discourse parsing for multi-party chat dialogues
Stergos Afantenos, Eric Kow, Nicholas Asher and Jérémy Perret

Joint prediction in MST-style discourse parsing for argumentation mining
Andreas Peldszus and Manfred Stede

[TACL] One Vector is Not Enough: Entity-Augmented Distributed Semantics for
Discourse Relations
Yangfeng Ji and Jacob Eisenstein

[TACL] Latent Structures for Coreference Resolution
Sebastian Martschat and Michael Strube
Session 4D (P1-9): Semantics (Long Paper Posters)

Feature-Rich Two-Stage Logistic Regression for Monolingual Alignment
Md Arafat Sultan, Steven Bethard and Tamara Sumner

Semantic Role Labeling with Neural Network Factors
Nicholas FitzGerald, Oscar Tickstrom, Kuzman Ganchev and Dipanjan Das

RELLY: Inferring Hypernym Relationships Between Relational Phrases
Adam Grycner, Gerhard Weikum, Jay Pujara, James Foulds and Lise Getoor

Mise en Place: Unsupervised Interpretation of Instructional Recipes
Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke Zettlemoyer and Yejin Choi

Semantic Framework for Comparison Structures in Natural Language
Omid Bakhshandeh and James Allen

Sarcastic or Not: Word Embeddings to Predict the Literal or Sarcastic Meaning of
Words
Debanjan Ghosh, Weiwei Guo and Smaranda Muresan

Incorporating Trustiness and Collective Synonym/Contrastive Evidence into Taxon-
omy Construction

Tuan Luu Anh, Jung-jae Kim and See Kiong Ng

Learning to Automatically Solve Logic Grid Puzzles
Arindam Mitra and Chitta Baral
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Sunday, September 20, 2015 (continued)

10:30-12:10 Session 4E (P1-13): Machine Translation and Multilinguality (Short Paper
Posters)

Improving fast_align by Reordering
Chenchen Ding, Masao Utiyama and Eiichiro Sumita

Touch-Based Pre-Post-Editing of Machine Translation Output
Benjamin Marie and Aurélien Max

A Discriminative Training Procedure for Continuous Translation Models
Quoc-Khanh DO, Alexandre Allauzen and Frangois Yvon

System Combination for Machine Translation through Paraphrasing
Wei-Yun Ma and Kathleen McKeown

Hierarchical Incremental Adaptation for Statistical Machine Translation
Joern Wuebker, Spence Green and John DeNero

ReVal: A Simple and Effective Machine Translation Evaluation Metric Based on

Recurrent Neural Networks
Rohit Gupta, Constantin Orasan and Josef van Genabith

Investigating Continuous Space Language Models for Machine Translation Quality

Estimation
Kashif Shah, Raymond W. M. Ng, Fethi Bougares and Lucia Specia

Supervised Phrase Table Triangulation with Neural Word Embeddings for Low-

Resource Languages
Tomer Levinboim and David Chiang

Translation Invariant Word Embeddings
Kejun Huang, Matt Gardner, Evangelos Papalexakis, Christos Faloutsos, Nikos
Sidiropoulos, Tom Mitchell, Partha P. Talukdar and Xiao Fu

Hierarchical Phrase-based Stream Decoding
Andrew Finch, Xiaolin Wang, Masao Utiyama and Eiichiro Sumita

Rule Selection with Soft Syntactic Features for String-to-Tree Statistical Machine
Translation

Fabienne Braune, Nina Seemann and Alexander Fraser

Motivating Personality-aware Machine Translation
Shachar Mirkin, Scott Nowson, Caroline Brun and Julien Perez

Trans-gram, Fast Cross-lingual Word-embeddings
Jocelyn Coulmance, Jean-Marc Marty, Guillaume Wenzek and Amine Benhalloum
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Sunday, September 20, 2015 (continued)

10:30-12:10

12:10-12:50

12:50-13:30

13:30-15:10

13:30-13:55

13:55-14:20

14:20-14:45

14:45-15:10

Session 4E (P14-16): Computational Psycholinguistics (Short Paper Posters)

The Overall Markedness of Discourse Relations
Lifeng Jin and Marie-Catherine de Marneffe

Experiments in Open Domain Deception Detection
Verénica Pérez-Rosas and Rada Mihalcea

A model of rapid phonotactic generalization
Tal Linzen and Timothy O’Donnell
Lunch

Session P3: SIGDAT business meeting

Session SA: Text Mining and NLP Applications 1 (Long + TACL Papers)

[TACL] Unsupervised Identification of Translationese
Ella Rabinovich and Shuly Wintner

Automatically Solving Number Word Problems by Semantic Parsing and Reasoning
Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang Liu and Yong Rui

[TACL] Which Step Do I Take First? Troubleshooting with Bayesian Models
Annie Louis and Mirella Lapata

[TACL] Problems in Current Text Simplification Research: New Data Can Help
Wei Xu, Chris Callison-Burch and Courtney Napoles
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Sunday, September 20, 2015 (continued)

13:30-15:10

13:30-13:55

13:55-14:20

14:20-14:45

14:45-15:10

13:30-15:10

13:30-13:55

13:55-14:20

14:20-14:45

14:45-15:10

Session 5B: Semantics 3 (Long +TACL Papers)

Parsing English into Abstract Meaning Representation Using Syntax-Based Ma-
chine Translation
Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel Marcu and Jonathan May

The Forest Convolutional Network: Compositional Distributional Semantics with a
Neural Chart and without Binarization

Phong Le and Willem Zuidema

Alignment-Based Compositional Semantics for Instruction Following
Jacob Andreas and Dan Klein

[TACL] Context-aware Frame-Semantic Role Labeling

Michael Roth and Mirella Lapata

Session 5C: Phonology and Word Segmentation (Long Papers)

Do we need bigram alignment models? On the effect of alignment quality on trans-
duction accuracy in G2P

Steffen Eger

Keyboard Logs as Natural Annotations for Word Segmentation
Fumihiko Takahasi and Shinsuke Mori

Long Short-Term Memory Neural Networks for Chinese Word Segmentation
Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu and Xuanjing Huang

Semi-supervised Chinese Word Segmentation based on Bilingual Information
Wei Chen and Bo Xu
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Sunday, September 20, 2015 (continued)

13:30-15:10 Session SD (P1-8): Machine Translation and Multilinguality (Long Paper
Posters)

Hierarchical Back-off Modeling of Hiero Grammar based on Non-parametric
Bayesian Model

Hidetaka Kamigaito, Taro Watanabe, Hiroya Takamura, Manabu Okumura and Ei-
ichiro Sumita

Consistency-Aware Search for Word Alignment
Shiqi Shen, Yang Liu, Maosong Sun and Huanbo Luan

Graph-Based Collective Lexical Selection for Statistical Machine Translation
Jinsong Su, Deyi Xiong, Shujian Huang, Xianpei Han and Junfeng Yao

Bilingual Correspondence Recursive Autoencoder for Statistical Machine Transla-
tion
Jinsong Su, Deyi Xiong, Biao Zhang, Yang Liu, Junfeng Yao and Min Zhang

How to Avoid Unwanted Pregnancies: Domain Adaptation using Neural Network
Models

Shafiq Joty, Hassan Sajjad, Nadir Durrani, Kamla Al-Mannai, Ahmed Abdelali and
Stephan Vogel

Detecting Content-Heavy Sentences: A Cross-Language Case Study
Junyi Jessy Li and Ani Nenkova

Search-Aware Tuning for Hierarchical Phrase-based Decoding
Feifei Zhai, Liang Huang and Kai Zhao

Part-of-speech Taggers for Low-resource Languages using CCA Features
Young-Bum Kim, Benjamin Snyder and Ruhi Sarikaya
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Sunday, September 20, 2015 (continued)

13:30-15:10 Session 5E (P1-12): Tagging, Chunking, Sytnax and Parsing (Short Paper
Posters)

An Improved Tag Dictionary for Faster Part-of-Speech Tagging
Robert Moore

Improving Arabic Diacritization through Syntactic Analysis
Anas Shahrour, Salam Khalifa and Nizar Habash

Combining Discrete and Continuous Features for Deterministic Transition-based

Dependency Parsing
Meishan Zhang and Yue Zhang

Efficient Inner-to-outer Greedy Algorithm for Higher-order Labeled Dependency

Parsing
Xuezhe Ma and Eduard Hovy

Online Updating of Word Representations for Part-of-Speech Tagging
Wenpeng Yin, Tobias Schnabel and Hinrich Schiitze

Empty Category Detection using Path Features and Distributed Case Frames
Shunsuke Takeno, Masaaki Nagata and Kazuhide Yamamoto

Foreebank: Syntactic Analysis of Customer Support Forums
Rasoul Kaljahi, Jennifer Foster, Johann Roturier, Corentin Ribeyre, Teresa Lynn
and Joseph Le Roux

Semi-supervised Dependency Parsing using Bilexical Contextual Features from
Auto-Parsed Data
Eliyahu Kiperwasser and Yoav Goldberg

Improved Transition-Based Parsing and Tagging with Neural Networks
Chris Alberti, David Weiss, Greg Coppola and Slav Petrov

Syntactic Parse Fusion
Do Kook Choe, David McClosky and Eugene Charniak

Not All Contexts Are Created Equal: Better Word Representations with Variable
Attention

Wang Ling, Yulia Tsvetkov, Silvio Amir, Ramon Fermandez, Chris Dyer, Alan W
Black, Isabel Trancoso and Chu-Cheng Lin

An Improved Non-monotonic Transition System for Dependency Parsing
Matthew Honnibal and Mark Johnson
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Sunday, September 20, 2015 (continued)

15:10-15:40

15:40-17:20

15:40-16:05

16:05-16:30

16:30-16:55

16:55-17:20

15:40-17:20

15:40-16:05

16:05-16:30

16:30-16:55

16:55-17:20

Coffee break

Session 6A: Machine Translation 2 (Long Papers)

Improving Statistical Machine Translation with a Multilingual Paraphrase
Database
Ramtin Mehdizadeh Seraj, Maryam Siahbani and Anoop Sarkar

Learning Semantic Representations for Nonterminals in Hierarchical Phrase-Based
Translation
Xing Wang, Deyi Xiong and Min Zhang

A Comparison between Count and Neural Network Models Based on Joint Transla-
tion and Reordering Sequences
Andreas Guta, Tamer Alkhouli, Jan-Thorsten Peter, Joern Wuebker and Hermann

Ney

Effective Approaches to Attention-based Neural Machine Translation
Thang Luong, Hieu Pham and Christopher D. Manning

Session 6B: Sentiment Analysis and Opinion Mining 2 / Tagging, Chunking
and Parsing 2 (Long Papers)

Document Modeling with Gated Recurrent Neural Network for Sentiment Classifi-
cation
Duyu Tang, Bing Qin and Ting Liu

Fine-grained Opinion Mining with Recurrent Neural Networks and Word Embed-
dings
Pengfei Liu, Shafiq Joty and Helen Meng

Joint A* CCG Parsing and Semantic Role Labelling
Mike Lewis, Luheng He and Luke Zettlemoyer

Improving Semantic Parsing with Enriched Synchronous Context-Free Grammar
Junhui Li, Muhua Zhu, Wei Lu and Guodong Zhou
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Sunday, September 20, 2015 (continued)

15:40-17:20

15:40-16:05

16:05-16:30

16:30-16:55

16:55-17:20

15:40-17:20

Session 6C: Language and Vision / Information Extraction 2 (Long Papers)

Solving Geometry Problems: Combining Text and Diagram Interpretation
Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni and Clint Malcolm

Do You See What I Mean? Visual Resolution of Linguistic Ambiguities
Yevgeni Berzak, Andrei Barbu, Daniel Harari, Boris Katz and Shimon Ullman

Efficient and Expressive Knowledge Base Completion Using Subgraph Feature Ex-

traction
Matt Gardner and Tom Mitchell

Representing Text for Joint Embedding of Text and Knowledge Bases
Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury

and Michael Gamon

Session 6D (P1-11): Statistical Models and Machine Learning Methods for
NLP (Long Paper Posters)

A Utility Model of Authors in the Scientific Community
Yanchuan Sim, Bryan Routledge and Noah A. Smith

Finding Function in Form: Compositional Character Models for Open Vocabulary
Word Representation

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramon Fermandez, Silvio
Amir, Luis Marujo and Tiago Luis

Syntax-Aware Multi-Sense Word Embeddings for Deep Compositional Models of
Meaning
Jianpeng Cheng and Dimitri Kartsaklis

Conversation Trees: A Grammar Model for Topic Structure in Forums
Annie Louis and Shay B. Cohen

Fast, Flexible Models for Discovering Topic Correlation across Weakly-Related
Collections

Jingwei Zhang, Aaron Gerow, Jaan Altosaar, James Evans and Richard Jean So

Molding CNNs for text: non-linear, non-consecutive convolutions
Tao Lei, Regina Barzilay and Tommi Jaakkola

xliv



Sunday, September 20, 2015 (continued)

15:40-17:20

Multi-Perspective Sentence Similarity Modeling with Convolutional Neural Net-
works
Hua He, Kevin Gimpel and Jimmy Lin

Posterior calibration and exploratory analysis for natural language processing
models
Khanh Nguyen and Brendan O’Connor

A Generative Word Embedding Model and its Low Rank Positive Semidefinite Solu-

tion
Shaohua Li, Jun Zhu and Chunyan Miao

Reading Documents for Bayesian Online Change Point Detection
Taehoon Kim and Jaesik Choi
Session 6E (P1-13): Semantics (Short Paper Posters)

Recognizing Textual Entailment Using Probabilistic Inference
Lei Sha, Sujian Li, Baobao Chang, Zhifang Sui and Tingsong Jiang

Chinese Semantic Role Labeling with Bidirectional Recurrent Neural Networks
Zhen Wang, Tingsong Jiang, Baobao Chang and Zhifang Sui

Unsupervised Negation Focus Identification with Word-Topic Graph Model
Bowei Zou, Guodong Zhou and Qiaoming Zhu

Reverse-engineering Language: A Study on the Semantic Compositionality of Ger-
man Compounds

Corina Dima

Event Detection and Factuality Assessment with Non-Expert Supervision
Kenton Lee, Yoav Artzi, Yejin Choi and Luke Zettlemoyer

Large-Scale Acquisition of Entailment Pattern Pairs by Exploiting Transitivity
Julien Kloetzer, Kentaro Torisawa, Chikara Hashimoto and Jong-Hoon Oh

Context-Dependent Knowledge Graph Embedding
Yuanfei Luo, Quan Wang, Bin Wang and Li Guo

Learning to Identify the Best Contexts for Knowledge-based WSD
Evgenia Wasserman Pritsker, William Cohen and Einat Minkov

xlv



Sunday, September 20, 2015 (continued)

19:00-23:00

Measuring Prerequisite Relations Among Concepts
Chen Liang, Zhaohui Wu, Wenyi Huang and C. Lee Giles

Adapting Phrase-based Machine Translation to Normalise Medical Terms in Social
Media Messages
Nut Limsopatham and Nigel Collier

Script Induction as Language Modeling
Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro and Benjamin Van Durme

Online Learning of Interpretable Word Embeddings
Hongyin Luo, Zhiyuan Liu, Huanbo Luan and Maosong Sun

A Strong Lexical Matching Method for the Machine Comprehension Test
Ellery Smith, Nicola Greco, Matko Bosnjak and Andreas Vlachos

Conference Dinner

Monday, September 21, 2015

07:30-18:00

09:00-10:00

09:00-09:05

09:05-09:30

09:30-09:55

09:55-10:05

10:05-10:30

Registration

Session P4: Plenary Session

Best Paper Awards
Chris Callison-Burch and Jian Su

Broad-coverage CCG Semantic Parsing with AMR
Yoav Artzi, Kenton Lee and Luke Zettlemoyer

Semantically Conditioned LSTM-based Natural Language Generation for Spoken
Dialogue Systems

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksi¢, Pei-Hao Su, David Vandyke and
Steve Young

A Large Annotated Corpus for Learning Natural Language Inference

Samuel R. Bowman, Gabor Angeli, Christopher Potts and Christopher D. Manning

Coffee break

xlvi



Monday, September 21, 2015 (continued)

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

10:30-12:10

10:30-10:55

10:55-11:20

11:20-11:45

11:45-12:10

Session 7A: Semantics 4 (Long +TACL Papers)

Do Multi-Sense Embeddings Improve Natural Language Understanding ?
Jiwei Li and Dan Jurafsky

Learning Semantic Composition to Detect Non-compositionality of Multiword Ex-
pressions
Majid Yazdani, Meghdad Farahmand and James Henderson

Solving General Arithmetic Word Problems
Subhro Roy and Dan Roth

[TACL] From Paraphrase Database to Compositional Paraphrase Model and Back
John Wieting, Mohit Bansal, Kevin Gimpel, Karen Livescu and Dan Roth

Session 7B: Information Extraction 3 (Long Papers)

Distant Supervision for Relation Extraction via Piecewise Convolutional Neural
Networks
Daojian Zeng, Kang Liu, Yubo Chen and Jun Zhao

CORE: Context-Aware Open Relation Extraction with Factorization Machines
Fabio Petroni, Luciano Del Corro and Rainer Gemulla

Improved Relation Extraction with Feature-Rich Compositional Embedding Models
Matthew R. Gormley, Mo Yu and Mark Dredze

Classifying Relations via Long Short Term Memory Networks along Shortest De-

pendency Paths
Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng and Zhi Jin

Session 7C: Computational Psycholinguistics / Machine Translation 3 (Long
Papers)

A Computational Cognitive Model of Novel Word Generalization
Aida Nematzadeh, Erin Grant and Suzanne Stevenson

Personality Profiling of Fictional Characters using Sense-Level Links between Lex-
ical Resources

Lucie Flekova and Iryna Gurevych

Leave-one-out Word Alignment without Garbage Collector Effects
Xiaolin Wang, Masao Utiyama, Andrew Finch, Taro Watanabe and Eiichiro Sumita

Generalized Agreement for Bidirectional Word Alignment
Chunyang Liu, Yang Liu, Maosong Sun, Huanbo Luan and Heng Yu

x1vii



Monday, September 21, 2015 (continued)

10:30-12:10

10:30-12:10

Session 7D (P1-6): Word Segmentation, Tagging and Parsing (Long +TACL
Paper Posters)

A Transition-based Model for Joint Segmentation, POS-tagging and Normalization
Tao Qian, Yue Zhang, Meishan Zhang, Yafeng Ren and Donghong Ji

Multilingual discriminative lexicalized phrase structure parsing
Benoit Crabbé

Hierarchical Low-Rank Tensors for Multilingual Transfer Parsing
Yuan Zhang and Regina Barzilay

Diversity in Spectral Learning for Natural Language Parsing
Shashi Narayan and Shay B. Cohen

Transition-based Dependency Parsing Using Two Heterogeneous Gated Recursive
Neural Networks
Xinchi Chen, Yaqian Zhou, Chenxi Zhu, Xipeng Qiu and Xuanjing Huang

[TACL] A Graph-based Lattice Dependency Parser for Joint Morphological Seg-
mentation and Syntactic Analysis
Wolfgang Seeker and Ozlem Cetinoglu

Session 7E (P1-3): Spoken Language Processing (Short Paper Posters)

Turn-taking phenomena in incremental dialogue systems
Hatim Khouzaimi, Romain Laroche and Fabrice Lefevre

Hierarchical Latent Words Language Models for Robust Modeling to Out-Of Do-
main Tasks
Ryo Masumura, Taichi Asami, Takanobu Oba, Hirokazu Masataki, Sumitaka

Sakauchi and Akinori Ito

A Coarse-Grained Model for Optimal Coupling of ASR and SMT Systems for Speech
Translation
Gaurav Kumar, Graeme Blackwood, Jan Trmal, Daniel Povey and Sanjeev Khudan-

pur
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Monday, September 21, 2015 (continued)

10:30-12:10 Session 7E (P4-18): Summarization (Short Paper Posters)

Abstractive Multi-document Summarization with Semantic Information Extraction
Wei Li

Concept-based Summarization using Integer Linear Programming: From Concept
Pruning to Multiple Optimal Solutions
Florian Boudin, Hugo Mougard and Benoit Favre

GhostWriter: Using an LSTM for Automatic Rap Lyric Generation
Peter Potash, Alexey Romanov and Anna Rumshisky

Better Summarization Evaluation with Word Embeddings for ROUGE
Jun-Ping Ng and Viktoria Abrecht

Krimping texts for better summarization
Marina Litvak, Mark Last and Natalia Vanetik

From the Virtual to the RealWorld: Referring to Objects in Real-World Spatial
Scenes
Dimitra Gkatzia, Verena Rieser, Phil Bartie and William Mackaness

An Unsupervised Bayesian Modelling Approach for Storyline Detection on News
Articles

Deyu Zhou, Haiyang Xu and Yulan He

Topical Coherence for Graph-based Extractive Summarization
Daraksha Parveen, Hans-Martin Ramsl and Michael Strube
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Monday, September 21, 2015 (continued)

12:10-13:30

13:30-15:15

13:30-13:45

13:45-14:00

14:00-14:15

14:15-14:30

Summarizing Student Responses to Reflection Prompts
Wencan Luo and Diane Litman

Extractive Summarization by Maximizing Semantic Volume
Dani Yogatama, Fei Liu and Noah A. Smith

LCSTS: A Large Scale Chinese Short Text Summarization Dataset
Baotian Hu, Qingcai Chen and Fangze Zhu

Discourse Planning with an N-gram Model of Relations
Or Biran and Kathleen McKeown

Experiments with Generative Models for Dependency Tree Linearization
Richard Futrell and Edward Gibson

Summarization Based on Embedding Distributions
Hayato Kobayashi, Masaki Noguchi and Taichi Yatsuka

Reversibility reconsidered: finite-state factors for efficient probabilistic sampling in
parsing and generation
Marc Dymetman, Sriram Venkatapathy and Chunyang Xiao

Lunch

Session 8A: Fun and Quirky Topics (Short Papers)

A quantitative analysis of gender differences in movies using psycholinguistic nor-

matives
Anil Ramakrishna, Nikolaos Malandrakis, Elizabeth Staruk and Shrikanth

Narayanan

EMNLP versus ACL: Analyzing NLP research over time
Sujatha Das Gollapalli and Xiaoli Li

Answering Elementary Science Questions by Constructing Coherent Scenes using

Background Knowledge
Yang Li and Peter Clark

WikiQA: A Challenge Dataset for Open-Domain Question Answering
Yi Yang, Wen-tau Yih and Christopher Meek



Monday, September 21, 2015 (continued)

14:30-14:45

14:45-15:00

15:00-15:15

13:30-15:15

13:30-13:45

13:45-14:00

14:00-14:15

14:15-14:30

14:30-14:45

15:00-15:15

Personalized Machine Translation: Predicting Translational Preferences
Shachar Mirkin and Jean-Luc Meunier

Talking to the crowd: What do people react to in online discussions?
Aaron Jaech, Victoria Zayats, Hao Fang, Mari Ostendorf and Hannaneh Hajishirzi

What Your Username Says About You
Aaron Jaech and Mari Ostendorf
Session 8B: Semantics 5 (Short Papers)

Knowledge Base Inference using Bridging Entities
Bhushan Kotnis, Pradeep Bansal and Partha P. Talukdar

Specializing Word Embeddings for Similarity or Relatedness
Douwe Kiela, Felix Hill and Stephen Clark

Evaluation of Word Vector Representations by Subspace Alignment
Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample and Chris Dyer

Higher-order logical inference with compositional semantics
Koji Mineshima, Pascual Martinez-Gémez, Yusuke Miyao and Daisuke Bekki

Any-language frame-semantic parsing
Anders Johannsen, Héctor Martinez Alonso and Anders Sggaard

What'’s in an Embedding? Analyzing Word Embeddings through Multilingual Eval-

uation
Arne Kohn
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Monday, September 21, 2015 (continued)

13:30-15:15

13:30-13:45

13:45-14:00

14:00-14:15

14:15-14:30

14:30-14:45

14:45-15:00

15:00-15:15

13:30-15:15

Session 8C: Statistical Modeling, Machine Learning / Machine Translation
(Short Papers)

Joint Event Trigger Identification and Event Coreference Resolution with Structured
Perceptron
Jun Araki and Teruko Mitamura

A Joint Dependency Model of Morphological and Syntactic Structure for Statistical
Machine Translation
Rico Sennrich and Barry Haddow

Variable-Length Word Encodings for Neural Translation Models
Rohan Chitnis and John DeNero
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Language Understanding for Text-based Games using Deep
Reinforcement Learning
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Abstract

In this paper, we consider the task of learn-
ing control policies for text-based games.
In these games, all interactions in the vir-
tual world are through text and the un-
derlying state is not observed. The re-
sulting language barrier makes such envi-
ronments challenging for automatic game
players. We employ a deep reinforcement
learning framework to jointly learn state
representations and action policies using
game rewards as feedback. This frame-
work enables us to map text descriptions
into vector representations that capture the
semantics of the game states. We eval-
uate our approach on two game worlds,
comparing against baselines using bag-of-
words and bag-of-bigrams for state rep-
resentations. Our algorithm outperforms
the baselines on both worlds demonstrat-
ing the importance of learning expressive
representations. !

1 Introduction

In this paper, we address the task of learning con-
trol policies for text-based strategy games. These
games, predecessors to modern graphical ones,
still enjoy a large following worldwide.? They of-
ten involve complex worlds with rich interactions
and elaborate textual descriptions of the underly-
ing states (see Figure 1). Players read descriptions
of the current world state and respond with natural
language commands to take actions. Since the un-
derlying state is not directly observable, the player
has to understand the text in order to act, making it

*Both authors contributed equally to this work.
!Code is available at http: //people.csail.mit.
edu/karthikn/mud-play.
http://mudstats.com/
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' State 1: The old bridge 1
' You are standing very close to the bridge’s
i eastern foundation. If you go east you will 3
i be back on solid ground ... The bridge |

Command: Go east

State 2: Ruined gatehouse

i The old gatehouse is near collapse. Part of
' its northern wall has already fallen down ...
i East of the gatehouse leads out to a small
' open area surrounded by the remains of the
 castle. There is also a standing archway of-
' fering passage to a path along the old south-
i ern inner wall.

i Exits: Standing archway, castle corner,

r
|
|

Figure 1: Sample gameplay from a Fantasy World.
The player with the quest of finding a secret tomb,
is currently located on an old bridge. She then
chooses an action to go east that brings her to a
ruined gatehouse (State 2).

challenging for existing Al programs to play these
games (DePristo and Zubek, 2001).

In designing an autonomous game player, we
have considerable latitude when selecting an ad-
equate state representation to use. The simplest
method is to use a bag-of-words representation
derived from the text description. However, this
scheme disregards the ordering of words and the
finer nuances of meaning that evolve from com-
posing words into sentences and paragraphs. For
instance, in State 2 in Figure 1, the agent has to
understand that going east will lead it to the cas-
tle whereas moving south will take it to the stand-
ing archway. An alternative approach is to convert
text descriptions to pre-specified representations
using annotated training data, commonly used in

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1-11,
Lisbon, Portugal, 17-21 September 2015. (©2015 Association for Computational Linguistics.



language grounding tasks (Matuszek et al., 2013;
Kushman et al., 2014).

In contrast, our goal is to learn useful represen-
tations in conjunction with control policies. We
adopt a reinforcement learning framework and for-
mulate game sequences as Markov Decision Pro-
cesses. An agent playing the game aims to maxi-
mize rewards that it obtains from the game engine
upon the occurrence of certain events. The agent
learns a policy in the form of an action-value func-
tion Q(s, a) which denotes the long-term merit of
an action a in state s.

The action-value function is parametrized us-
ing a deep recurrent neural network, trained us-
ing the game feedback. The network contains two
modules. The first one converts textual descrip-
tions into vector representations that act as prox-
ies for states. This component is implemented us-
ing Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997). The second
module of the network scores the actions given the
vector representation computed by the first.

We evaluate our model using two Multi-User
Dungeon (MUD) games (Curtis, 1992; Amir and
Doyle, 2002). The first game is designed to pro-
vide a controlled setup for the task, while the sec-
ond is a publicly available one and contains hu-
man generated text descriptions with significant
language variability. We compare our algorithm
against baselines of a random player and mod-
els that use bag-of-words or bag-of-bigrams rep-
resentations for a state. We demonstrate that our
model LSTM-DQN significantly outperforms the
baselines in terms of number of completed quests
and accumulated rewards. For instance, on a fan-
tasy MUD game, our model learns to complete
96% of the quests, while the bag-of-words model
and a random baseline solve only 82% and 5% of
the quests, respectively. Moreover, we show that
the acquired representation can be reused across
games, speeding up learning and leading to faster
convergence of Q-values.

2 Related Work

Learning control policies from text is gaining in-
creasing interest in the NLP community. Example
applications include interpreting help documenta-
tion for software (Branavan et al., 2010), navi-
gating with directions (Vogel and Jurafsky, 2010;
Kollar et al., 2010; Artzi and Zettlemoyer, 2013;
Matuszek et al., 2013; Andreas and Klein, 2015)

and playing computer games (Fisenstein et al.,
2009; Branavan et al., 2011a).

Games provide a rich domain for grounded lan-
guage analysis. Prior work has assumed perfect
knowledge of the underlying state of the game to
learn policies. Gorniak and Roy (2005) developed
a game character that can be controlled by spoken
instructions adaptable to the game situation. The
grounding of commands to actions is learned from
a transcript manually annotated with actions and
state attributes. Eisenstein et al. (2009) learn game
rules by analyzing a collection of game-related
documents and precompiled traces of the game. In
contrast to the above work, our model combines
text interpretation and strategy learning in a single
framework. As a result, textual analysis is guided
by the received control feedback, and the learned
strategy directly builds on the text interpretation.

Our work closely relates to an automatic game
player that utilizes text manuals to learn strategies
for Civilization (Branavan et al., 2011a). Similar
to our approach, text analysis and control strate-
gies are learned jointly using feedback provided
by the game simulation. In their setup, states are
fully observable, and the model learns a strategy
by combining state/action features and features
extracted from text. However, in our application,
the state representation is not provided, but has to
be inferred from a textual description. Therefore,
it is not sufficient to extract features from text to
supplement a simulation-based player.

Another related line of work consists of auto-
matic video game players that infer state repre-
sentations directly from raw pixels (Koutnik et al.,
2013; Mnih et al., 2015). For instance, Mnih et
al. (2015) learn control strategies using convolu-
tional neural networks, trained with a variant of
Q-learning (Watkins and Dayan, 1992). While
both approaches use deep reinforcement learning
for training, our work has important differences.
In order to handle the sequential nature of text, we
use Long Short-Term Memory networks to auto-
matically learn useful representations for arbitrary
text descriptions. Additionally, we show that de-
composing the network into a representation layer
and an action selector is useful for transferring the
learnt representations to new game scenarios.

3 Background

Game Representation We represent a game by
the tuple (H, A, T, R, V), where H is the set of



all possible game states, A = {(a, 0)} is the set of
all commands (action-object pairs), T'(h’ | h, a, 0)
is the stochastic transition function between states
and R(h,a, o) is the reward function. The game
state H is hidden from the player, who only re-
ceives a varying textual description, produced by
a stochastic function ¥ : H — S. Specifically,
the underlying state h in the game engine keeps
track of attributes such as the player’s location,
her health points, time of day, etc. The function
W (also part of the game framework) then converts
this state into a textual description of the location
the player is at or a message indicating low health.
We do not assume access to either H or ¥ for our
agent during both training and testing phases of
our experiments. We denote the space of all possi-
ble text descriptions s to be S. Rewards are gener-
ated using R and are only given to the player upon
completion of in-game quests.

Q-Learning Reinforcement Learning is a com-
monly used framework for learning control poli-
cies in game environments (Silver et al., 2007;
Amato and Shani, 2010; Branavan et al., 2011b;
Szita, 2012). The game environment can be
formulated as a sequence of state transitions
(s,a,r,s") of a Markov Decision Process (MDP).
The agent takes an action a in state s by consult-
ing a state-action value function (s, a), which is
a measure of the action’s expected long-term re-
ward. Q-Learning (Watkins and Dayan, 1992) is
a model-free technique which is used to learn an
optimal Q(s, a) for the agent. Starting from a ran-
dom Q-function, the agent continuously updates
its Q-values by playing the game and obtaining re-
wards. The iterative updates are derived from the
Bellman equation (Sutton and Barto, 1998):

Qit1(s,a) =E[r + 7y max Qi(s',d) | s,a] (1)

where + is a discount factor for future rewards and
the expectation is over all game transitions that in-
volved the agent taking action a in state s.

Using these evolving Q-values, the agent
chooses the action with the highest Q(s,a) to
maximize its expected future rewards. In practice,
the trade-off between exploration and exploitation
can be achieved following an e-greedy policy (Sut-
ton and Barto, 1998), where the agent performs a
random action with probability e.

Deep Q-Network In large games, it is often im-
practical to maintain the Q-value for all possible

i
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Figure 2: Architecture of LSTM-DQN: The Rep-
resentation Generator (¢ ) (bottom) takes as input
a stream of words observed in state s and produces
a vector representation vs, which is fed into the
action scorer (¢ 4) (top) to produce scores for all
actions and argument objects.

state-action pairs. One solution to this problem
is to approximate Q(s,a) using a parametrized
function (s, a; @), which can generalize over
states and actions by considering higher-level at-
tributes (Sutton and Barto, 1998; Branavan et al.,
2011a). However, creating a good parametrization
requires knowledge of the state and action spaces.
One way to bypass this feature engineering is to
use a Deep Q-Network (DQN) (Mnih et al., 2015).
The DQN approximates the Q-value function with
a deep neural network to predict Q(s,a) for all
possible actions a simultaneously given the cur-
rent state s. The non-linear function layers of the
DQN also enable it to learn better value functions
than linear approximators.

4 Learning Representations and Control
Policies

In this section, we describe our model (DQN) and
describe its use in learning good Q-value approxi-
mations for games with stochastic textual descrip-
tions. We divide our model into two parts. The
first module is a representation generator that con-
verts the textual description of the current state
into a vector. This vector is then input into the
second module which is an action scorer. Fig-
ure 2 shows the overall architecture of our model.
We learn the parameters of both the representation
generator and the action scorer jointly, using the
in-game reward feedback.



Representation Generator (¢r) The represen-
tation generator reads raw text displayed to the
agent and converts it to a vector representation v.
A bag-of-words (BOW) representation is not suf-
ficient to capture higher-order structures of sen-
tences and paragraphs. The need for a better se-
mantic representation of the text is evident from
the average performance of this representation in
playing MUD-games (as we show in Section 6).

In order to assimilate better representations,
we utilize a Long Short-Term Memory network
(LSTM) (Hochreiter and Schmidhuber, 1997) as
a representation generator. LSTMs are recurrent
neural networks with the ability to connect and
recognize long-range patterns between words in
text. They are more robust than BOW to small
variations in word usage and are able to capture
underlying semantics of sentences to some ex-
tent. In recent work, LSTMs have been used suc-
cessfully in NLP tasks such as machine transla-
tion (Sutskever et al., 2014) and sentiment anal-
ysis (Tai et al., 2015) to compose vector repre-
sentations of sentences from word-level embed-
dings (Mikolov et al., 2013; Pennington et al.,
2014). In our setup, the LSTM network takes in
word embeddings wy, from the words in a descrip-
tion s and produces output vectors xj, at each step.

To get the final state representation vs, we add a
mean pooling layer which computes the element-
wise mean over the output vectors x>

1 n
%—n;m )

Action Scorer (¢4) The action scorer module
produces scores for the set of possible actions
given the current state representation. We use a
multi-layered neural network for this purpose (see
Figure 2). The input to this module is the vec-
tor from the representation generator, vy = @g(s)
and the outputs are scores for actions a € A.
Scores for all actions are predicted simultaneously,
which is computationally more efficient than scor-
ing each state-action pair separately. Thus, by
combining the representation generator and action
scorer, we can obtain the approximation for the Q-
function as Q(s,a) ~ ¢ a(Pr(s))[al.

An additional complexity in playing MUD-
games is that the actions taken by the player are

3We also experimented with considering just the output
vector of the LSTM after processing the last word. Empiri-

cally, we find that mean pooling leads to faster learning, so
we use it in all our experiments.

multi-word natural language commands such as
eat apple or go east. Due to computational con-
straints, in this work we limit ourselves to con-
sider commands to consist of one action (e.g. eat)
and one argument object (e.g. apple). This as-
sumption holds for the majority of the commands
in our worlds, with the exception of one class of
commands that require two arguments (e.g. move
red-root right, move blue-root up). We consider all
possible actions and objects available in the game
and predict both for each state using the same net-
work (Figure 2). We consider the Q-value of the
entire command (a, 0) to be the average of the Q-
values of the action a and the object o. For the rest
of this section, we only show equations for Q(s, a)
but similar ones hold for Q(s, 0).

Parameter Learning We learn the parameters
Or of the representation generator and 64 of the
action scorer using stochastic gradient descent
with RMSprop (Tieleman and Hinton, 2012). The
complete training procedure is shown in Algo-
rithm 1. In each iteration ¢, we update the pa-
rameters to reduce the discrepancy between the
predicted value of the current state Q(s, at;6;)
(where 0; = [0r;04];) and the expected Q-value
given the reward r; and the value of the next state
maxg Q(S¢+1,a;60;-1).

We keep track of the agent’s previous experi-
ences in a memory D.* Instead of performing
updates to the Q-value using transitions from the
current episode, we sample a random transition
(8,a,s’,r) from D. Updating the parameters in
this way avoids issues due to strong correlation
when using transitions of the same episode (Mnih
etal., 2015). Using the sampled transition and (1),
we obtain the following loss function to minimize:

Li(0;) =Esal(yi — Q(5,4:0,))*] (3

where y; = Bs a[r + 7 maxy Q(s',a's0,1) | 3,4
is the target Q-value with parameters 6;_; fixed
from the previous iteration.

The updates on the parameters 6 can be per-
formed using the following gradient of £;(6;):

Vo, Li(0;) =Esal2(yi — Q(8,a50;))Ve,Q(3,a50;)]

For each epoch of training, the agent plays several
episodes of the game, which is restarted after ev-
ery terminal state.

“The memory is limited and rewritten in a first-in-first-out
(FIFO) fashion.



Algorithm 1 Training Procedure for DQN with prioritized sampling

1: Initialize experience memory D
2: Initialize parameters of representation generator (¢ z) and action scorer (¢ 4) randomly
3: for episode = 1, M do

4 Initialize game and get start state description s;

5 fort=1,T do

6: Convert s; (text) to representation v, using ¢r

7 if random() < e then

8 Select a random action a;

9: else

10: Compute Q(s¢, a) for all actions using ¢ 4(vs, )
11: Select a; = argmax Q(s¢, a)
12: Execute action a; and observe reward r; and new state Syt

13: Set priority p; = 1if r; > 0, else p; = 0
14: Store transition (s¢, at, ¢, S¢+1,pt) in D
15: Sample random mini batch of transitions (s;, a;, 7, Sj+1,p;) from D,
with fraction p having p; = 1
6. Set y; = { T , . if sj+.1 is termlne.ll
rj + v maxy Q(sj41,a’;0) if 541 is non-terminal

17: Perform gradient descent step on the loss £(0) = (y; — Q(s;,a;;0))?

Mini-batch Sampling In practice, online up-
dates to the parameters ¢ are performed over a
mini batch of state transitions, instead of a single
transition. This increases the number of experi-
ences used per step and is also more efficient due
to optimized matrix operations.

The simplest method to create these mini-
batches from the experience memory D is to sam-
ple uniformly at random. However, certain ex-
periences are more valuable than others for the
agent to learn from. For instance, rare transitions
that provide positive rewards can be used more of-
ten to learn optimal Q-values faster. In our ex-
periments, we consider such positive-reward tran-
sitions to have higher priority and keep track of
them in D. We use prioritized sampling (inspired
by Moore and Atkeson (1993)) to sample a frac-
tion p of transitions from the higher priority pool
and a fraction 1 — p from the rest.

S Experimental Setup

Game Environment For our game environ-
ment, we modify Evennia,> an open-source library
for building online textual MUD games. Evennia
is a Python-based framework that allows one to
easily create new games by writing a batch file
describing the environment with details of rooms,

‘http://www.evennia.com/

Stats Home World | Fantasy World
Vocabulary size 84 1340
Avg. words / description 10.5 65.21
Max descriptions / room 3 100
# diff. quest descriptions 12 -
State transitions Deterministic Stochastic
# states (underlying) 16 > 56
Branching factor
(# commands / state) 40 222

Table 1: Various statistics of the two game worlds

objects and actions. The game engine keeps
track of the game state internally, presenting tex-
tual descriptions to the player and receiving text
commands from the player. We conduct exper-
iments on two worlds - a smaller Home world
we created ourselves, and a larger, more com-
plex Fantasy world created by Evennia’s develop-
ers. The motivation behind Home world is to ab-
stract away high-level planning and focus on the
language understanding requirements of the game.

Table 1 provides statistics of the game worlds.
We observe that the Fantasy world is moderately
sized with a vocabulary of 1340 words and up to
100 different descriptions for a room. These de-
scriptions were created manually by the game de-
velopers. These diverse, engaging descriptions are
designed to make it interesting and exciting for hu-
man players. Several rooms have many alternative
descriptions, invoked randomly on each visit by



the player.

Comparatively, the Home world is smaller: it
has a very restricted vocabulary of 84 words and
the room descriptions are relatively structured.
However, both the room descriptions (which are
also varied and randomly provided to the agent)
and the quest descriptions were adversarially cre-
ated with negation and conjunction of facts to
force an agent to actually understand the state in
order to play well. Therefore, this domain pro-
vides an interesting challenge for language under-
standing.

In both worlds, the agent receives a positive
reward on completing a quest, and negative re-
wards for getting into bad situations like falling
off a bridge, or losing a battle. We also add
small deterministic negative rewards for each non-
terminating step. This incentivizes the agent to
learn policies that solve quests in fewer steps. The
supplementary material has details on the reward
structure.

Home World We created Home world to mimic
the environment of a typical house.® The world
consists of four rooms - a living room, a bedroom,
a kitchen and a garden with connecting pathways.
Every room is reachable from every other room.
Each room contains a representative object that the
agent can interact with. For instance, the kitchen
has an apple that the player can eat. Transitions
between the rooms are deterministic. At the start
of each game episode, the player is placed in a ran-
dom room and provided with a randomly selected
quest. The text provided to the player contains
both the description of her current state and that
of the quest. Thus, the player can begin in one
of 16 different states (4 rooms X 4 quests), which
adds to the world’s complexity.

An example of a quest given to the player in
text is Not you are sleepy now but you are hun-
gry now. To complete this quest and obtain a re-
ward, the player has to navigate through the house
to reach the kitchen and eat the apple (i.e type in
the command eat apple). More importantly, the
player should interpret that the quest does not re-
quire her to take a nap in the bedroom. We cre-
ated such misguiding quests to make it hard for
agents to succeed without having an adequate level
of language understanding.

8 An illustration is provided in the supplementary material.

Fantasy World The Fantasy world is consider-
ably more complex and involves quests such as
navigating through a broken bridge or finding the
secret tomb of an ancient hero. This game also has
stochastic transitions in addition to varying state
descriptions provided to the player. For instance,
there is a possibility of the player falling from the
bridge if she lingers too long on it.

Due to the large command space in this game,
we make use of cues provided by the game itself to
narrow down the set of possible objects to consider
in each state. For instance, in the MUD example in
Figure 1, the game provides a list of possible exits.
If the game does not provide such clues for the
current state, we consider all objects in the game.

7

Evaluation We use two metrics for measuring
an agent’s performance: (1) the cumulative reward
obtained per episode averaged over the episodes
and (2) the fraction of quests completed by the
agent. The evaluation procedure is as follows. In
each epoch, we first train the agent on M episodes
of T steps each. At the end of this training, we
have a testing phase of running M episodes of the
game for 7" steps. Weuse M = 50,7 = 20 for the
Home world and M = 20,7 = 250 for the Fan-
tasy world. For all evaluation episodes, we run the
agent following an e-greedy policy with € = 0.05,
which makes the agent choose the best action ac-
cording to its Q-values 95% of the time. We report
the agent’s performance at each epoch.

Baselines We compare our LSTM-DQN model
with three baselines. The first is a Random agent
that chooses both actions and objects uniformly at
random from all available choices.® The other two
are BOW-DQN and BI-DQN, which use a bag-
of-words and a bag-of-bigrams representation of
the text, respectively, as input to the DQN action
scorer. These baselines serve to illustrate the im-
portance of having a good representation layer for
the task.

Settings For our DQN models, we used D =
100000, v = 0.5. We use a learning rate of 0.0005
for RMSprop. We anneal the ¢ for e-greedy from
1 to 0.2 over 100000 transitions. A mini-batch
gradient update is performed every 4 steps of the
gameplay. We roll out the LSTM (over words) for

"We consider 222 possible command combinations of 6
actions and 37 object arguments.

81n the case of the Fantasy world, the object choices are
narrowed down using game clues as described earlier.
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Figure 3: Left: Graphs showing the evolution of average reward and quest completion rate for BOW-
DQN, LSTM-DQN and a Random baseline on the Home world (top) and Fantasy world (bottom). Note
that the reward is shown in log scale for the Fantasy world. Right: Graphs showing effects of transfer
learning and prioritized sampling on the Home world.

a maximum of 30 steps on the Home world and for
100 steps on the Fantasy world. For the prioritized
sampling, we used p = 0.25 for both worlds. We
employed a mini-batch size of 64 and word em-
bedding size d = 20 in all experiments.

6 Results

Home World Figure 3 illustrates the perfor-
mance of LSTM-DQN compared to the baselines.
We can observe that the Random baseline per-
forms quite poorly, completing only around 10%
of quests on average® obtaining a low reward of
around —1.58. The BOW-DQN model performs
significantly better and is able to complete around
46% of the quests, with an average reward of 0.20.
The improvement in reward is due to both greater
quest success rate and a lower rate of issuing in-
valid commands (e.g. eat apple would be invalid
in the bedroom since there is no apple). We no-
tice that both the reward and quest completion
graphs of this model are volatile. This is because
the model fails to pick out differences between
quests like Not you are hungry now but you are
sleepy now and Not you are sleepy now but you

° Averaged over the last 10 epochs.

are hungry now. The BI-DQN model suffers from
the same issue although it performs slightly bet-
ter than BOW-DQN by completing 48% of quests.
In contrast, the LSTM-DQN model does not suf-
fer from this issue and is able to complete 100%
of the quests after around 50 epochs of training,
achieving close to the optimal reward possible. '’
This demonstrates that having an expressive rep-
resentation for text is crucial to understanding the
game states and choosing intelligent actions.

In addition, we also investigated the impact of
using a deep neural network for modeling the ac-
tion scorer ¢4. Figure 4 illustrates the perfor-
mance of the BOW-DQN and BI-DQN models
along with their simpler versions BOW-LIN and
BI-LIN, which use a single linear layer for ¢ 4. It
can be seen that the DQN models clearly achieve
better performance than their linear counterparts,
which points to them modeling the control policy
better.

Fantasy World We evaluate all the models on
the Fantasy world in the same manner as before
and report reward, quest completion rates and Q-

!Note that since each step incurs a penalty of —0.01, the
best reward (on average) a player can get is around 0.98.
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values. The quest we evaluate on involves crossing
the broken bridge (which takes a minimum of five
steps), with the possibility of falling off at random
(a 5% chance) when the player is on the bridge.
The game has an additional quest of reaching a
secret tomb. However, this is a complex quest that
requires the player to memorize game events and
perform high-level planning which are beyond the
scope of this current work. Therefore, we focus
only on the first quest.

From Figure 3 (bottom), we can see that the
Random baseline does poorly in terms of both av-
erage per-episode reward!! and quest completion
rates. BOW-DQN converges to a much higher av-
erage reward of —12.68 and achieves around 82%
quest completion. Again, the BOW-DQN is often
confused by varying (10 different) descriptions of
the portions of the bridge, which reflects in its er-
ratic performance on the quest. The BI-DQN per-
forms very well on quest completion by finishing
97% of quests. However, this model tends to find
sub-optimal solutions and gets an average reward
of —26.68, even worse than BOW-DQN. One rea-
son for this is the negative rewards the agent ob-
tains after falling off the bridge. The LSTM-DQN
model again performs best, achieving an average
reward of —11.33 and completing 96% of quests
on average. Though this world does not con-
tain descriptions adversarial to BOW-DQN or BI-
DQN, the LSTM-DQN obtains higher average re-
ward by completing the quest in fewer steps and
showing more resilience to variations in the state
descriptions.

Transfer Learning We would like the represen-
tations learnt by ¢r to be generic enough and

""Note that the rewards graph is in log scale.
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Figure 5: t-SNE visualization of the word embed-
dings (except stopwords) after training on Home
world. The embedding values are initialized ran-
domly.

transferable to new game worlds. To test this,
we created a second Home world with the same
rooms, but a completely different map, changing
the locations of the rooms and the pathways be-
tween them. The main differentiating factor of
this world from the original home world lies in the
high-level planning required to complete quests.

We initialized the LSTM part of an LSTM-
DQN agent with parameters 6 learnt from the
original home world and trained it on the new
world.'? Figure 3 (top right) demonstrates that
the agent with transferred parameters is able to
learn quicker than an agent starting from scratch
initialized with random parameters (No Transfer),
reaching the optimal policy almost 20 epochs ear-
lier. This indicates that these simulated worlds can
be used to learn good representations for language
that transfer across worlds.

Prioritized sampling We also investigate the ef-
fects of different minibatch sampling procedures
on the parameter learning. From Figure 3 (bottom
right), we observe that using prioritized sampling
significantly speeds up learning, with the agent
achieving the optimal policy around 50 epochs
faster than using uniform sampling. This shows
promise for further research into different schemes
of assigning priority to transitions.

Representation Analysis We analyzed the rep-
resentations learnt by the LSTM-DQN model on
the Home world. Figure 5 shows a visualization

2The parameters for the Action Scorer (6 4) are initialized
randomly.



Description

Nearest neighbor

You are halfways out on the unstable bridge. From the castle
you hear a distant howling sound, like that of a large dog or
other beast.

The bridge slopes precariously where it extends westwards to-
wards the lowest point - the center point of the hang bridge. You

clasp the ropes firmly as the bridge sways and creaks under you.

The ruins opens up to the sky in a small open area, lined by
columns. ... To the west is the gatehouse and entrance to the

castle, whereas southwards the columns make way for a wide

open courtyard.

The old gatehouse is near collapse. .... East the gatehouse leads
out to a small open area surrounded by the remains of the cas-

tle. There is also a standing archway offering passage to a path

along the old southern inner wall.

Table 2: Sample descriptions from the Fantasy world and their nearest neighbors (NN) according to their
vector representations from the LSTM representation generator. The NNs are often descriptions of the

same or similar (nearby) states in the game.

of learnt word embeddings, reduced to two di-
mensions using t-SNE (Van der Maaten and Hin-
ton, 2008). All the vectors were initialized ran-
domly before training. We can see that semanti-
cally similar words appear close together to form
coherent subspaces. In fact, we observe four dif-
ferent subspaces, each for one type of room along
with its corresponding object(s) and quest words.
For instance, food items like pizza and rooms like
kitchen are very close to the word hungry which
appears in a quest description. This shows that
the agent learns to form meaningful associations
between the semantics of the quest and the envi-
ronment. Table 2 shows some examples of de-
scriptions from Fantasy world and their nearest
neighbors using cosine similarity between their
corresponding vector representations produced by
LSTM-DQN. The model is able to correlate de-
scriptions of the same (or similar) underlying
states and project them onto nearby points in the
representation subspace.

7 Conclusions

We address the task of end-to-end learning of con-
trol policies for text-based games. In these games,
all interactions in the virtual world are through
text and the underlying state is not observed. The
resulting language variability makes such envi-
ronments challenging for automatic game play-
ers. We employ a deep reinforcement learning
framework to jointly learn state representations
and action policies using game rewards as feed-
back. This framework enables us to map text de-
scriptions into vector representations that capture
the semantics of the game states. Our experiments
demonstrate the importance of learning good rep-
resentations of text in order to play these games
well. Future directions include tackling high-level

planning and strategy learning to improve the per-
formance of intelligent agents.
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Abstract

Distributional methods have proven to ex-
cel at capturing fuzzy, graded aspects of
meaning (/taly is more similar to Spain
than to Germany). In contrast, it is diffi-
cult to extract the values of more specific
attributes of word referents from distribu-
tional representations, attributes of the kind
typically found in structured knowledge
bases ({taly has 60 million inhabitants). In
this paper, we pursue the hypothesis that
distributional vectors also implicitly en-
code referential attributes.

We show that a standard supervised regres-
sion model is in fact sufficient to retrieve
such attributes to a reasonable degree of ac-
curacy: When evaluated on the prediction
of both categorical and numeric attributes
of countries and cities, the model consis-
tently reduces baseline error by 30%, and is
not far from the upper bound. Further anal-
ysis suggests that our model is able to “ob-
jectify” distributional representations for
entities, anchoring them more firmly in the
external world in measurable ways.

1 Introduction

Distributional models induce vector-based seman-
tic representations of words from their contextual
distributions in corpora, exploiting the observation
that words with related meanings tend to occur
in similar linguistic contexts (Turney and Pantel,
2010; Erk, 2012). Since the approach only requires
raw text as input, it can be used to harvest word
representations on a very large scale. By encoding
the rich knowledge that is present in text, these
representations are able to capture many aspects
of word meaning. Moreover, approximating se-
mantic similarity by graded geometric distance in a
vector space is an effective strategy to address the
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many linguistic phenomena that are better charac-
terized in gradient rather than discrete terms, such
as synonymy, selectional preferences, and semantic
priming (Baroni and Lenci, 2010; Erk et al., 2010;
Pad6 and Lapata, 2007, among others).

However, not all aspects of human semantic
knowledge are satisfactorily captured in terms of
fuzzy relations and graded similarity. In particular,
our knowledge of the meaning of words denoting
specific entities involves a number of “hard facts”
about the referents they denote that are best for-
malized as attribute-value pairs, of the sort that are
stored in manually-curated knowledge bases, such
as FreeBase or Wikidata."! While distributional vec-
tors can capture the useful fact that, say, Italy is in
many ways more similar to Spain than to Germany,
as humans we also know (or we can easily look up)
a set of objective facts about Italy, such as what is
its capital, its area, its official language and GDP,
that are difficult to express in the language of vector
algebra and geometry.

In this paper, we explore the hypothesis that dis-
tributional vectors implicitly encode such attributes
of referential entities, which we will call referential
attributes. We show that a simple supervised algo-
rithm applied to vectors can retrieve them so that
they can be expressed in the explicit language of
structured knowledge bases. Concretely, we train
a logistic regression model to predict the values of
both numeric and categorical FreeBase attributes
of countries and cities from their distributional vec-
tors. This model makes predictions that are signifi-
cantly better than an informed baseline, in-between
the latter and an upper-bound method. Qualitative
analysis of the results points both to the inherent
difficulty of correctly retrieving certain classes of
attributes, and to some intriguing properties of the
conceptual nature of the knowledge encoded in dis-
tributional data, that bias their predictions about
certain objective attributes of geographic entities.

1 D
www.freebase.com, www.wikidata.org.

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 12-21,
Lisbon, Portugal, 17-21 September 2015. (©2015 Association for Computational Linguistics.



We see our experiment as a first step towards
integrating conceptual and referential aspects of
meaning in distributional semantics, as we further
discuss in the conclusion.

2 Method

2.1 Distributional Representations

Mikolov et al.’s (2013) skip-gram model is a
state-of-the-art “predictive” distributional seman-
tic model which represents each word in a space
of latent dimensions optimized to predict the con-
texts of the word’s occurrences. For our study,
we adopt the pre-trained 1,000-dimensional skip-
gram model for Named Entities that is available
at https://code.google.com/p/word2vec/
and was produced from a 100-billion token news
corpus. We refer to this model as WORD2VEC.

2.2 Referential Representations

As our source of referential attributes, we use Free-
Base (see footnote 1), a knowledge base of struc-
tured information on a wide range of entities of
different semantic types (people, geographical enti-
ties, etc.). The information in FreeBase comes from
various sources, including Wikipedia and domain-
specific databases, plus user content generation and
correction. FreeBase currently records at least 2
attributes for over 47 million entities, and it has
been used fairly extensively in NLP before (Mintz
et al., 2009; Socher et al., 2013a, among others).

For each entity, FreeBase contains a list of at-
tribute-value tuples (where values can in turn be
entities, allowing a graph view of the data that
we do not exploit here). Table 1 shows a sample
of the attributes that FreeBase records for coun-
tries. Note that some attributes are simple (e.g.,
date_founded), while other can be called com-
plex, in the sense that they are attributes of at-
tributes (e.g., geolocation::latitude). We
use a double-colon notation to refer to complex
attributes. The values of all attributes can be either
numeric or categorical. The numeric attributes in
particular are often strongly correlated, both within
attributes types across years (e.g., fertility rate in
different years) and across attributes within years
(e.g., absolute GDP and GDP per capita in a given
year).

We built two datasets for our experiments, one
for countries and one for cities, with data automati-
cally extracted from FreeBase.> We consider two

’Both datasets are publicly available at http:
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Attribute Value
geolocation::latitude 52.52
geolocation: :longitude 13.38
fertility.rate::1960 2.37
fertility.rate::1994 1.24
fertility.rate::2010 1.39
date_founded 1871-01-18
containedBy Western Europe
containedBy Europe
containedBy Eurasia
adjectival_form German

Table 1: Sample of numeric and binary FreeBase
attributes for Germany.

datasets in order to check that the mapping we seek
can be established not just for one, possible hand-
picked, type of entities; we leave it to future work
to study very different kinds of entities, such as
people or institutions.

The Countries dataset consists of the 260
countries for which we have a distributional
vector. Some countries do not exist anymore,
like Yugoslavia, but, since this does not impact
our method, we keep them in the dataset. The
dataset records all simple attributes as well as
complex attributes of at most two hops in the
FreeBase graph, without manual inspection. We
linearly rescale all numeric attributes to [0..1] and
translate all categorical attributes into a binary
representation by suffixing the original value to
the original attribute name. For example, the
attribute member-of: :organization with the
value world bank results in a binary attribute
member-of::organization: :worldbank
having value 1 for all and only those countries
that are members of the World Bank, O for the
others.? Attributes that occur less than 15 times
are discarded, since they are either not consistently
recorded or rare. This results in a total of 707
numeric and 247 binary attributes. Finally, we
partition the data into training, validation, and test
set, using a 60-20-20 percent split.

We apply the same process to the Cities dataset,
which consists of 1645 cities from the intersection
of the distributional and FreeBase city lists. In

//www.ims.uni-stuttgart.de/forschung/
ressourcen/korpora/CityCountry.html.

3We considered treating some categorical attributes as
multi-valued, but decided against it since the cases in which al-
ternative values are mutually exclusive are rare (e.g., the same
country can be containedBy multiple entities, cf. Table 1).



this case, we have 211 numeric and 106 binary
attributes — the numbers are smaller because coun-
tries have a richer representation in FreeBase than
cities.

2.3 Attribute Prediction

We do zero-shot learning of full FreeBase attribute-
based country/city representations, based on distri-
butional (WORD2VEC) representations. It is zero-
shot learning in the sense of Palatucci et al. (2009):
We split the datasets at the entity, rather than at-
tribute level, such that at test time our system must
predict the full attribute set of countries and cities
that were not seen during training at all.

We use logistic regression. In effect, we predict
each output variable (FreeBase attribute) with an in-
dependent logistic regression model based on a con-
stant set of input features (WORD2VEC distribu-
tional dimensions). We call this model DIST2REF.
DIST2REF does not take advantage of the corre-
lations between the output attributes mentioned in
Section 2.2.

The dependent variables are binary as well as nu-
meric FreeBase attributes, and our model does not
distinguish between them. For binary attributes,
we interpret the value returned by the model as
the probability of “success” of a binary Bernoulli
trial. In the numeric case, we view the probabil-
ity returned by the model as directly representing
normalized attribute values.

2.4 Experimental Setup

We design the model using the Countries dataset,
and apply it to Cities without further tuning to test
its robustness. We optimize the parameters with
gradient descent, using the Cross Entropy error
function. We considered Lo regularization to ad-
dress possible overfitting, but experiments on val-
idation set showed that the model performs best
without any regularization.

As for baselines, for binary features we predict
the majority class (0 or 1), and for numeric features
we predict the mean value of the feature in the
training set. These are of course strong baselines
to beat.

As an upper bound, we train a model that uses
the same architecture as described above but uses
as input not distributional vectors but the FreeBase
attributes themselves. In other words, this model
has to learn “only” an identity mapping. This is not
trivial, though, for example due to the presence of
strong correlations among attributes, in particular
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the time series attributes (cf. Section 2.2). We call
this model REF2REF.

2.5 Evaluation

Since there is no appropriate unified evaluation
measure that covers both numeric and binary at-
tributes, we evaluate them separately. For binary
attributes, we report the attributes’ mean accuracy.

For numeric attributes, we consider attribute
prediction a ranking task. As an example, take
the population::2011: :number attribute, and
imagine that we only have three countries (Ger-
many: 80M; Spain: 36M; and Netherlands: 17M).
If we predict 56M for Spain’s population, it is still
(correctly) predicted as the second most populous
country (rank difference of 0); a prediction of 16M,
however, would push Spain to third place (rank
difference of 1).

This suggests the use of rank correlation coef-
ficients like Spearman’s p. However, we want to
measure not only how well the model can rank the
countries in the test set, but also whether these pre-
dictions are consistent with the training set (which
makes evaluation both more challenging and more
realistic). One way of achieving this goal would be
to use p on the union of training and test instances,
but this could lead to misleadingly high correlation
coefficients since this method would include the
labels of the training instances in the evaluation.

Consequently, we define our own evaluation
measure, following a rationale similar to Frome et
al.’s (2013) evaluation of a zero-shot learning sce-
nario. What we evaluate, for each attribute, is the
rank of the test countries in the whole country list.
Note that this makes our task harder, as there are
more confounders: If we only evaluated on the test
set, there would be shorter lists and therefore less
chances of getting bad rankings. So, concretely, we
first define the prediction quality of each attribute,
Q(a), as the median of the rank difference between
the prediction and the gold standard in a list that
includes both training and test countries (we use
the median to give less weight to outlier countries).
We also normalize the rank difference to obtain a
number between zero and one. In a second step,
we define the quality of the complete model, the
normalized rank score (NRS), as the mean of all
attribute quality scores, in parallel to our evaluation
on binary attributes.

Let the set of instances I be partitioned into train-
ing instances 7'r and test instances T's. Leta € A



Attribute Type =~ Model ‘ Countries  Cities
Most Frequent Class Baseline 0.86 0.97

Binary (Acc) DIST2REF 0.90 0.99
REF2REF (upper bound) 0.96 1.00
Mean Value Baseline 0.35 0.35

Numeric (NRS) DIST2REF 0.22 0.25
REF2REF (upper bound) 0.14 0.21

Table 2: Results for predicting FreeBase attributes from distributional vectors on the test sets. Both
evaluation measures range between 0 and 1. For accuracy, 1 is best. For normalized rank score (NRS), 0
is best. All pairwise differences between models are significant (p<<0.001, bootstrap resampling).

denote an attribute. We write p, (i) for the pre-
dicted value of attribute a for instance ¢ and g, (7)
for the gold standard value. Finally, let r(v, .S) de-
note the rank of value v in the list resulting when
ordering the set S. Now we can define:

Q(CL) = H}Hmed{]r(pa(i),j) _ (1)
T(ga(i)>1)| —1 | 1 € TS}
1
NRS = TAT Z Q(a) 2)

a€A

This measure can be interpreted similarly to Mean
Reciprocal Rank (Manning et al., 2008): It has
range [0..1], with smaller numbers indicating better
ranking: 0.1, for example, means that, on average,
the prediction is 10% of the ranks off (e.g., by four
countries in a forty-country list).*

Note that, when evaluating each instance ¢, we
use gold-standard values for all other instances, so
that there the baseline is not hampered by ties.

3 Results

Table 2 shows the results of our experiments on the
two test sets. For accuracy 1 is best, but for NRS
0 is best. Recall from Section 2.2 that we perform
model selection on the Countries dataset only.
The baseline is relatively high, in particular for
the binary attributes, many of which are positive
for a small subset of entities only. The amount of
skew differs considerably between the two datasets,
though. For Countries, the baseline yields an ac-
curacy of 0.86, but it achieves 0.97 on Cities. The
increase stems from very sparse categorical City
features such as containedBy, which includes all

4Subtracting 1 in Equation (1) ensures that, when the pre-
dicted and gold value of an attribute are adjacent in the rank-
ing, their rank difference is 0, capturing the intuition of rank
difference as counting the number of falsely intervening items.

15

levels of administrative divisions — that is, for the
US, all counties appear as values and are trans-
formed into sparse binary features (cf. Section 2.2).
Of course, the predictions of the baseline are use-
less, since it always predicts the absence of any
features. On numeric features, where the baseline
predicts the mean, its performance is 0.35 NRS on
both datasets. In other words, its average prediction
is off by about one third the length of the ranked
list for each attribute.

Recall that the upper bound model, REF2REF,
uses FreeBase attributes to predict FreeBase at-
tributes. All it has to learn is that there is one
feature in the input that corresponds ideally to the
output. This works almost perfectly for binary at-
tributes, with accuracy values of 0.96 (Countries)
and 1.00 (Cities). However, its performance on
numeric features (with NRS at 0.14 and 0.21, re-
spectively) is not quite perfect. We attribute this to
the presence of correlations (cf. Section 2.2).

The model whose performance we are actually
interested in, DIST2REF, in which we map from
distributional information to FreeBase features, per-
forms with remarkable consistency between these
two extremes. In fact, we see a consistent error
reduction of around 30% over the baseline, with
a similar distance to the upper bound. A signifi-
cance test with bootstrap resampling (Efron and
Tibshirani, 1994) showed that all pairwise com-
parisons (Baseline vs. DIST2REF, DIST2REF vs.
REF2REF) are statistically significant at p<<0.001.

To rule out that we misinterpret our accuracy-
based evaluation for the binary features in the
face of a highly skewed class distribution, we also
computed precision, recall, and F-Score values.
The relative patterns match those of the accuracy-
based evaluation well (Countries: baseline F=0.13,
DiST2REF F=0.51, REF2REF F=0.77) and indicate
that generally precision is higher than recall.



We think that these are overall promising results,
given that the FreeBase attributes we predict are
fairly fine-grained, and we only use generic distri-
butional information as input.

4 Analysis

We take the overall results just presented to suggest
that we are able to learn referential attributes from
distributional information to a large extent. In this
section we take a closer look at what kind of in-
formation we are able to learn, what is beyond the
scope of our model, and what are the differences
between the entity representations in WORD2VEC
and the ones our model produces. All the data
concerns the test sets only.

4.1 Attribute Groups

We start with a qualitative analysis of the Countries
dataset. Due to the large number of attributes, we
sort all individual attributes into attribute groups
by their base name (i.e. the leftmost component
of their name, cf. Section 2.2), which offers an
accessible level of granularity for inspection. We
obtain 34 numeric and 40 binary attribute groups
with median sizes of 8.5 and 2 attributes per group,
respectively.

Table 3 shows the attribute groups for both types
sorted by quality. For each group, we report av-
erage normalized rank score (NRS) and accuracy,
respectively, for both DIST2REF and the baseline.

The analysis suggests that there are two main
factors that account for the results: (1) The degree
to which an attribute is contextually supported, that
is, to what extent its values can be identified on the
basis of the contextual information that is captured
in a distributional model, and (2) general proper-
ties of the data that affect Machine Learning, most
notably data sparseness, possibly also feature value
distributions.

Attributes that are contextually supported in-
clude for instance those related to socioeconomic
development (see below for details); people talk
(and so write) about countries being more or less
developed, rich, having one or another kind of laws,
and this is captured in the abstractions over textual
context that distributional models perform. As an
extreme example of an attribute that is not contex-
tually supported, consider the numeric ISO code
of a country (iso_numeric), whose values are ar-
bitrary: They do not correspond to facts about the
world that are reflected in the way people use lan-
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guage, and so can’t be picked up by the distribu-
tional model. For this reason, DIST2REF does
worse than the baseline.

Note that, in a sufficiently large corpus, we might
indeed encounter statements like The numeric ISO
code for Spain is 724. However, since distributional
models represent words as aggregated distributions
of their contexts, and compute semantic similarity
from these context distributions, the contexts that
they use need to be generic enough to yield mean-
ingful overlap between concepts (e.g., words). As a
result, distributional models cannot easily represent
knowledge of the form “the value for property Y
of word/concept X is Z”.

Fortunately, we find that many FreeBase at-
tributes are contextually supported to a substantial
degree, even some seemingly arbitrary ones. An ex-
ample is calling codes, which we predict very well.
They turn out to be correlated with geolocations:
2X calling codes are located in Africa, 3X call-
ing codes in Southern and Eastern Europe and 4X
calling codes in Western and Northern Europe (for
comparison, ISO codes are assigned in a roughly
alphabetical order).

Numeric Attributes. Our best numeric at-
tributes belong to the geolocation group (lati-
tude and longitude). We provide a more detailed
analysis of these attributes below (Section 4.2). As
mentioned above, we also excel at many attributes
related to a country’s economic and social devel-
opment (broadly construed), such as GNI, GDP,
CO4 emissions, internet usage (each per capita),
or fertility rate. These attributes can be expected
to be contextually grounded — e.g., Luxembourg
will occur with contexts like “broadband” or “rich”
more than India.

Note, however, that the information contained in
the vectors is surprisingly subtle: For instance, the
fertility rate is a function of both general develop-
ment status (lower rates in more developed coun-
tries) and of specific social factors (higher rates in
countries with more support for families, such as
France and Finland compared countries with less
support, such as Germany or Italy).

Around the middle of the table, we find the ab-
solute versions of the developmental cluster above
(GNI in $, real and nominal GDP). Evidently, the
absolute versions of these attributes are substan-
tially less contextually supported than the relative
versions. This is not surprising: While India and
China have high absolute GDPs because they are



Numeric Attributes (Normalized Rank Score: lower is better) ‘

Binary Attributes (Accuracy: higher is better)

Attribute Group DIST2REF BL #A  f(A) | Attribute Group DIST2REF BL #A f(A)
geolocation 0.07 0.30 2 250 | continent 0.98 0.84 4 45
gdp_nominal _per_capita 0.11  0.27 1 172 | time_zones 0.98 0.93 2 26
gni_per_capita_in_ppp_dollars 0.12 028 32 155 | containedBy 098 0.81 9 49
co2_emissions_per_capita 0.12 025 49 157 | casualties' 096 0.97 2 17
fertility rate 0.12 024 52 178 | places_exported_to' 0.96 0.98 2 17
calling_code 0.12  0.27 1 205 | member_of 095 086 25 27
internet_users_percent_pop 0.13 032 22 184 | championships_athletes' 094 0.96 1 22
entry 0.14 0.23 2 140 | military_conflicts 0.94 094 2 18
gni_in_ppp-_dollars 0.16 031 32 154 | organizations 0.94 0.93 8 20
broadband_penetration_rate 0.17 0.68 15 23 | entry 0.94 0.81 5 30
population_growth _rate 0.19 031 52 201 | minimum_wage 093 0.93 2 20
military_expenditure_perc_gdp ~ 0.20 0.27 24 128 | gdp_nominal 092 0.85 1 213
gdp_real 020 034 51 149 | religions 0.92 0.93 3 23
life_expectancy 020 024 52 179 | tournaments_participated_in 091 0091 2 27
electricity_cons._per_capita 022 036 50 105 | places_imported_from 091 091 2 18
gdp_nominal 022 034 52 157 | athletic_performances 091 0.89 30 26
energy_use_per_capita 023 039 51 104 | medals_won 091 0.89 29 31
population 025 042 54 202 | gdp-nominal_per_capita 0.90 0.85 1 215
places_imported_from 0.26  0.29 2 18 | currency_used 0.89 0.89 2 26
iso_numeric' 0.26 0.23 1 220 | official_language 0.89 0.81 4 32
national_anthem_since 0.27 043 1 97 | administrative_area_type 0.89 0.69 1 185
championships_athletes 0.28 0.33 1 18 | companies_founded 0.89 0.83 3 39
gdp_growth_rate 028 041 51 154 | organizations_founded 0.89 0.83 3 39
government_debt_percent_gdp' 033 0.19 17 24 | schools_founded 0.89 0.83 3 39
casualties' 0.39 0.35 1 33 | olympics_participated_in 0.88 0.81 9 55
athletic_performances_rank 043 043 1 34 | tour_operators 0.88 0.89 3 40
date_founded' 046 041 1 61 | athletes 0.88 0.86 48 36
date_dissolved 048 048 1 21 | languages_spoken 0.88 0.84 5 38
climate_avg_rainfall 0.50 0.38 1 4 | government_bodies 0.88 0.87 2 34
force_deployments 0.53 0.58 2 20 | administrative_parent 0.87 0.69 1 185
religions_percentage 0.58 0.66 2 14 | gdp-_real 0.87 0.73 1 189
minimum_wage 0.63 0.82 28 17 | gni_in_ppp-dollars 0.87 0.62 1 170

gni_per_capita_in_ppp_dollars ~ 0.87  0.62 1 170

is_clear 0.87 0.87 1 23

governing_officials 0.86 0.82 14 34

form_of_government 0.84 0.81 11 42

equivalent_instances 0.79 0.75 1 200

exceptions 0.69 0.67 1 87

loc_type 0.69 0.58 1 146

adjectival_form' 0.65 0.69 1 65

Table 3: Results for all attribute groups on the Countries test set, in descending order of performance.
DiST2REF, BL: models; #A: number of attributes in group; f(A): median number of countries instantiating
each attribute in the dataset (260 countries); !: attribute group where model performs worse than baseline.

large countries, and for instance Luxembourg has
a much smaller one, these numbers are not indica-
tive of the actual conditions in these countries, and
therefore also not so clearly correlated with what
people write about them. This provides another
interesting angle on the difference between distri-
butional and formal knowledge representation. In
a formal system, absolute GDP, relative GDP, and
population stand in a fixed linear relationship and
knowing any two of the three uniquely determines
the third — thus, all three attributes have equal status.
In our distributional space, their status is clearly
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different, determined by the conceptual relevance
of the different attributes.

Towards the end of the table, we find more
attributes related to socioeconomic develop-
ment, such as government_percent_debt and
minimum_wage. While these should be contextu-
ally supported, too, the problem here is factor (2)
mentioned above, namely severe data sparsity (see
column f(A) in Table 3, which lists the median
number of datapoints that exhibit each attribute
group). The same goes for the remaining attribute
groups, for instance casualties (describing the



total number of military casualties incurred in his-
tory), date_founded and date_dissolved,’ or
climate_avg.rainfall.

Binary Attributes. The binary attributes show
a similar picture, albeit somewhat less sharp. We
again find contextually unsupported groups, many
of them arising from our fully automatic attribute
mining from FreeBase (cf. Section 2.2). There
are many categorical attributes that store meta-
data about numeric attributes (such as the cur-
rency in the gdp and gni groups) as well as
meta-information of FreeBase: exceptions is
a specific marker of potentially inconsistent en-
tries about Ghana, and equivalent_instances
is a flag concerning links between FreeBase and
OpenCyc. Fortunately, almost all contextually un-
supported groups are small, with only one or two
attributes, and do not have a large impact on the
overall performance. We decided not to exclude
them from evaluation for robustness’ sake, since
there is no automatic way to identify contextually
unsupported attributes in a new dataset.

We obtain good results on meaningful attributes
that are arguably strongly contextually grounded,
such as geographical and geopolitical attributes
(member_of: membership in international organi-
zations; location on a continent, etc.). However,
we fare relatively badly on government-related
attributes (form of government, governing offi-
cials). While this seems surprising at first glance,
the form_of_government attribute in FreeBase
makes very fine-grained distinctions: Its values
include “unitary state”, “presidential system”, “par-
liamentary system” and “republic”, which are not
mutually exclusive, and misses obvious alternatives
like ‘““authoritarian system”. It is not surprising
that distributional models cannot make such sub-
tle distinction between presidential and parliamen-
tary systems. The attribute governing official
presents a similar case. Other bad attributes are
very domain-specific, including athletes, encod-
ing the athletic disciplines that countries participate
in (such as swimming, judo, running, etc.), and the
data sparsity issue is certainly worse for the binary
attributes.

Note that date-based attributes can be contextually sup-
ported: We do better on national-anthem.since, for
which we have more datapoints, 97.
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Model

WORD2VEC
DIST2REF

‘ Countries Cities

-0.36  -0.45
049  0.88

Table 4: Pearson correlation coefficients of model-
predicted vs. ground truth distances between coun-
tries and cities in the test sets. WORD2VEC corre-
lations are negative because we use cosines.

4.2 Geolocation

To analyze the difference between the distributional
representations and the output of our model, we
focus on geolocation, our best attribute group.

It has already been shown that geometric dis-
tance in distributional space captures, to a cer-
tain extent, physical distance between locations
in the real world (Louwerse and Zwaan, 2009). Ta-
ble 4 shows that DIST2REF extracts even more pre-
cise distance information from distributional vec-
tors. The table reports the correlation between real
and model-predicted distances for countries and
cities. Ground-truth great circle distances (Kern
and Bland, 1948) between items are computed us-
ing the FreeBase longitude and latitude values; for
DIST2REF we use its predicted latitude and longi-
tude values; for WORD2VEC, the cosines between
the corresponding distributional vectors.

We obtain highly significant correlations in all
cases (p<10~'%), but much higher for DIST2REF.
For countries, as shown in Table 4, the correlation
is -0.36 for WORD2VEC (negative, because cosine
is a similarity measure), 0.49 for DIST2REF. For
cities, WORD2VEC reaches -0.45 correlation, and
Di1ST2REF distances are at 0.88, showing that the
method can estimate city positions to a perhaps
unexpectedly high degree of accuracy.®

This result suggests that we manage to objec-
tify the information in the distributional model,
anchoring the entities more firmly in the external
world. Indeed, distributional models are known to
be subject to conceptual or cultural effects in their
distance estimations. For instance, in WORD2VEC
German and Spanish cities are much farther away
than in the physical world, while cities within Spain
and within Germany are predicted to be a bit closer
than they actually are. Note that these effects have

SThe results are confirmed when the analysis is repeated
using the Spearman correlation measure: The DIST2REF co-
efficients are stable, whereas those of WORD2VEC go down
to 0.22 (countries) and 0.40 (cities), respectively. The good
results for Spearman, as a rank-based measure, indicate that
our success is not dominated by outliers.



an actual cognitive basis: Human intuitions about
objective physical distance between countries and
cities are biased by cognitive, cultural and socio-
economic factors, as explored for example in Fried-
man et al. (2002), who report that Texans locate
Canadian cities closer to the US border relative to
Mexican cities, despite their proximity to the latter,
and that they place Southern US cities further south
than they really are.

Interestingly, DIST2REF does also show some
cultural effects in its geolocation errors: For exam-
ple, some Pacific island states with lesser-known
identities (e.g., Nauru and French Polynesia) are
placed in the Indian Ocean, where we find the per-
haps prototypes of beautiful islands, like Seychelles
and Mauritius; also, Central American countries
(such as Panama, El Salvador, and Nicaragua)
move towards their “cultural center of gravity”,
South America.

However, this kind of cultural bias is much more
prominent in the original WORD2VEC distribu-
tional representation. The Spain/Germany effect
discussed above is not found in the DIST2REF
model at all. And while both DIST2REF and
WORD2VEC place Mexican and Spanish cities in
our test set closer to each other than they actually
are, WORD2VEC does so to a much larger extent.
In line with our goal to extract referential attributes,
thus, we are satisfied to see that DIST2REF man-
ages to minimize this bias and distill the referential
part from the distributional representations.

5 Related Work

There is a large literature on exploiting corpus ev-
idence, sometimes through distributional seman-
tic methods, in order to construct and populate
structured knowledge bases (KBs) (e.g., Buitelaar
and Cimiano (2008) and references therein). This
line of work, however, does not attempt to con-
nect entity representations extracted from corpora
and from KBs, as we do. Moreover, it focuses on
harvesting relations between entities or between
entities and a limited number of discrete attributes,
rather than predicting full-fledged KB representa-
tions of specific entities, like we do. Freitas and
Curry (2014) and Freitas et al. (2014) embed rela-
tional graphs from KBs in a distributional semantic
space to support various forms of search and rea-
soning about the KB. The focus is again on rela-
tions between discrete entities, and on exploiting
distributional semantics to navigate among them.
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Socher et al. (2013a) represent WordNet and
FreeBase entities with corpus-based distributional
vectors. They train a tensor for each relation of
interest to return high scores when combined with
the vectors of two entities that hold the intended
relation. At test time, the system is used to classify
relational tuples as true or false, as well as to predict
new entities that hold a certain relationship with a
target entity. This is quite close in spirit to what we
do, except that, given an entityl-relation-entity2
tuple, we treat relation-entity2 as a binary attribute
of entityl, and we try to induce such attributes on a
larger scale (Socher et al. consider seven relations
in total). Moreover, we rely on the same architec-
ture to learn discrete features denoting relations
with entities and numerical features, to induce full
attribute-based descriptions of entities.

Our proposal is only distantly related to methods
to embed words tokens and KB entities and rela-
tionships in a vector space, e.g., for better relation
extraction (see Weston et al. (2013) and references
therein). This line of work does not use distribu-
tional semantics to induce word vectors, and ig-
nores numerical attributes.

The broader goal of getting at referential infor-
mation with distributional semantics is shared with
Herbelot (2015). However, the specific approach
is different, as she constructs vectors for individ-
ual entities (literary characters) by contextualizing
generic noun vectors with distributional properties
of those entities. Finally, we share our methodol-
ogy with work on mapping between corpus-based
word representations and other representational
spaces, such as subject-generated concept prop-
erties (Johns and Jones, 2012; Hill et al., 2014;
Fagarasan et al., 2015), visual features (Frome et
al., 2013; Socher et al., 2013b; Lazaridou et al.,
2014) or brain signals (Mitchell et al., 2008; Mur-
phy et al., 2012). In all these settings, the focus is
entirely on predicting numerical attributes, whereas
we treat both numerical and binary attributes. Ru-
binstein et al. (2015) use distributional vectors to
predict binary conceptual attributes of common
nouns, as well as a continuous score measuring
saliency of such attributes. Our target features are
conceptually very different from those of all these
studies.

6 Discussion and Conclusion

We have shown that a simple model can learn to
predict, to a reasonable degree of accuracy, ref-



erential attributes of an entity that are typically
seen in a knowledge base from the corresponding
corpus-based distributional representation. The re-
sults suggest that, while distributional semantic
vectors can be used “as-is” to capture generic word
similarity, with some supervision it is also pos-
sible to extract other kinds of information from
them, including structured factual statements of the
sort encoded in manually-curated knowledge bases.
This makes distributional vectors very attractive as
general-purpose word meaning representations.

We have also shown that some of the errors in the
predictions can be explained on cultural grounds,
but that these effects are more pronounced in the
input of our model, a standard distributional se-
mantic model, than in its output. In this sense, our
model manages to objectify the information that it
is provided with. Our analyses also suggest that
the main limiting factor in learning referential at-
tributes, apart from good old data sparseness, is the
degree to which they are contextually supported,
that is, to what extent they are expressed with con-
sistent and specific linguistic means in the context
of their target words. This determines whether they
are actually represented in the distributional model
in the first place.

More generally, we see our work as a small
step towards the more general goal of bridging the
concept-referent gap in distributional semantics.
A common noun such as dog denotes a concept,
based on a prototype with fuzzy boundaries, sus-
ceptible of metaphorical extensions, and bearing all
the other hallmarks of generic conceptual knowl-
edge (Carlson, 2009; Murphy, 2002). These might
be adequately captured by the properties of the dog
vector in distributional semantic space. However,
when used in a specific discourse, words and more
complex linguistic expressions often denote spe-
cific referents with fixed, “hard” properties, such
as this dog, or Amur, when used for my neighbor’s
dog at 3.31pm on May 29th 2015 in Novosibirsk, a
61cm-tall black-and-tan foxhound. Amur is more
easily characterized by a set of precise attribute-
value pairs than by a vector in a generic concep-
tual space. Our experiment suggests that distri-
butional vectors encode both generic conceptual
knowledge and more precise attributes of specific
referents. Of course, while we can use FreeBase
and other knowledge bases to gather training data
about public-domain entities, such as countries or
cities, it is still not clear where we could gather
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appropriate training data to learn about the specific
properties of “private-discourse” referents such as
Amur. Moreover, it remains to be seen whether
the properties of common named entities, such as
countries and cities, that are in a sense “hybrid” be-
tween the conceptual and referential domains, also
transfer to entities of a more specific and private
kind. Finally, it is still not clear how to extend
the current approach beyond words and phrases
directly denoting an entity (Amur) to other kinds
of definite descriptions (this dog).
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Abstract

In this paper, we introduce an approach to au-
tomatically map a standard distributional se-
mantic space onto a set-theoretic model. We
predict that there is a functional relationship
between distributional information and vecto-
rial concept representations in which dimen-
sions are predicates and weights are gener-
alised quantifiers. In order to test our pre-
diction, we learn a model of such relation-
ship over a publicly available dataset of feature
norms annotated with natural language quan-
tifiers. Our initial experimental results show
that, at least for domain-specific data, we can
indeed map between formalisms, and generate
high-quality vector representations which en-
capsulate set overlap information. We further
investigate the generation of natural language
quantifiers from such vectors.

1 Introduction

In recent years, the complementarity of distributional
and formal semantics has become increasingly evi-
dent. While distributional semantics (Turney and Pan-
tel, 2010; Clark, 2012; Erk, 2012) has proved very suc-
cessful in modelling lexical effects such as graded sim-
ilarity and polysemy, it clearly has difficulties account-
ing for logical phenomena which are well covered by
model-theoretic semantics (Grefenstette, 2013).

A number of proposals have emerged from these
considerations, suggesting that an overarching seman-
tics integrating both distributional and formal aspects
would be desirable (Coecke et al., 2011; Bernardi et al.,
2013; Grefenstette, 2013; Baroni et al., 2014a; Garrette
et al., 2013; Beltagy et al., 2013; Lewis and Steedman,
2013). We will use the term ‘Formal Distributional Se-
mantics’ (FDS) to refer to such proposals. This paper
follows this line of work, focusing on one central ques-
tion: the formalisation of the systematic dependencies
between lexical and set-theoretic levels.

Let us consider the following examples.
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1. Kim writes books.
2. Kim likes books.

The preferred reading of 1 has a logical form where
the object is treated as an existential, while the object
in 2 has a generic reading:

o Jx*[book! (z*) A write’ (Kim, x*))
e GEN z[book/(x) — like' (Kim, x)]

with z* indicating a plurality and GEN the generic
quantifier.

It is generally accepted that the appropriate choice
of quantifier for an ambiguous bare plural object de-
pends, amongst other things, on the lexical semantics
of the verb (e.g. Glasbey (2006)). This type of inter-
action implies the existence of systematic influences of
the lexicon over logic, which could in principle be for-
malised.

A model of the lexicon/logic interface would be de-
sirable to explain how speakers resolve standard cases
of ambiguity like the bare plural in 1 and 2, but more
generally, it could be the basis for answering a more
fundamental question: how do speakers construct a
model of a sentence for which they have no prior per-
ceptual data?

People can make complex inferences about state-
ments without having access to their real-world ref-
erence. As an example, consider the sentence The
kouprey is a mammal. English speakers have no
problem ascertaining that if z is a kouprey, x is a
mammal (which set-theoretic semantics would express
as Vr[kouprey' (x) — mammal’(x)]), regardless of
whether they have ever encountered a kouprey. The in-
ference is supported by the lexical semantics of mam-
mal, which applies a property (being a mammal) to all
instances of a class. Much more complex inferences
are routinely performed by speakers, down to estimat-
ing the cardinality of the entities involved in a partic-
ular situation. Compare e.g. The cats are on the sofa
(2 / a few cats?), I picked pears today (a few / a few
dozen?) and The protesters were blocking the entire
avenue (hundreds/thousands of protesters?).

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 22-32,
Lisbon, Portugal, 17-21 September 2015. (©2015 Association for Computational Linguistics.



Understanding how this process works would not
only give us an insight into a complex cognitive pro-
cess, but also make a crucial contribution to NLP tasks
relying on inference (e.g. the Recognising Textual En-
tailment challenge, RTE: Dagan et al. (2009)). In-
deed, while systems have successfully been developed
to model entailment between quantifiers, ranging from
natural logic approaches (MacCartney and Manning,
2008) to distributional semantics solutions (Baroni et
al., 2012), they rely on an explicit representation of
quantification. That is, they can model the entailment
All koupreys are mammals |= This kouprey is a mam-
mal, but not Koupreys are mammals \= This kouprey is
a mammal.

In this work, we assume the existence of a mapping
between language (distributional models) and world
(set-theoretic models), or to be more precise, between
language and a shared set of beliefs about the world, as
negotiated by a group of speakers. To operationalise
this mapping, we propose that set-theoretic models,
like distributions, can be expressed in terms of vec-
tors — giving us a common representation across for-
malisms. Using a publicly available dataset of feature
norms annotated with quantifiers' (Herbelot and Vec-
chi, 2015), we show that human-like intuitions about
the quantification of simple subject/predicate pairs can
be induced from standard distributional data.

This paper is structured as follows. §2 reviews re-
lated work, focusing in turn on approaches to formal
distributional semantics, computational work on quan-
tification, and mapping between semantic spaces. In
§3, we describe our dataset. §4 and §5 describe our
experiments, reporting correlation against human an-
notations. We discuss our results in §6 and end with an
attempt at generating natural language quantifiers from
our mapped vectors (§7).

2 Related Work

2.1 Formal Distributional Semantics

The relation between distributional and formal seman-
tics has been the object of a number of studies in re-
cent years. Proposals for a FDS, i.e. a combination
of both formalisms, roughly fall into two groups: a)
the fully distributional approaches, which redefine the
concepts of formal semantics in distributional terms
(Coecke et al., 2011; Bernardi et al., 2013; Grefen-
stette, 2013; Hermann et al., 2013; Baroni et al., 2014a;
Clarke, 2012); b) the hybrid approaches, which try to
keep the set-theoretic apparatus for function words and
integrate distributions as content words representations
(Erk, 2013; Garrette et al., 2013; Beltagy et al., 2013;
Lewis and Steedman, 2013). This paper follows the hy-
brid frameworks in that we fully preserve the principles
of set theory and do not attempt to give a distributional
interpretation to phenomena traditionally catered for by

'Data available at http://www.cl.cam.ac.uk/
~ah433/mcrae-quantified-majority.txt
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formal semantics such as quantification or negation.
Our account is also similar to that proposed by Erk
(2015). Erk suggests that distributional data influences
semantic ‘knowledge’?: specifically, while a speaker
may not know the extension of the word alligator, they
maintain an information state which models properties
of alligators (for instance, that they are animals). This
information state is described in terms of probabilistic
logic, which accounts for an agent’s uncertainty about
what the world is like. The probability of a sentence
is the summed probability of the possible worlds that
make it true. Similarly, we assume a systematic relation
between distributional information and world knowl-
edge, expressed set-theoretically. The knowledge rep-
resentation we derive is not a model proper: it cannot
be said to be a description of a world — either the real
one or a speaker’s set of beliefs (c.f. §4 for more de-
tails). But it is a good approximation of the shared in-
tuitions people have about the world, in the way that
distributional representations are an averaged represen-
tation of how a group of speakers use their language.

2.2 Generalised quantifiers

Computational semantics has traditionally focused on
very specific aspects of quantification. There is a large
literature on the computational formalisation of quan-
tifiers as automata, starting with Van Benthem (1986).
In parallel to this work, much research has been done
on drawing inferences from explicitly quantified state-
ments — i.e. statements quantified with determiners
such as some/most/all, which give information about
the set overlap of a subject-predicate pair (Cooper et
al., 1996; Alshawi and Crouch, 1992; MacCartney and
Manning, 2008). Recent work in this area has even
shown that entailment between explicit quantifiers can
be modelled distributionally (Baroni et al., 2012). A
complementary object of focus, actively pursued in the
1990s, has been inference between generic statements
(Bacchus, 1989; Vogel, 1995).

Beside those efforts, computational approaches have
been developed to convert arbitrary text into logical
forms. The techniques range from completely super-
vised (Baldwin et al., 2004; Bos, 2008) to lightly su-
pervised (Zettlemoyer and Collins, 2005). Such work
has shown that it was possible to automatically give
complex formal semantics analyses to large amounts
of data. But the formalisation of quantifiers in those
systems either remains very much underspecified (e.g.
bare plurals are not resolved into either existentials or
generics) or relies on some grounded information, for
example in the form of a database.

To the best of our knowledge, no existing system is
able to universally predict the generalised quantifica-
tion of noun phrases, including those introduced by the
(in)definite singulars a/the and definite plurals the. The
closest attempt is Herbelot (2013), who suggests that

We use the term knowledge loosely, to refer to a
speaker’s beliefs about the world or a state of affairs.



Concept | Feature
is_muscular ALL
is_.wooly MOST

ape lives_on_coasts SOME
is_blind FEW
has_3_wheels ALL
used_by_children MOST

tricycle | is_small SOME
used_for_transportation | FEW
a_bike NO

Table 1: Example annotations for concepts.

‘model-theoretic vectors’ can be built out of distribu-
tional vectors supplemented with manually annotated
training data. The proposed implementation, however,
fails to validate the theory.

Our work follows the intuition that distributions can
be translated into set-theoretic equivalents. But it im-
plements the mapping as a systematic linear transfor-
mation. Our approach is similar to Gupta et al. (2015),
who predict numerical attributes for unseen concepts
(countries and cities) from distributional vectors, get-
ting comparably accurate estimates for features such as
the GDP or CO; emissions of a country. We comple-
ment such research by providing a more formal inter-
pretation of the mapping between language and world
knowledge. In particular, we offer a) a vectorial repre-
sentation of set-theoretic models; b) a mechanism for
predicting the application of generalised quantifiers to
the sets in a model.

2.3

The mapping between different semantic modalities or
semantic spaces has been explored in various aspects.
In cognitive science, research by Riordan and Jones
(2011) and Andrews et al. (2009) show that models that
map between and integrate perceptual and linguistic in-
formation perform better at fitting human semantic in-
tuition. In NLP, Mikolov et al. (2013b) show that a
linear mapping between vector spaces of different lan-
guages can be learned to infer missing dictionary en-
tries by relying on a small amount of bilingual infor-
mation. Frome et al. (2013) learn a linear regression
to transform vector-based image representations onto
vectors representing the same concepts in a linguistic
semantic space, and Lazaridou et al. (2014) explore
mapping techniques to learn a cross-modal mapping
between text and images with promising performance.
We follow the basic intuition introduced by these pre-
vious studies: a simple linear function can map be-
tween semantic spaces, in this case between a linguistic
(distributional) semantic space and a model-theoretic
space.

Mapping between Semantic Spaces

3 Annotated datasets

3.1 The quantified McRae norms

The McRae norms (McRae et al., 2005) are a set of
feature norms elicited from 725 human participants for

24

541 concepts covering living and non-living entities
(e.g. alligator, chair, accordion). The annotators were
given concepts and asked to provide features for them,
covering physical, functional and other properties. The
result is a set of 7257 concept-feature pairs such as air-
plane used-for-passengers or bear is-brown.

In our work, we use the annotation layer pro-
duced by Herbelot and Vecchi (2015) for the McRae
norms (henceforth QMR): for each concept-feature
pair (C, f), the annotation provides a natural language
quantifier expressing the ratio of instances of C' having
the feature f, as elicited by three coders. The quan-
tifiers in use are NO, FEW, SOME, MOST, ALL. Ta-
ble 1 provides example annotations for concept-feature
pairs (reproduced from the original paper). An addi-
tional label, KIND, was introduced for usages of the
concept as a kind, where quantification does not ap-
ply (e.g. beaver symbol-of-Canada). A subset of the
annotation layer is available for training computational
models, corresponding to all instances with a majority
label (i.e. those where two or three coders agreed on a
label). The reported average weighted Cohen kappa on
this data is k = 0.59.

In the following, we use a derived gold standard in-
cluding all 5 quantified classes in QMR (removing the
KIND items), with the annotation set to majority opin-
ion (6156 instances). The natural language quantifiers
are converted to a numerical format (see §4 for details).
Using the numerical data, we can calculate the mean
Spearman rank correlation between the three annota-
tors, which comes to 0.63.

3.2 Additional animal data

QMR gives us an average of 11 features per con-
cept. This results in fairly sparse vectors in the model-
theoretic semantic space (see §4). In order to remedy
data sparsity, we consider the use of additional data in
the form of the animal dataset from Herbelot (2013)
(henceforth AD). AD? is a set of 72 animal concepts
with quantification annotations along 54 features. The
main differences between QMR and AD are as follows:

e Nature of features: the features in AD are not hu-
man elicited norms, but linguistic predicates ob-
tained from a corpus analysis.

e Comprehensiveness of annotation: the 72 con-
cepts were annotated along all 54 features. This
ensures the availability of a large number of nega-
tively quantified pairs (e.g. cat is-fish).

We manually align the AD concepts and features to
the QMR format, changing e.g. bat to bat_(animal).
The QMR and AD sets have an overlap of 39 concepts
and 33 features.

SData available at http://www.cl.cam.ac.uk/
~ah433/material/herbelot_iwcsl3_data.
txt.



4 Semantic spaces

We construct two distinct semantic spaces (distribu-
tional and model-theoretic), as described below.

4.1 The distributional semantic space

We consider two distributional semantic space archi-
tectures which have each shown to have considerable
success in a number of semantic tasks. First, we build
a co-occurrence based space (DS;ooc), in which a word
is represented by co-occurrence counts with content
words (nouns, verbs, adjectives and adverbs). As a
source corpus, we use a concatenation of the ukWacC,
a 2009 dump of the English Wikipedia and the BNC*,
which consists of about 2.8 billion tokens. We select
the top 10K content words for the contexts, using a bag-
of-words approach and counting co-occurrences within
a sentence. We then apply positive Pointwise Mutual
Information to the raw counts, and reduce the dimen-
sions to 300 through Singular Value Decomposition.’

Next we consider the context-predicting vectors
(DS prikoiov) available as part of the word2vec® project
(Mikolov et al., 2013a). We use the publicly avail-
able vectors which were trained on a Google News
dataset of circa 100 billion tokens. Baroni et al. (2014b)
showed that vectors constructed under this architecture
outperform the classic count-based approaches across
many semantic tasks, and we therefore explore this op-
tion as a valid distributional representation of a word’s
semantics.

4.2 The model-theoretic space

Our ‘model-theoretic space’ differs in a couple of
important respects from traditional formal semantics
models. So it may be helpful to first come back to
the standard definition of a model, which relies on two
components: an ontology and a denotation function
(Cann, 1993). The ontology describes a world (which
can be a simple situation or ‘state of affairs’), with ev-
erything that is contained in that world. Ontologies can
be represented in various ways, but in this paper, we
assume they are formalised in terms of sets of entities.
The denotation function associates words with their ex-
tensions in the model, i.e. the sets they refer to. Thanks
to the availability of the ontology, it is possible to define
a truth function for sentences, which computes whether
a particular statement corresponds to the model or not.

In our account, we do not have an a priori model of
the world: we wish to infer it from our observation of
language data. We believe this to be an advantage over
traditional formal semantics, which requires full onto-
logical data to be available in order to account for refer-
ence and truth conditions, but never spells out how this

*nttp://wacky.sslmit.unibo.it,
//www.natcorp.ox.ac.uk

SAll semantic spaces, both distributional and model-
theoretic, were built using the DISSECT toolkit (Dinu et al.,
2013).

*https://code.google.com/p/word2vec

http:
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data comes into being. This however implies that our
produced ontology will necessarily be partial: we can
only model what can be inferred from language use.
This has consequences for the denotation function.

Let’s imagine a world with three cats and two horses.
In model theory, the word horse has an extension in that
world which is the set of horses, with a cardinality of
two. This can be trivially derived because the world is
fully described in the ontology. In our approach, how-
ever, it is unlikely we might be able to learn the cardi-
nality of any set in any world. And in fact, it is clear
that ‘in real life’, speakers do miss this information for
many sets (how many horses are there in the world?)
Note that we do not in principle reject the possibility
to learn cardinalities from distributional data (for an
example of this, see Gupta et al. (2015)). We simply
remark that this will not always possible, or even desir-
able from a cognitive point of view. By extension, this
means that a model built from distributional data does
not support denotation in the standard way, and thus
precludes the definition of a truth function: we cannot
verify the truth of the sentence There are 25,957 white
horses in the world. Our ‘model-theoretic’ space may
then be described as an underspecified set-theoretic
representation of some shared beliefs about the world.

Our ‘ontology’ can be defined as follows. To each
word wy in vocabulary V' Wy, ., corresponds
a set w) with underspecified cardinality. A num-
ber of predicates p} ,, are similarly defined as sets
with an unknown number of elements. Our claim
is that this very underspecified model can be fur-
ther specified by learning a function F' from dis-
tributions to generalised quantifiers.  Specifically,
F(ur) = {Qi(wy,p), Qa(wy, py)--.Qn(wy, 1)}
where w), is the distribution of wy and Q1...Q,, €
{no, few, some, most,all} . That is, F takes a dis-
tribution wj}, and returns a quantifier for each predicate
in the model, corresponding to the set overlap between
w), and pj . Note that we focus here on 5 quanti-
fiers only, but as mentioned above, we do not preclude
the possibility of learning others (including cardinals in
appropriate cases).

F(wy) lives in a model-theoretic space which
broadly follows the representation suggested by Her-
belot (2013). We assume a space with n dimensions
dy...d,, which correspond to predicates p} ,, (e.g. is
Aluffy, used for transportation). In that space, F(wy}) is
weighted along the dimension d,,, in proportion to the
set overlap w), Np!,,.” The following shows a toy vector
with only four dimensions for the concept horse.

a-mammal 1
has_four_legs 0.95
is_brouwn 0.35
1s_scaly 0

"In Herbelot (2013), weights are taken to be probabilities,
but we prefer to talk of quantifiers, as the notion models our
data more directly.



This vector tells us that the set of horses includes
the set of mammals (the number of horses that are also
mammals divided by the number of horses comes to 1,
i.e. all horses are mammals), and that the set of horses
and the set of things that are scaly are disjoint (no horse
is scaly). We also learn that a great majority of horses
have four legs and that some are brown.

In the following, we experiment with 3 model-
theoretic spaces built from the McRae and AD datasets
described in §3. As both datasets are annotated with
natural language quantifiers rather than cardinality ra-
tios, we convert the annotation into a numerical for-
mat, where ALL — 1, MOST — 0.95, SOME — 0.35,
FEW — 0.05, and NO — 0. These values correspond
to the weights giving the best inter-annotator agree-
ment in Herbelot and Vecchi (2015), when calculating
weighted Cohen’s kappa on QMR.

In each model-theoretic space, a concept is repre-
sented as a vector in which the dimensions are features
(has_buttons, is_green), and the values of the vectors
along each dimension are quantifiers (in numerical for-
mat). When a feature does not occur with a concept
in QMR, the concept’s vector receives a weight of 0
on the corresponding dimension.® We define 3 spaces
as follows. The McRae-based model-theoretic space
(MT g r) contains 541 concepts, as described in §3.1.
The second space is constructed specifically for the ad-
ditional animal data from §3.2 (MT 4p). Finally, we
merge the two into a single space of 555 unique con-
cepts MTor Ry AD)-

5 Experiments

5.1 Experimental setup

To map from one semantic representation to another,
we learn a function f: DS — MT that transforms
a distributional semantic vector for a concept to its
model-theoretic equivalent.

Following previous research showing that similari-
ties amongst word representations can be maintained
within linear transformations (Mikolov et al., 2013b;
Frome et al., 2013), we learn the mapping as a linear
relationship between the distributional representation
of a word and its model-theoretic representation. We
estimate the coefficients of the function using (multi-
variate) partial least squares regression (PLSR) as im-
plemented in the R pls package (Mevik and Wehrens,
2007).

We learn a function from the distributional space to
each of the model-theoretic spaces (c.f. §4). The dis-
tribution of training and test items is outlined in Ta-
ble 2, expressed as a number of concept vectors. We
also include the number of quantified instances in the
test set (i.e. the number of actual concept-feature pairs
that were explicitly annotated in QM R/AD and that

8No transformations or dimensionality reductions were
performed on the MT spaces.
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Space #train | #test | # dims || #test
vec. vec. inst.
MTomr 400 141 2172 1570
MTup 60 12 54
MToumRr+aD 410 145 2193 1595

Table 2: Distribution of training/test items for each
model-theoretic semantic space. We also provide the
number of dimensions for each space, and the actual
number of concept-feature instances tested on.

we can thus evaluate — this is a portion of each concept
vector in the spaces including Q M R data).

5.2 Results

We first consider a preliminary quantitative analysis to
better understand the behavior of the transformations,
while a more qualitative analysis is provided in §6. The
results in Table 3 show the degree to which predicted
values for each dimension in a model-theoretic space
correlate with the gold annotations, operationalised as
the Spearman p (rank-order correlation). Wherever ap-
propriate, we also report the mean Spearman correla-
tion between the three human annotators for the par-
ticular test set under consideration, showing how much
they agreed on their judgements.® These figures pro-
vide an upper bound performance for the system, i.e.
we will consider having reached human performance if
the correlation between system and gold standard is in
the same range as the agreement between humans. For
each mapping tested, Table 3 provides details about the
training data used to learn the mapping function and
the test data for the respective results. Also for each
mapping, results are reported when learned from either
the co-occurrence distributional space (DS.,,c) or the
context-predicting distributional space (DS psikolov)-

The top section of the table reports results for the
QMR and AD dataset taken separately, as well as their
concatenation. Performance on the domain-specific
AD is very promising, at 0.641 correlation, calculated
over 648 test instances. The results when trained on
just the QMR features (MT s g) are much lower (0.35
over 1570 test instances), which we put down to the
wider variety of concepts in that dataset; we however
observe a substantial increase in performance when
we train and test over the two datasets MTQarr+aD:
0.569 over 1595 instances).

We investigate whether merging the datasets gen-
erally benefits QMR concepts or just the animals
(see middle section in Table 3). The result on the
MT  nimars test set, which includes animals from the
AD and QMR datasets, shows that this category fares
indeed very well, at p = 0.663. But while augment-
ing the training data with category-specific datapoints
benefits that category, it does not improve the results

These figures are only available for the QMR dataset, as
AD only contains one annotation per subject-predicate pair.



Model-Theoretic Distributional
train test DS o0c ‘ DSrikoiov | human
MTomr MTomr 0.350 0.346 0.624
MTsp MT4p 0.641 0.634 -
MTomr+ap | MToamR+AD 0.569 0.523 -
MTompr+ap | MTanimais 0.663 0.612 -
MTgompr+aD | MTho-animals 0.353 0.341 -
MTomr MTgp ganimats | 0.419 0.405 -
MToymRriap | MTgpsganimats | 0.666 0.600 0.663

Table 3: (Spearman) correlations of mapped dimensions with gold annotations for all test items. The table reports
results (p) when mapped from a distributional space (DS.ooc O DSasikolon) to each MT space, as well as the
correlation with human annotations when available. The train/test data for the mappings is specified in Table 2.
For further analysis we report the results when tested only on animal test items (animals), or on all test items but
animals (no-animals). MT g ,imais contains test items from both AD and the animal section of the McRae norms.

See text for more details.

for concepts of other classes (c.f. compare MT gy imais
with MTno-animalS)'

Finally, we quantify the specific improvement to the
QMR animal concepts by comparing the correlation
obtained on MTg s ganimats (a test set consisting only
of QMR animal features) after training on a) the QMR
data alone and b) the merged dataset (third section of
Table 3). Performance increases from 0.419 to 0.666 on
that specific set. This is in line with the inter-annotator
agreement (0.663).

To summarise, we find that the best correlations
with the gold annotations are seen when we in-
clude the animal-only dataset in training (MT4p
and MTqar+ap) and test on just animal concepts
MTap, MTanimats and MTgprpanimats).  As one
might expect, category-specific training data yields
high performance when tested on the same category.
Although this expectation seems intuitive, it is worth
noting that our system produces promisingly high cor-
relations, reaching human-performance on a subset of
our data. The assumption we can draw from these
results is that, given a reasonable amount of training
data for a category, we can proficiently generate model-
theoretic representations for concept-feature pairs from
a distributional space. The empirical question remains
whether this can be generalized for all categories in the
QMR dataset.

It is important to keep in mind that the MT spaces
are not full matrices, meaning that we have ‘miss-
ing values’ for various dimensions when a concept
is converted into a vector. For example, the feature
has_a_tail is not among the annotated features for bear
in QMR and has a weight of 0, even though most bears
have a tail. This is a consequence of the original McRae
dataset, rather than the design of our approach. But
it follows that in this quantitative analysis, we are not
able to confirm the accuracy of the predicted values
on dimensions for which we do not have gold anno-
tations. This may also affect the performance of the
system by including ‘false’ 0 weights in the training
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| % of gold in...
19% (27/145)
29% (42/145)
46% (67/145)

top 5 neighbours
top 10 neighbours
top 20 neighbours

Table 4: Percentage of gold vectors found in the top
neighbours of the mapped concepts, shown for the
DScooc — MT g r+ap transformation.

data. Although this does not affect our reported cor-
relation results — we test the correlations on those val-
ues for which we have gold annotations only — it does
open the door to a natural next step in the evaluation.
In order to judge the performance of the system on the
missing gold dimensions, we need a manual analysis
to assess the quality of the whole vectors, which goes
hand-in-hand with obtaining additional annotations for
the missing dimensions. It seems, therefore, that an ac-
tive learning strategy would allow us to not only eval-
uate the model-theoretic vectors more fully, but also
improve the system by capturing new data.'”

In this analysis, we focused primarily on the com-
parison between transformations using various truth-
theoretic datasets for training and generation. We leave
it to further work to extensively compare the effect of
varying the type of the distributional space. Our re-
sults show, however, that the M¢kolov model performs
slightly worse than the co-occurrence space (cooc), dis-
proving the idea that predictive models always outper-
form count-based models.

6 Discussion

To further assess the quality of the produced space, we
perform a nearest-neighbour analysis of our results to
evaluate the coherence of the estimated vectors: for

19As suggested by a reviewer, one could also treat the miss-
ing entries as latent dimensions and define the loss function
on only the known entries. We leave it to future work to test
this promising option to resolve the issue of data sparsity.



axe hatchet
a tool a tool
is sharp is sharp

has a handle
used for cutting
made of metal
an axe
is small

has a handle
used for cutting
has a metal blade
a weapon
has a head
used for chopping
has a blade
is dangerous
is heavy
used by lumberjacks
used for killing

Table 5: McRae feature norms for axe and hatchet

each concept in our test set, we return its nearest neigh-
bours from the gold dataset, as given by the cosine sim-
ilarity measure, hoping to find that the estimated vector
is close to its ideal representation (see Féagérasan et al.
(2015) for a similar evaluation on McRae norms). Re-
sults are shown in Table 4. We find that the gold vector
is among the top 5 nearest neighbours to the predicted
equivalent in nearly 20% of concepts, with the percent-
age of gold items in the top neighbours improving as
we increase the size of the neighbourhood. We per-
form a more in-depth analysis of the neighbourhoods
for each concept to gain a better understanding of their
behaviour and quality.

We discover that, in many cases, the mapped vector
is close to a similar concept in the gold standard, but not

_—

to itself. So for instance, alligator,,qpped i very close

_ _
to crocodilegoiq, but not to alligator go1q. Similar find-
ings are made for church/cathedral, axe/hatchet, dish-
washer/fridge, etc. A further investigation show that in
the gold standard itself, those pairs are not as close to
each other as they should be. Here are some relevant
cosine similarities:

alligator — crocodile  0.47
church — cathedral 0.45
axe — hatchet 0.50
dishwasher — fridge 0.21

Two reasons can be identified for these compara-
tively low!! similarities. First, the McRae norms do not
make for a consistent semantic space because a feature
that — from an extensional point of view — seems rele-
vant to two concepts may only have been produced by
the annotators for one of them. As an example of this,
see Table 5, which shows the feature norms for axe and
hatchet after processing (§3). Although the concepts
share 4 features, they also differ quite strongly, an axe
being seen as a weapon with a blade, while the hatchet
is itself referred to as an axe. Extensionally, of course,
there is no reason to think that a hatchet does not have

"'Compare with e.g. ape - monkey, Sim = 0.97.
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a blade or might not be dangerous, but those features
do not appear in the norms for the concept. This re-
sults in the two vectors being clearly separated in the
set-theoretic space. This means that the distribution of
axe may well be mapped to a region close to hatchet,
but thereby ends up separated from the gold axe vector.

The second, related issue is that the animal con-
cepts in the McRae norms are annotated along fewer
dimensions than in AD. For example, alligator — which
only appears in the McRae set — has 13 features, while
crocodile (in both sets) has 70. Given that features
which are not mentioned for a concept receive a weight
of 0, this also results in very different vectors.

In Table 6, we provide the top weighted features for
a small set of concepts. As expected, the animal repre-
sentations (bear, housefly) have higher quality than the
other two (plum, cottage). But overall, the ranking of
dimensions is sensible. We see also that these represen-
tations have ‘learnt’ features for which we do not have
values in our gold data — thereby correcting some of the
0 values in the training vectors.

7 Generating natural language
quantifiers

In a last experiment, we attempt to map the set-
theoretic vectors obtained in §5 back to natural lan-
guage quantifiers.  This last step completes our
pipeline, giving us a system that produces quantified
statements of the type All dogs are mammals or Some
bears are brown from distributional data.

For each mapped vector F'(w},) = v}, and a set of di-
mensions d; _,, corresponding to properties p; ,,, the
value of v, along each dimension is indicative of the
proportion of instances of wj, having the property sig-
nalled by the dimension. The smaller the value, the
smaller the overlap between the set of instances of wj,
and the set of things having the property. Deriving
natural language quantifiers from these values involves
setting four thresholds 411, tmosts tsome and tyey, SO
that for instance, if the value of v along d,,, is more
than t,;;, it is the case that all instances of w) have
property p,,, and similarly for the other quantifiers (no
has a special status as it is not entailed by any of the
other quantifiers under consideration). We set the ¢-
thresholds by a systematic search on a training set (see
below).

To evaluate this step, we propose a function that cal-
culates precision while taking into account the two fol-
lowing factors: a) some errors are worse than others:
the system shouldn’t be overly penalised for classifying
a property as MOST rather than ALL, but much more for
classifying a gold standard ALL as SOME; b) errors that
are conducive to false inferences should be strongly pe-
nalised, e.g. generating all dogs are black is more seri-
ous than some dogs are mammals, because the former
might lead to incorrect inferences with respect to indi-
vidual dogs while the latter is true, even though it is
pragmatically odd.



bear housefly plum cottage
an_animal an_insect a_fruit has_a_roof
a_mammal is_small grows_on_trees used_for_shelter”
has_eyes flies tastes_sweet has_doors™
is_muscular is_slender™ is_edible a_house
has_a_head crawls”® is_round has_windows
has_4_legs stings™ is_small is_small
has_a_heart has_legs has_skin a_building”
is_terrestrial is_large” is_juicy used_for_living_in
has_hair a_bug” tastes_good made_of_wood™
is_brown has_wings has_seeds™ made_by_humans™
walks is_black is_green™ worn_on _feet*
is_wooly is_terrestrial™ has_peel™ has_rooms™
has_a_tail* hibernates™ is_orange™ used_for_storing_farm_equipment*
a_carnivore has_a_heart™ is_citrus™ found_on_farms™
is_large has_eyes is_yellow™ found_in_the_country
a_predator has_antennae™ has_vitamin_C* an_appliance™
is_furry™ bites™ has_leaves™ has_tenants™
roosts jumps™ has_a_pit has_a_bathroom™
is_stout has_a_head” has_a_stem™ requires_rent”*
hunted_by_people is_grey™ grows_in_warm_climates™ requires_a_landlord™

Table 6: Example of 20 most weighted contexts in the predicted model-theoretic vectors for 4 test concepts, shown
for the DS ooc — MTrscRae+ 4D transformation. Features marked with an asterisk () are not among the concept’s

features in the gold data.

Gold Gold
no few | some | most | all no | few | some | most | all
no 0 -0.05 | -0.35 | -0.95 | -1 no 238 | 66 20 4 2
T | few -0.05 0 0.2 09 | 0.95 T | few 53 | 45 30 19 12
S| some | -035| 02 | 0 | 06 |065 Slsome| 6 | 1 | 2 | 3 |2
= | most | -095 | -09 | -0.6 0 0.05 = | most 4 6 4 16 | 56
all -1 -0.95 | -0.65 | -0.05 0 all 0 0 0 2 3

Table 7: Distance matrix for the evaluation of the natu-
ral language quantifiers generation step.

We set a distance matrix, which we will use for pe-
nalising errors. This matrix, shown in Table 7, is ba-
sically equivalent to the matrix used by Herbelot and
Vecchi (2015) to calculate weighted kappa between
annotators, with the difference that all errors involv-
ing NO cause incorrect inferences and receive special
treatment. Cases where the gold quantifier entails the
mapped quantifier (all cats |= some cats) have posi-
tive distances, while cases where the entailment doesn’t
hold have negative distances. Using the distance ma-
trix, we give a score to each instance in our test data as

follows:
1-d
S =
d

where d is obtained from the distance matrix.

This has the effect that when the mapped quantifier
equals the gold quantifier, the system scores 1; when
the mapped value deviates from the gold standard but
produces a true sentence (some dogs are mammals), the
system gets a partial score proportional to the distance
between its output and the gold data; when the map-
ping results in a false sentence (all dogs are black), the

itd>0

1
ifd <0 M
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Table 8: Confusion matrix for the results of the natural
language quantifiers generation.

system is penalised with minus points.

In what follows, we report the average performance
of the system as P = ZA‘?” where s,,, is the score
assigned to a particular test instance, and N is the
number of test instances. We evaluate on the 648 test
instances of MT 4p, as this is the only dataset con-
taining a fair number of negatively quantified concept-
predicate pairs. We perform 5-fold cross-evaluation on
this data, using 4 folds to set the ¢ thresholds, and test-
ing on one fold. We obtain an average P of 0.61. Infer-
ence is preserved in 73% of cases (also averaged over
the 5 folds).

Table 8 shows the confusion matrix for our results.
We note that the system classifies NO-quantified in-
stances with good accuracy (72% — most confusions
being with FEW). Because of the penalty given to
instances that violate proper entailment, the system
is conservative and prefers FEW to SOME, as well as
MOST to ALL. Table 9 shows randomly selected in-
stances, together with their mapped quantifier and the
label from the gold standard.



Instance Mapped | Gold
raven a_bird most all
pigeon has_hair few no
elephant has_eyes most all
crab is_blind few few
snail a_predator no no
octopus is_stout no few
turtle roosts no few
moose is_yellow no no
cobra hunted_by_people some | some
snail forages few no
chicken is_nocturnal few no
moose has_a_heart most all
pigeon hunted_by_people no few
cobra bites few | most

Table 9: Examples of mapped concept-predicate pairs

8 Conclusion

In this paper, we introduced an approach to map from
distributional to model-theoretic semantic vectors. Us-
ing traditional distributional representations for a con-
cept, we showed that we are able to generate vecto-
rial representations that encapsulate generalised quan-
tifiers.

We found that with a relatively “cheap” linear func-
tion — cheap in that it is easy to learn and requires mod-
est training data — we can reproduce the quantifiers in
our gold annotation with high correlation, reaching hu-
man performance on a domain-specific test set. In fu-
ture work, we will however explore the effect of more
powerful functions to learn the transformations from
distributional to model-theoretic spaces.

Our qualitative analysis showed that our predicted
model-theoretic vectors sensibly model the concepts
under consideration, even for features which do not
have gold annotations. This is not only a promising
result for our approach, but it provides potential as a
next step to this work: expanding our training data with
non-zero dimensions in an active learning procedure.
We also experimented with generating natural language
quantifiers from the mapped vectorial representations,
producing ‘true’ quantified sentences with a 73% accu-
racy.

We note that our approach gives a systematic way
to disambiguate non-explicitly quantified sentences
such as generics, opening up new possibilities for im-
proved semantic parsing and recognising entailment.
Right now, many parsers give the same broad anal-
ysis to Mosquitoes are insects and Mosquitoes carry
malaria, involving an underspecified/generic quanti-
fier. This prevents inferring, for instance, that Mandie
the mosquito is definitely an insect but may or may
not carry malaria. In contrast, our system would at-
tribute the most plausible quantifiers to those sentences
(all/few), allowing us to produce correct inferences.

The focus of this paper was concept-predicate pairs
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out of context. That is, we considered quantified sen-
tences where the restrictor was the entire set denoted
by a lexical item. A natural next step is to inves-
tigate the quantification of statements involving con-
textualised subsets. For instance, we should obtain a
different quantifier for taxis are yellow depending on
whether the sentence starts with In London... or In New
York... In future work, we will test our system on such
context-specific examples, using contextualised vector
representations such as the ones proposed by e.g. Erk
and Pad¢ (2008) and Dinu and Lapata (2010).

We conclude by noting again that the set-theoretic
models produced in this work differ from formal se-
mantics models in important ways. They do not rep-
resent the world per se, but rather some shared beliefs
about the world, induced from an annotated dataset of
feature norms. This calls for a modified version of the
standard denotation function and for the replacement of
the truth function with a ‘plausibility’ function, which
would indicate how likely a stereotypical speaker might
be to agree with a particular sentence. While this would
be a fundamental departure from the core philosophy of
model theory, we feel that it may be a worthwhile en-
deavour, allowing us to preserve the immense benefits
of the set-theoretic apparatus in a cognitively plausible
fashion. Following this aim, we hope to expand the pre-
liminary framework presented here into a more expres-
sive vector-based interpretation of set theory, catering
for aspects not covered in this paper (e.g. cardinality,
non-intersective modification) and refining our notion
of a model, together with its relation to meaning.
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Abstract

Compared to tree grammars, graph gram-
mars have stronger generative capacity
over structures. Based on an edge re-
placement grammar, in this paper we pro-
pose to use a synchronous graph-to-string
grammar for statistical machine transla-
tion. The graph we use is directly con-
verted from a dependency tree by labelling
edges. We build our translation model
in the log-linear framework with stan-
dard features. Large-scale experiments
on Chinese—English and German—English
tasks show that our model is significantly
better than the state-of-the-art hierarchical
phrase-based (HPB) model and a recently
improved dependency tree-to-string model
on BLEU, METEOR and TER scores. Ex-
periments also suggest that our model has
better capability to perform long-distance
reordering and is more suitable for trans-
lating long sentences.

1 Introduction

Compared to trees, which have dominated the field
of natural language processing (NLP) for decades,
graphs are more general for modelling natural lan-
guages. The corresponding grammars for recog-
nizing and producing graphs are more flexible and
powerful than tree grammars. However, because
of their high complexity, graph grammars have not
been widely used in NLP.

Recently, along with progress on graph-based
meaning representation, hyperedge replacement
grammars (HRG) (Drewes et al., 1997) have been
revisited, explored and used for semantic-based
machine translation (Jones et al., 2012). How-
ever, the translation process is rather complex and
the resources it relies on, namely abstract meaning
corpora, are limited as well.
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As most available syntactic resources and tools
are tree-based, in this paper we propose to con-
vert dependency trees, which are usually taken as
a kind of shallow semantic representation, to de-
pendency graphs by labelling edges. We then use
a synchronous version of edge replacement gram-
mar (ERG) (Section 2), a special case of HRG,
to translate these graphs. The resulting translation
model has the same order of magnitude in terms
of time complexity with the hierarchical phrase-
based model (HPB) (Chiang, 2005) under a certain
restriction (Section 3).

Compared to dependency tree-to-string models,
using ERG for graph-to-string translation brings
some benefits (Section 3). Thanks to the stronger
generative capacity of the grammar, our model
can naturally translate siblings in a tree struc-
ture, which are usually treated as non-syntactic
phrases and handled by other techniques (Huck et
al., 2014; Xie et al., 2014). Furthermore, com-
pared to the known treelet approach (Quirk et al.,
2005) and Dep2Str (Xie et al., 2011), our method
not only uses treelets but also has a full capacity
of reordering.

We define our translation model (Section 4) in
the log-linear framework (Och and Ney, 2002).
Large-scale experiments (Section 5) on Chinese—
English and German-English, two language pairs
that have a high degree of syntactic reordering,
show that our method significantly improves trans-
lation quality over both HPB and Dep2Str, as
measured by BLEU (Papineni et al., 2002), TER
(Snover et al., 2006) and METEOR (Denkowski
and Lavie, 2011). We also find that the rules in
our model are more suitable for long-distance re-
ordering and translating long sentences.

2 Edge Replacement Grammar

As a special case of HRG, ERG is also a context-
free rewriting grammar to recognize and produce
graphs. Following HRG, the graph we use in this

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 33—43,
Lisbon, Portugal, 17-21 September 2015. (©2015 Association for Computational Linguistics.
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Figure 1: An example of a derivation in an ERG. Dark circles are external nodes.

paper is connected, nodes ordered, acyclic and
has edge labels but no node labels (Chiang et al.,
2013). We provide some formal definitions on
ERG.

Definition 1. A connected, edge-labeled, ordered
graphis atuple H = (V, E, ¢), where

e V is a finite set of nodes.
e E C V?is a finite set of edges.

e ¢ : E — (' assigns a label (drawn from C)
to each edge.

In ERG, the elementary unit is a graph frag-
ment, which is also the right-hand side of a pro-
duction in the grammar. Its definition is as follows.

Definition 2. A graph fragment is a tuple H =
(V,E, ¢, X), where (V, E, ¢) is a graph and X €
(V U V?2) is a list of distinct nodes. Following
Chiang et al. (2013), we call these external nodes.

The external nodes indicate how to integrate a
graph into another one during a derivation. Dif-
ferent to HRG, ERG limits the number of external
nodes to 2 at most to make sure hyperedges do not
exist during a derivation. Now we define the ERG.

Definition 3. An edge replacement grammar is a
tuple (N, T, P, S), where

e N and T are disjoint finite sets of non-
terminal symbols and terminal symbols, re-
spectively.

e P is a finite set of productions of the form
A — R, where A € N and R is a graph frag-
ment, where edge-labels are from N (T
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e S € N is the start symbol.

Figure 1 shows an example of a derivation in an
ERG to produce a graph. Starting from the start
symbol S, when a rule (A — R) is applied to an
edge e, the edge is replaced by the graph fragment
R. Just like in HRG, the ordering of nodes V. in e
and external nodes X in R implies the mapping
from V. to X (Chiang et al., 2013).

3 Graph-to-String Grammar

In SMT, we need a synchronous grammar to si-
multaneously parse an input graph and produce
translations. The graph we use in this paper is
from a dependency structure which is capable of
modelling long-distance relations in a sentence.

3.1 The Grammar

Before defining the synchronous grammar, we
firstly define a dependency graph which is a spe-
cial case of a graph.

Definition 4. A dependency graph is a tuple
(V,E,¢,A), where (V, E, ¢) is a graph and A is
a restriction: edges are ordered.

A dependency graph is directly derived from
a dependency tree by labeling edges with words,
as shown in Figure 2. Although in general graph
edges are unordered, in Definition 4 we keep word
order by ordering edges, because the word order is
an important piece of information for translation.

Similar to the graph fragment, a dependency-
graph fragment is defined as below.
Definition 5. A dependency-graph fragment is a
tuple (V, E, ¢, A, X), where (V, E, ¢, A) is a de-
pendency graph, X € (V UV?2) is alist of external
nodes.
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In this paper, we define a synchronous ERG
over dependency graphs as a dependency graph-
to-string grammar, which can be used for MT.

Definition 6. A dependency graph-to-string
grammar (DGSG) is a tuple (N,T,7’,P,S),
where

e N is a finite set of non-terminal symbols.
e T and T" are finite sets of terminal symbols.
e S € N is the start symbol.

e P is a finite set of productions of the form
(A— R,A — R ,~), where A, A’ € N, R
is a dependency-graph fragment over N | T
and R is a string over N | JT". ~ is a one-to-
one mapping between non-terminal symbols
in Rand R'.

Figure 3 shows a derivation simultaneously pro-
ducing a Chinese dependency graph and an En-
glish string using a DGSG. Each time a rule is ap-
plied, the dependency-graph fragment in the rule
replaces an edge in the source graph, and the string
in the rule replaces a non-terminal in the target
string.

Proposition 1. DGSG has stronger generative ca-
pacity over graph-string pairs than both SCFG and
synchronous tree substitution grammar (STSG).

Proof. STSG has stronger generative capacity
over structures than SCFG (Chiang, 2012)."

Any STSG can easily be converted into a DGSG
by labelling edges in tree structures.

!The following STSG generates a trivial example of a
tree-string pair that no SCFG can generate, as SCFG must
always have an equal number of non-terminal symbols.

X
X
| X
€ |

€
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The following DGSG generates a trivial exam-
ple of a graph-string pair, which no STSG can gen-
erate, as the left-head side has no head nodes while
STSG always requires one to form a tree.

/\
a/
/

,
!

b

4
O

O]

This proof is also verified in Figure 3 where
the third rule is used to translate a non-syntactic
phrase, which can be a problem for dependency
tree-to-string methods. In addition, the second
rule translates a treelet and the first rule encodes
reordering information inside. All these three
aspects are uniformly modeled in our grammar,
which makes it more powerful than other methods,
such as the treelet approach and the Dep2Str.

3.2 Time Complexity and a Restriction

Given a dependency graph, training and decod-
ing time using DGSG depends on the number of
dependency-graph fragments. For example, for a
graph where the degree of a node is k, the number
of all possible fragments starting from the node is
O(2%). Therefore, the time complexity would be
exponential if we consider them all.

It is easy to find that the high complexity of
DGSG comes from the free combination of edges.
That means that a dependency-graph fragment can
cover discontinuous words of an input sentence.
However, this is not the convention in the field of
SMT.

For efficient training and decoding, we add a re-
striction to DGSG: each dependency-graph frag-
ment covers a continuous span of the source sen-
tence. This reduces the complexity from exponen-
tial time to cubic time.

3.3 Non-terminal Symbols

In this paper we build a dependency graph-to-
string model, so we only use one non-terminal
symbol X as in HPB on the target side. However,
on the source side we define non-terminal symbols
over Part-of-Speech (POS) tags, which can be eas-
ily obtained as a by-product of dependency pars-
ing.

We define the head of a dependency-graph frag-
ment H as a list of edges, the dependency head of
each of which is not in this fragment. Then the
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Figure 3: An example of a derivation in dependency graph-to-string grammar to produce a Chinese
dependency graph and an English string. Rules are included in dashed rectangles. Target strings are in
solid rectangles. External nodes are dark circles. This example is under the restriction in Section 3.2. In
addition to the start symbol S, non-terminal symbols for the source side are M and NN, while the target
side only has one non-terminal X . The index in each non-terminal of a rule indicates the mapping.
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Figure 4: An example inducing a non-terminal
symbol (left side) for a dependency-graph frag-
ment (right side). Each edge is labeled by a word
associated with its POS tag. The head of this frag-
ment includes three edges which are in the rectan-
gle.

non-terminal symbol for H is defined as the join-
ing of POS tags of its head (Li et al., 2012). Figure
4 shows an example.

3.4 Rule Extraction

As well as the restriction defined in Section 3.2
making the grammar much smaller, it also results
in a similar way of extracting rules as in HPB. In-
spired by HPB, we define the rule set over initial
pairs.

Given a word-aligned dependency graph-string
pair P = (G, e, ~), let G/ stand for the sub-graph
(it may not be connected) covering words from po-
sition 4 to position j. Then a rule <Gf , e{f) is an
initial pair of P, iff:

1. Gg is a dependency-graph fragment. That
means it is a connected sub-graph and has at
most two external nodes, nodes which con-
nect with nodes outside or are the root.

It is consistent with the word alignment ~
(Och and Ney, 2004).

The set of rules from P satisfies the following:
1. If (G1, e],) is an initial pair, then
(N(G]) = G, X — )

is a rule, where N(G) defines the non-
terminal symbol for G.

If (N(R) - R,X — R')isarule of P and
(G7,¢l,) is an initial pair such that G is a
sub-graph of R and R’ = r; eg//rg, then

(N(R) — R\G’,., X — 11 X}12)

is a rule of P, where \ means replacing G{
in R with an edge labelled with N(G7) and
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k is a unique index for a pair of non-terminal
symbols.

As in HPB, in addition to rules extracted from
the parallel corpus, we also use glue rules to com-
bine fragments and translations when no matched
rule can be found.

Furthermore, we can use the same rule extrac-
tion algorithm as that in HPB, except that we need
to check if a span of a source sentence indicates
a dependency-graph fragment, in which case we
keep the dependency structure and induce a non-
terminal for the fragment.

4 Model and Decoding
We define our model in the log-linear framework
over a derivation d, as in Equation (1):

P(d) oc H ¢i(d)™ (1)

where ¢; are features defined on derivations and
A; are feature weights. In our experiments, we use
9 features:

translation probabilities P(s|t) and P(t|s),
where s is the source graph fragment and ¢
is the target string.

lexical translation probabilities Pj.,(s|t) and
P, (t]s).

language model [m(e) over translation e.
rule penalty exp(—1).
word penalty exp(|e|).
glue penalty exp(—1).

unknown words penalty exzp(u(g)), where
u(g) is the number of unknown words in a
source graph g.

Our decoder is based on the conventional chart
parsing CYK algorithm (Kasami, 1965; Younger,
1967; Cocke and Schwartz, 1970). It searches for
the best derivation d* among all possible deriva-
tions D, as in Equation (2):

d* = argmax P(d)
deD

2

For each span of an input graph, the decoder
checks if it is a dependency-graph fragment. Then



ZH-EN
corpus #sent. | #words(ZH) | #words(EN)
train 1.5M+ 38M+ ~45M
dev 878 22,655 26,905
MTO04 1,597 43,719 52,705
MTO5 1,082 29,880 35,326
DE-EN
corpus #sent. | #words(DE) | #words(EN)
train 2M+ 52M+ 55M+
dev 3,003 72,661 74,753
WMTI12 | 3,003 72,603 72,988
WMTI13 | 3,000 63,412 64,810

Table 1: Chinese—English (ZH-EN) and German—
English (DE-EN) corpora. For the English side of
dev and test sets, words counts are averaged across
all references.

for each fragment, the decoder finds rules to trans-
late it. The translation of a large span can be ob-
tained by combining translations from its sub-span
using rules which have non-terminals. Finally,
glue rules are used to make sure that at least one
translation is produced.

S Experiment

We conduct experiments on Chinese—English and
German—English translation tasks.

5.1 Datasets

The Chinese-English training corpus is from
LDC, including LDC2002E18, LDC2003E07,
LDC2003E14, LDC2004T07, the Hansards por-
tion of LDC2004T08 and LDC2005T06. NIST
2002 is taken as a development set to tune weights,
and NIST 2004 (MTO04) and NIST 2005 (MTO5)
are two test sets to evaluate systems. Table 1 pro-
vides a summary of this corpus. The Stanford Chi-
nese word segmenter (Chang et al., 2008) is used
to segment Chinese sentences. The Stanford de-
pendency parser (Chang et al., 2009) parses a Chi-
nese sentence into a projective dependency tree
which is then converted to a dependency graph in
our model.

The German-English training corpus is from
WMT 2014, including Europarl V7 and News
Commentary. News-test 2011 is taken as a de-
velopment set, while News-test 2012 (WMT12)
and News-test 2013 (WMT13) are our test sets.
Table 1 provides a summary of this corpus. We
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use mate-tools® to perform morphological analysis
and parse German sentences (Bohnet, 2010). Then
MaltParser® converts a parse result into a projec-
tive dependency tree (Nivre and Nilsson, 2005).

5.2  Settings

In this paper, we mainly compare our system
(DGST) with HPB in Moses (Koehn et al., 2007).
We implement our model in Moses and take
the same settings as Moses HPB in all experi-
ments. In addition, translation results from a re-
cently open-source dependency tree-to-string sys-
tem, DepZStr4 (Li et al., 2014), which is imple-
mented in Moses and improves the dependency-
based model in Xie et al. (2011), are also reported.
All systems use the same sets of features defined
in Section 4.

In all experiments, word alignment is performed
by GIZA++ (Och and Ney, 2003) with the heuris-
tic function grow-diag-final-and. We use SRILM
(Stolcke, 2002) to train a 5-gram language model
on the Xinhua portion of the English Gigaword
corpus 5th edition with modified Kneser-Ney dis-
counting (Chen and Goodman, 1996). Minimum
Error Rate Training (MERT) (Och, 2003) is used
to tune weights.

To obtain more reliable results, in each experi-
ment, we run MERT three times and report aver-
age scores. These scores are calculated by three
widely used automatic metrics in case-insensitive
mode: BLEU, METEOR and TER.

5.3 Results

Table 2 shows the scores of all three metrics on all
systems. Similar to Li et al. (2014), in our experi-
ments Dep2Str has on average a comparable result
with Moses HPB in terms of BLEU and METEOR
scores. However, it obtains a significantly higher
(i.e. worse) TER score on the Chinese—English
task. This may suggest that translations produced
by Dep2Str need more post-editing effort (He et
al., 2010).

By contrast, on all test sets, measured by all
metrics, our system is significantly better than
Moses HPB. On the Chinese—English task, our
system achieves an average gain of 1.25 (abso-
lute, 3.6% relative) BLEU score and 0.55 (abso-
lute, 1.7% relative) METEOR score while also ob-

http://code.google.com/p/mate-tools/

‘http://www.maltparser.org/

*http://computing.dcu.ie/~liangyouli/
dep2str.zip



Metric System ZH-EN DE-EN
MTO04 | MTO05 | WMTI12 | WMT13
Moses HPB | 35.6 33.8 20.2 22.7
BLEU 7 Dep2Str 354 33.9 20.3 22.8
DGST 36.6 353 20.7 23.3
Moses HPB | 31.6 31.9 28.6 29.7
METEOR T | Dep2Str 31.8 31.9 28.5 29.5*
DGST 32.1 32.5 28.7 29.8
Moses HPB | 57.0 58.3 63.2 59.5
TER | Dep2Str 58.2* | 59.6* | 63.1 59.6
DGST 56.1 57.0 62.6 59.0

Table 2: Metric scores for all systems on Chinese—English (ZH-EN) and German—English (DE-EN) cor-
pus. Each score is the average score over three MERT runs. Bold figures mean a system is significantly
better than Moses HPB at p < 0.01. Moses HPB is significantly better than systems with * at p < 0.01.

Length Percentage

MTO04 | MTO5 | WMT12 | WMT13
(0, 10] 7.6% | 8.6% 15.0% 19.2%
(10,20] | 28.2% | 26.0% 31.4% 37.2%
(20, 30] | 28.2% | 26.5% 26.3% 24.5%
(30, 40] | 20.2% | 23.8% 14.4% 12.0%
(40, 00) | 15.7% | 152% 12.9% 7.2%

Table 3: Statistics of sentence length on four test
sets.

taining a reduction of 1.1 (absolute, 1.91% rela-
tive) TER score on average.

On the German-English task, our system
achieves an average gain of 0.55 (absolute, 2.56%
relative) BLEU score and 0.1 (absolute, 0.35% rel-
ative) METEOR score and also obtains a reduction
of 0.55 (absolute, 0.89% relative) TER score on
average.

5.4 Analysis

As shown in Table 2, compared to Moses HPB
and Dep2Str, our system achieves higher transla-
tion quality as measured by three automatic met-
rics. In this section, we investigate whether de-
pendency structures bring benefits as expected on
long-distance reordering. Table 3 provides the
statistics on sentence length of our four test sets.
In both HPB and our model, the length range
of a reordering performed on an input sentence is
related to the use of glue grammars which bring
two benefits during decoding. When no matched
rule is found in the models, glue grammars are ap-
plied to make sure a translation is produced. In ad-
dition, because of the generalization capability of
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rules, which typically are learned under a length
limitation, using them on long sentences could
cause translation quality to deteriorate. Therefore,
when the length of a phrase is greater than a cer-
tain value, glue grammars are also applied. There-
fore, our experiment of analysis is based on the
length limitation that a rule can cover (max. phrase
length) during decoding.

We set this max. phrase length to different val-
ues, including 10, 20 (default), 30, 40 and 50.
Figure 5 gives the BLEU scores on all test sets.
We find that on all different values, our system
achieves higher BLEU scores than Moses HPB.
In addition, when the max. phrase length be-
comes larger, Moses HPB shows a declining trend
in most cases, especially on the German—English
task (WMT12 and WMT13). However, our sys-
tem is less sensitive to this value. We hypothesize
that this is because rules from dependency graphs
have better generalization for translating longer
phrases and are more suitable for translating long
sentences.

5.5 Case Study

On a manual check, we find that translations pro-
duced by our system are more fluent than those of
both Moses HPB and Dep2Str. Figure 6 gives an
example comparing translations produced by three
systems on the Chinese—English task.

We first find a case of long-distance relation,
i.e. the subject-verb-object (SVO) structure in the
source sentence. In this example, this relation im-
plies a long-distance reordering, which moves the
translation of the object to the front of its mod-
ifiers, as shown in the given reference. Com-
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Figure 5: BLEU scores of Moses HPB and DGST (our system) when the length of maximum phrase that
a rule can cover during decoding is set to different values.

punct

i%bj > | | Ty lJ

7 WOl R IEEE EE ZBRe BT @y FEN R . FH ORAN M o
two sides welcome lragi interim governing council about establish special court , try murderer of decision .

L g S |

Ref: The two sides welcomed the decision by the Iragi Interim Governing Council to establish a special court to try the murderers.

HPB: the two sides welcomed the Dep2Str: the two sides welcomed the  DGST: the two sides welcomed the decision

interim iragi authority on establishing ~ decision on the Establishment of a of the iraqi interim governing council on the

a special court, trial of the murderer. special court, justice murderers of the  establishment of a special court, justice
provisional governing council of irag.  murderers.

Figure 6: An example of comparing translations produced by three systems on the Chinese—English
task. The source sentence is parsed into a dependency structure. Each source word is annotated by a
corresponding English word (or phrase).

| ‘ \ v

frae Iwe EEL RES KT @ RN EE . WA RN 1 duE

Iragi interim governing council ‘about establish ispecial court , try murderer, of decision
LA ] A A A A & ] |

| R P — ‘ |

L

RN o T A A N e e
B Y KT Y A o x B B RE o x il

| Iragi abﬂjt establish  of decision , establish = of decision
N |

A AL AT e M A
— |

Figure 7: An example of inducing a dependency structure in Figure 6 to ”X HJ(of) X structure in our
system by using treelets and non-syntactic phrases. @ denotes one or more steps. All non-terminals are
simply represented by X.
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pared to Moses HPB, both Dep2Str and our sys-
tem, which rely on dependency structures, are ca-
pable of dealing with this. This also suggests that
dependency structures are useful for long-distance
reordering.

Furthermore, compared to Dep2Str, our system
produces a better translation for the X F¥(of)
X expression, which is not explicitly represented
in the dependency structure and thus results in a
wrong translation in Dep2Str. After looking into
the details of the translation process, we find that
our system induces the dependency structure to the
”X F(of) X structure by handling both treelets
and non-syntactic phrases. Figure 7 shows the pro-
cess of this induction.

6 Related Work

Dependency structures have been used in SMT for
a few years. Because of its better inter-lingual
phrasal cohesion properties (Fox, 2002), it is be-
lieved to be beneficial to translation.

Researchers have tried to use dependency struc-
tures on both target and source sides. Shen et
al. (2010) propose a string-to-dependency model
by using dependency fragments of neighbouring
words on the target side, which makes the model
easier to include a dependency-based language
model.

Menezes and Quirk (2005) and Quirk et al.
(2005) propose the treelet approach which uses de-
pendency structures on the source side. Xiong et
al. (2007) extend this approach by allowing gaps
in rules. However, their methods need a sepa-
rate reordering model to decide the position of
translated words (insertion problem). To avoid
this problem, Xie et al. (2011) propose to use
full head-dependent structures of a dependency
tree and build a new dependency-to-string model.
However, this model has difficulties in handling
non-syntactic phrasal rules and ignores treelets.
Meng et al. (2013) and Xie et al. (2014) further
augment this model by incorporating constituent
phrases and integrating fix/float structures (Shen
et al., 2010), respectively, to allow phrasal rules.
Li et al. (2014) extend this model by decomposing
head-dependent structures into treelets.

Different from these methods, by labelling
edges and using the ERG, our model considers the
three aspects in a unified way: treelet, reordering
and non-syntactic phrase. In addition, the ERG
also naturally provides a decision on what kind of
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treelets and phrases should be used.

7 Conclusion

In this paper, we present a dependency graph-to-
string grammar based on a graph grammar, which
we call edge replacement grammar. This gram-
mar can simultaneously produce a pair of depen-
dency graph and string. With a restriction of us-
ing contiguous edges, our translation model built
using this grammar can decode an input depen-
dency graph, which is directly converted from a
dependency tree, in cubic time using the CYK al-
gorithm.

Experiments on Chinese—English and German—
English tasks show that our model is significantly
better than the hierarchical phrase-based model
and a recent dependency tree-to-string model
(Dep2Str) in Moses. We also find that the rules
used in our model are more suitable for long-
distance reordering and translating long sentences.

Although experiments show significant im-
provements over baselines, our model has limita-
tions that can be avenues for future work. The re-
striction used in this paper reduces the time com-
plexity but at the same time reduces the generative
capacity of graph grammars. Without allowing hy-
peredges or only using at most two external nodes
reduces the phrase coverage in our model as well.
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Abstract

We present a novel approach for unsu-
pervised induction of a Reordering Gram-
mar using a modified form of permuta-
tion trees (Zhang and Gildea, 2007), which
we apply to preordering in phrase-based
machine translation. Unlike previous ap-
proaches, we induce in one step both the
hierarchical structure and the transduction
function over it from word-aligned parallel
corpora. Furthermore, our model (1) han-
dles non-ITG reordering patterns (up to
5-ary branching), (2) is learned from all
derivations by treating not only labeling
but also bracketing as latent variable, (3) is
entirely unlexicalized at the level of re-
ordering rules, and (4) requires no linguis-
tic annotation.

Our model is evaluated both for accuracy
in predicting target order, and for its im-
pact on translation quality. We report sig-
nificant performance gains over phrase re-
ordering, and over two known preordering
baselines for English-Japanese.

1 Introduction

Preordering (Collins et al., 2005) aims at permut-
ing the words of a source sentence s into a new
order §, hopefully close to a plausible target word
order. Preordering is often used to bridge long dis-
tance reorderings (e.g., in Japanese- or German-
English), before applying phrase-based models
(Koehn et al., 2007). Preordering is often bro-
ken down into two steps: finding a suitable tree
structure, and then finding a transduction function
over it. A common approach is to use monolin-
gual syntactic trees and focus on finding a trans-
duction function of the sibling subtrees under the
nodes (Lerner and Petrov, 2013; Xia and Mccord,
2004). The (direct correspondence) assumption
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underlying this approach is that permuting the sib-
lings of nodes in a source syntactic tree can pro-
duce a plausible target order. An alternative ap-
proach creates reordering rules manually and then
learns the right structure for applying these rules
(Katz-Brown et al., 2011). Others attempt learn-
ing the transduction structure and the transduction
function in two separate, consecutive steps (DeN-
ero and Uszkoreit, 2011). Here we address the
challenge of learning both the trees and the trans-
duction functions jointly, in one fell swoop, from
word-aligned parallel corpora.

Learning both trees and transductions jointly
raises two questions. How to obtain suitable trees
for the source sentence and how to learn a distri-
bution over random variables specifically aimed
at reordering in a hierarchical model? In this
work we solve both challenges by using the fac-
torizations of permutations into Permutation Trees
(PETs) (Zhang and Gildea, 2007). As we ex-
plain next, PETs can be crucial for exposing the
hierarchical reordering patterns found in word-
alignments.

We obtain permutations in the training data by
segmenting every word-aligned source-target pair
into minimal phrase pairs; the resulting alignment
between minimal phrases is written as a permuta-
tion (1:1 and onto) on the source side. Every per-
mutation can be factorized into a forest of PETs
(over the source sentences) which we use as a la-
tent treebank for training a Probabilistic Context-
Free Grammar (PCFG) tailor made for preorder-
ing as we explain next.

Figure 1 shows two alternative PETs for the
same permutation over minimal phrases. The
nodes have labels (like P3142) which stand for lo-
cal permutations (called prime permutation) over
the child nodes; for example, the root label P3142
stands for prime permutation (3,1,4,2), which
says that the first child of the root becomes 3"¢ on
the target side, the second becomes 15 the third
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becomes 4" and the fourth becomes 2"¢. The
prime permutations are non-factorizable permuta-
tions like (1,2), (2,1) and (2,4, 1, 3).

We think PETs are suitable for learning pre-
ordering for two reasons. Firstly, PETs specify ex-
actly the phrase pairs defined by the permutation.
Secondly, every permutation is factorizable into
prime permutations only (Albert and Atkinson,
2005). Therefore, PETs expose maximal sharing
between different permutations in terms of both
phrases and their reordering. We expect this to be
advantageous for learning hierarchical reordering.

For learning preordering, we first extract an ini-
tial PCFG from the latent treebank of PETs over
the source sentences only. We initialize the non-
terminal set of this PCFG to the prime permuta-
tions decorating the PET nodes. Subsequently we
split these coarse labels in the same way as latent
variable splitting is learned for treebank parsing
(Matsuzaki et al., 2005; Prescher, 2005; Petrov et
al., 2006; Saluja et al., 2014). Unlike treebank
parsing, however, our training treebank is latent
because it consists of a whole forest of PETs per
training instance (s).

Learning the splits on a latent treebank of PETs
results in a Reordering PCFG which we use to
parse input source sentences into split-decorated
trees, i.e., the labels are the splits of prime permu-
tations. After parsing s, we map the splits back on
their initial prime permutations, and then retrieve
a reordered version § of s. In this sense, our latent
splits are dedicated to reordering.

We face two technical difficulties alien to work
on latent PCFGs in treebank parsing. Firstly, as
mentioned above, permutations may factorize into
more than one PET (a forest) leading to a latent
training treebank.! And secondly, after we parse
a source string s, we are interested in $, the per-
muted version of s, not in the best derivation/PET.
Exact computation is a known NP-Complete prob-
lem (Sima’an, 2002). We solve this by a new
Minimum-Bayes Risk decoding approach using
Kendall reordering score as loss function, which
is an efficient measure over permutations (Birch
and Osborne, 2011; Isozaki et al., 2010a).

In summary, this paper contributes:

e A novel latent hierarchical source reordering

model working over all derivations of PETs

'All PETs for the same permutation share the same set
of prime permutations but differ only in bracketing structure
(Zhang and Gildea, 2007).
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e A label splitting approach based on PCFGs
over minimal phrases as terminals, learned
from an ambiguous treebank, where the label
splits start out from prime permutations.

e A fast Minimum Bayes Risk decoding over
Kendall 7 reordering score for selecting S.

We report results for extensive experiments on
English-Japanese showing that our Reordering
PCFG gives substantial improvements when used
as preordering for phrase-based models, outper-
forming two existing baselines for this task.

2 PETs and the Hidden Treebank

We aim at learning a PCFG which we will use for
parsing source sentences s into synchronous trees,
from which we can obtain a reordered source ver-
sion §. Since PCFGs are non-synchronous gram-
mars, we will use the nonterminal labels to encode
reordering transductions, i.e., this PCFG is implic-
itly an SCFG. We can do this because s and § are
over the same alphabet.

Here, we have access only to a word-aligned
parallel corpus, not a treebank. The following
steps summarize our approach for acquiring a la-
tent treebank and how it is used for learning a Re-
ordering PCFG:

1. Obtain a permutation over minimal phrases

from every word-alignment.
. Obtain a latent treebank of PETs by factoriz-
ing the permutations.
. Extract a PCFG from the PETs with initial
nonterminals taken from the PETs.
Learn to split the initial nonterminals and es-
timate rule probabilities.
These steps are detailed in the next section, but we
will start out with an intuitive exposition of PETs,
the latent treebank and the Reordering Grammar.

Figure 1 shows examples of how PETs look
like — see (Zhang and Gildea, 2007) for algorith-
mic details. Here we label the nodes with nonter-
minals which stand for prime permutations from
the operators on the PETs. For example, non-
terminals P12, P21 and P3142 correspond re-
spectively to reordering transducers (1,2), (2,1)
and (3,1,4,2). A prime permutation on a source
node p is a transduction dictating how the chil-
dren of p are reordered at the target side, e.g.,
P21 inverts the child order. We must stress that
any similarity with ITG (Wu, 1997) is restricted
to the fact that the straight and inverted operators
of ITG are the binary case of prime permutations



Ebenso moéchte Ich Ihnen , Herr Professor Chomsky , herzlich danken

(a) Canonical PET

Ebenso moéchte Ich Ihnen , Herr Professor Chomsky , herzlich danken

(b) Alternative PET

Figure 1: Possible Permutation Trees (PETs) for one sentence pair

in PETs (P12 and P21). ITGs recognize only the
binarizable permutations, which is a major restric-
tion when used on the data: there are many non-
binarizable permutations in actual data (Welling-
ton et al., 2006). In contrast, our PETs are ob-
tained by factorizing permutations obtained from
the data, i.e., they exactly fit the range of prime
permutations in the parallel corpus. In practice we
limit them to maximum arity 5.

We can extract PCFG rules from the PETs, e.g.,
P21 — P12 P2413. However, these rules are
decorated with too coarse labels. A similar prob-
lem was encountered in non-lexicalized monolin-
gual parsing, and one solution was to lexicalize
the productions (Collins, 2003) using head words.
But linguistic heads do not make sense for PETsS,
so we opt for the alternative approach (Matsuzaki
et al., 2005), which splits the nonterminals and
softly percolates the splits through the trees gradu-
ally fitting them to the training data. Splitting has
a shadow side, however, because it leads to com-
binatorial explosion in grammar size.

Suppose for example node P21 could split into
P21; and P215 and similarly P2413 splits into
P24131 and 24135. This means that rule P21 —
P12 P2413 will form eight new rules:

P21y — P12y P2413;
P21y — P12y P2413,
P21y — P12y P2413;
P21y — P12y P2413,

P21, — P12y P2413,
P21 — P12y P2413,
P21y — P121 P2413,
P219 — P12y P2413,

Should we want to split each nonterminal into
30 subcategories, then an n-ary rule will split
into 30"t new rules, which is prohibitively large.
Here we use the “unary trick” as in Figure 2. The
superscript on the nonterminals denotes the child
position from left to right. For example P21%
means that this node is a second child, and the
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mother nonterminal label is P21;. For the running
example rule, this gives the following rules:

P21, — P21} P212 P21, — P21} P213
P21l — P12,  P21% — P2413,
P21} — P12, P217 — P2413,
P21y — P12, P213 — P2413;
P213 — P12, P21% — P2413,

The unary trick leads to substantial reduction in
grammar size, e.g., for arity 5 rules and 30 splits
we could have had 30 = 729000000 split-rules,
but with the unary trick we only have 30+30%%5 =
4530 split rules. The unary trick was used in
early lexicalized parsing work (Carroll and Rooth,
1998).2  This split PCFG constitutes a latent
PCFG because the splits cannot be read of a tree-
bank. It must be learned from the latent treebank
of PETs, as described next.

Ebenso mochte Ich Ihnen , Herr Professor Chomsky , herzlich danken

Figure 2: Permutation Tree with unary trick

3 Details of Latent Reordering PCFG

Obtaining permutations Given a source sen-
tence s and its alignment a to a target sentence

2 After applying the unary trick, we add a constraint on
splitting: all nonterminals on an n-ary branching rule must
be split simultaneously.



t in the training corpus, we segment (s, a, t) into
a sequence of minimal phrases s,, (maximal se-
quence) such that the reordering between these
minimal phrases constitutes a permutation 7.
We do not extract non-contiguous or non-minimal
phrases because reordering them often involves
complicated transductions which could hamper
the performance of our learning algorithm.?

Unaligned words Next we describe the use of
the factorization of permutations into PET forests
for training a PCFG model. But first we need
to extend the PETs to allow for unaligned words.
An unaligned word is joined with a neighboring
phrase to the left or the right, depending on the
source language properties (e.g., whether the lan-
guage is head-initial or -final (Chomsky, 1970)).
Our experiments use English as source language
(head-initial), so the unaligned words are joined
to phrases to their right. This modifies a PET by
adding a new binary branching node p (dominat-
ing the unaligned word and the phrase it is joined
to) which is labeled with a dedicated nonterminal:
P01 if the unaligned word joins to the right and
P10 if it joins to the left.

3.1 Probability model

We decompose the permutation 7, into a forest
of permutation trees PEF (7,,) in O(n?), follow-
ing algorithms in (Zhang et al., 2008; Zhang and
Gildea, 2007) with trivial modifications. Each
PET A € PEF(m,) is a different bracketing
(differing in binary branching structure only). We
consider the bracketing hidden in the latent tree-
bank, and apply unsupervised learning to induce a
distribution over possible bracketings. Our prob-
ability model starts from the joint probability of a
sequence of minimal phrases s,, and a permuta-
tion 7y, over it. This demands summing over all
PETs A in the forest PEF(m,,), and for every
PET also over all its label splits, which are given
by the grammar derivations d:

>, 2P

AEPEF(r,) dEA

P(spm,mm) = P(d,sn) (1)

The probability of a derivation d is a product of
probabilities of all the rules r that build it:

>, 2 IIrm

A€EPEF(mm)deAred

P(Smyﬂ—m) = 2)

3Which differs from (Quirk and Menezes, 2006).

47

As usual, the parameters of this model are the
PCFG rule probabilities which are estimated from
the latent treebank using EM as explained next.

3.2 Learning Splits on Latent Treebank

For training the latent PCFG over the latent tree-
bank, we resort to EM (Dempster et al., 1977)
which estimates PCFG rule probabilities to max-
imize the likelihood of the parallel corpus in-
stances.  Computing expectations for EM is
done efficiently using Inside-Outside (Lari and
Young, 1990). As in other state splitting models
(Matsuzaki et al., 2005), after splitting the non-
terminals, we distribute the probability uniformly
over the new rules, and we add to each new rule
some random noise to break the symmetry. We
split the non-terminals only once as in (Matsuzaki
et al., 2005) (unlike (Petrov et al., 2006)). For es-
timating the distribution for unknown words we
replace all words that appear < 3 times with the
“UNKNOWN” token.

3.3 Inference

We use CKY+ (Chappelier and Rajman, 1998) to
parse a source sentence s into a forest using the
learned split PCFG. Unfortunately, computing the
most-likely permutation (or alternatively $§) as in

> > Pdmm)

A€cPEF(r)deA

argmax
mell

from a lattice of permutations II using a PCFG
is NP-complete (Sima’an, 2002). Existing tech-
niques, like variational decoding or Minimum-
Bayes Risk (MBR), used for minimizing loss over
trees as in (Petrov and Klein, 2007), are not di-
rectly applicable here. Hence, we opt for mini-
mizing the risk of making an error under a loss
function over permutations using the MBR deci-
sion rule (Kumar and Byrne, 2004):

T = argmin Loss(m,m.)P(m
gﬂ Z (m, ) P ()

Ty

3)

The loss function we minimize is Kendall 7 (Birch
and Osborne, 2011; Isozaki et al., 2010a) which
is a ratio of wrongly ordered pairs of words (in-
cluding gapped pairs) to the total number of pairs.
We do Monte Carlo sampling of 10000 derivations
from the chart of the s and then find the least risky
permutation in terms of this loss. We sample from
the true distribution by sampling edges recursively



using their inside probabilities. An empirical dis-
tribution over permutations P(7) is given by the
relative frequency of 7 in the sample.

With large samples it is hard to efficiently com-
pute expected Kendall 7 loss for each sampled
hypothesis. For sentence of length £ and sam-
ple of size n the complexity of a naive algorithm
is O(n?k?). Computing Kendall 7 alone takes
O(k?). We use the fact that Kendall 7 decom-
poses as a linear function over all skip-bigrams b
that could be built for any permutation of length k:

1—46(m,b)
k(k—1)
2

Kendall(m,m) =
b

6(mr, 0) (4

Here § returns 1 if permutation 7 contains the skip
bigram b, otherwise it returns 0. With this decom-
position we can use the method from (DeNero et
al., 2009) to efficiently compute the MBR hypoth-
esis. Combining Equations 3 and 4 we get:

7 = argmin Z Z
T
T b

We can move the summation inside and reformu-
late the expected Kendall 7 loss as expectation
over the skip-bigrams of the permutation.

1 - §(m,b
%5@,5)13(@) 5)
2

= argmin Z(l — §(m, b)) [Zm §(mp, b)P(m,)| (6)
T b

= argmin Z(l —0(m, b)) Ep(r,)6(mr,0)  (7)
T b

= argmaxz 6(m,0)E p(r,)6(mr, b)  (8)
T b

This means we need to pass through the sampled
list only twice: (1) to compute expectations over
skip bigrams and (2) to compute expected loss of
each sampled permutation. The time complexity
is O(nk?) which is quite fast in practice.

4 Experiments

We conduct experiments with three baselines:

e Baseline A: No preordering.

¢ Baseline B: Rule based preordering (Isozaki
et al., 2010b), which first obtains an HPSG
parse tree using Enju parser 4 and after that
swaps the children by moving the syntactic
head to the final position to account for differ-
ent head orientation in English and Japanese.

*http://www.nactem.ac.uk/enju/

48

e Baseline C: LADER (Neubig et al., 2012):
latent variable preordering that is based on
ITG and large-margin training with latent
variables. We used LADER in standard set-
tings without any linguistic features (POS
tags or syntactic trees).

And we test four variants of our model:

RGyeg¢ - only canonical left branching PET
RGyigp¢ - only canonical right branching PET
RGyrG-forest - all PETSs that are binary (ITG)
RGPET—forest - all PETs.

We test these models on English-Japanese
NTCIR-8 Patent Translation (PATMT) Task. For
tuning we use all NTCIR-7 dev sets and for test-
ing the test set from NTCIR-9 from both direc-
tions. All used data was tokenized (English with
Moses tokenizer and Japanese with KyTea ) and
filtered for sentences between 4 and 50 words. A
subset of this data is used for training the Reorder-
ing Grammar, obtained by filtering out sentences
that have prime permutations of arity > 5, and for
the ITG version arity > 2. Baseline C was trained
on 600 sentences because training is prohibitively
slow. Table 1 shows the sizes of data used.

#words | #words

corpus #sents
source| target
train RGpgr 786k| 2IM -
train RGITG 783k 21M —
train LADER 600 15k -
train translation| 950k| 25M| 30M
tune translation 2k 55K 66K
test translation 3k 78K 93K

Table 1: Data stats

The Reordering Grammar was trained for 10 it-
erations of EM on frain RG data. We use 30 splits
for binary non-terminals and 3 for non-binary.
Training on this dataset takes 2 days and parsing
tuning and testing set without any pruning takes
11 and 18 hours respectively.

4.1 Intrinsic evaluation

We test how well our model predicts gold reorder-
ings before translation by training the alignment
model using MGIZA++ © on the training corpus
and using it to align the test corpus. Gold re-
orderings for the test corpus are obtained by sort-
ing words by their average target position and
(unaligned words follow their right neighboring

Shttp://www.phontron.com/kytea/
Shttp://www.kyloo.net/software/doku.php/mgiza:overview



word). We use Kendall 7 score for evaluation
(note the difference with Section 3.3 where we de-
fined it as a loss function).

Table 2 shows that our models outperform all
baselines on this task. The only strange result
here is that rule-based preordering obtains a lower
score than no preordering, which might be an ar-
tifact of the Enju parser changing the tokenization
of its input, so the Kendall 7 of this system might
not really reflect the real quality of the preorder-
ing. All other systems use the same tokenization.

Kendall 7

ANo preordering 0.7655
BRule based 0.7567
chAPER 0.8176
RGlcﬂfbranching 0.8201
RGright-branching 0.8246
RGITG—forcst 0.823

RGPET—foresl 0.8255

Table 2: Reordering prediction

4.2 Extrinsic evaluation in MT

The reordered output of all the mentioned base-
lines and versions of our model are translated with
phrase-based MT system (Koehn et al., 2007) (dis-
tortion limit set to 6 with distance based reordering
model) that is trained on gold preordering of the
training data 7 § — t. The only exception is Base-
line A which is trained on original s — t.

We use a 5-gram language model trained with
KenLM &, tune 3 times with kb-mira (Cherry and
Foster, 2012) to account for tuner instability and
evaluated using Multeval ° for statistical signifi-
cance on 3 metrics: BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014) and TER
(Snover et al., 2006). We additionally report
RIBES score (Isozaki et al., 2010a) that concen-
trates on word order more than other metrics.

Single or all PETs? In Table 3 we see that
using all PETs during training makes a big im-
pact on performance. Only the all PETs variants

"Earlier work on preordering applies the preordering
model to the training data to obtain a parallel corpus of
guessed § — t pairs, which are the word re-aligned and then
used for training the back-end MT system (Khalilov and
Sima’an, 2011). We skip this, we take the risk of mismatch
between the preordering and the back-end system, but this
simplifies training and saves a good amount of training time.

8http://kheafield.com/code/kenlm/

*https://github.com/jhclark/multeval
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System BLEU| |[METEOR [|TER | [RIBES]
ANopreord-To78 48.9 59.2 68.29
Bliulebased |99 g 48.7 59.2 71.12
CLAPER 1371 50.5 56.0 74.29
RGit: 31.24F  [50.54F 56.35F [74.45
RGignt 31.448  |50.545 56.38°%  |75.29
RGirgfores: |31.6%B€[50.84BC |55.7ABC|75 29
RGperiores. |32.04B€|51.048€  |55.74BC|75.62
Table 3: Comparison of different preordering

models. Superscripts A, B and C signify if the sys-
tem is significantly better (p < 0.05) than the re-
spective baseline or significantly worse (in which
case it is a subscript). Significance tests were not
computed for RIBES. Score is bold if the system
is significantly better than all the baselines.

(RGrrG-forest and RGpEt-forest) significantly outper-
form all baselines. If we are to choose a single
PET per training instance, then learning RG from
only left-branching PETs (the one usually cho-
sen in other work, e.g. (Saluja et al., 2014)) per-
forms slightly worse than the right-branching PET.
This is possibly because English is mostly right-
branching. So even though both PETs describe the
same reordering, RGjgp captures reordering over
English input better than RGieg.

All PETs or binary only?  RGpgrfyres: performs
significantly better than RGrG. foress (p < 0.05).
Non-ITG reordering operators are predicted rarely
(in only 99 sentences of the test set), but they
make a difference, because these operators often
appear high in the predicted PET. Furthermore,
having these operators during training might allow
for better fit to the data.

How much reordering is resolved by the
Reordering Grammar? Obviously, completely
factorizing out the reordering from the transla-
tion process is impossible because reordering de-
pends to a certain degree on target lexical choice.
To quantify the contribution of Reordering Gram-
mar, we tested decoding with different distortion
limit values in the SMT system. We compare the
phrase-based (PB) system with distance based cost
function for reordering (Koehn et al., 2007) with
and without preordering.

Figure 3 shows that Reordering Grammar
gives substantial performance improvements at
all distortion limits (both BLEU and RIBES).
RGpETforest 18 less sensitive to changes in decoder
distortion limit than standard PBSMT. The perfor-
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Figure 3: Distortion effect on BLEU and RIBES

mance of RGpgrforest Varies only by 1.1 BLEU
points while standard PBSMT by 4.3 BLEU
points. Some local reordering in the decoder
seems to help RGpgrsorest but large distortion
limits seem to degrade the preordering choice.
This shows also that the improved performance of
RGpETforest 1S not only a result of efficiently ex-
ploring the full space of permutations, but also a
result of improved scoring of permutations.

System BLEU [[METEOR ||TER |[RIBES |
DFPBEMSD 29.6 50.1 58.0 [68.97
gHiero 32.6 52.1 54.5 |74.12
RGperforest+MSD|[32.47  [51.30 55.32 [75.72

Table 4: Comparison to MSD and Hiero

Does the improvement remain for a decoder
with MSD reordering model? We compare the
RGperforest preordered model against a decoder
that uses the strong MSD model (Tillmann, 2004;
Koehn et al., 2007). Table 4 shows that using
Reordering Grammar as front-end to MSD re-
ordering (full Moses) improves performance by
2.8 BLEU points. The improvement is confirmed
by METEOR, TER and RIBES. Our preordering
model and MSD are complementary — the Re-
ordering Grammar captures long distance reorder-
ing, while MSD possibly does better local reorder-
ings, especially reorderings conditioned on the
lexical part of translation units.

Interestingly, the MSD model (BLEU 29.6)
improves over distance-based reordering (BLEU
27.8) by (BLEU 1.8), whereas the difference be-
tween these systems as back-ends to Reordering
Grammar (respectively BLEU 32.4 and 32.0) is
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far smaller (0.4 BLEU). This suggests that a ma-
jor share of reorderings can be handled well by
preordering without conditioning on target lexical
choice. Furthermore, this shows that RGpgr_forest
preordering is not very sensitive to the decoder’s
reordering model.

Comparison to a Hierarchical model (Hiero).
Hierarchical preordering is not intended for a hi-
erarchical model as Hiero (Chiang, 2005). Yet,
here we compare our preordering system (PB
MSD+RG) to Hiero for completeness, while we
should keep in mind that Hiero’s reordering model
has access to much richer training data. We will
discuss these differences shortly.

Table 4 shows that the difference in BLEU is
not statistically significant, but there is more dif-
ference in METEOR and TER. RIBES, which
concentrates more on reordering, prefers Reorder-
ing Grammar over Hiero. It is somewhat sur-
prising that a preordering model combined with a
phrase-based model succeeds to rival Hiero’s per-
formance on English-Japanese. Especially when
looking at the differences between the two:

1. Reordering Grammar uses only minimal
phrases, while Hiero uses composite (longer)
phrases which encapsulate internal reorder-
ings, but also non-contiguous phrases.

Hiero conditions its reordering on the lexical

target side, whereas the Reordering Grammar

does not (by definition).

. Hiero uses a range of features, e.g., a lan-
guage model, while Reordering Grammar is
a mere generative PCFG.

The advantages of Hiero can be brought to bear

upon Reordering Grammar by reformulating it as

a discriminative model.

Which structure is learned? Figure 4 shows
an example PET output showing how our model
learns: (1) that the article “the” has no equiva-
lent in Japanese, (2) that verbs go after their ob-
ject, (3) to use postpositions instead of preposi-
tions, and (4) to correctly group certain syntactic
units, e.g. NPs and VPs.

5 Related work

The majority of work on preordering is based
on syntactic parse trees, e.g., (Lerner and Petrov,
2013; Khalilov and Sima’an, 2011; Xia and Mc-
cord, 2004). Here we concentrate on work that
has common aspects with this work. Neubig et



DC the

current i

flowing through

feeding

conductor 3 produces magnetic field bl

Figure 4: Example parse of English sentence that predicts reordering for English-Japanese

al (2012) trains a latent non-probabilistic discrim-
inative model for preordering as an ITG-like gram-
mar limited to binarizable permutations. Tromble
and Eisner (2009) use ITG but do not train the
grammar. They only use it to constrain the lo-
cal search. DeNero and Uszkoreit (2011) present
two separate consecutive steps for unsupervised
induction of hierarchical structure (ITG) and the
induction of a reordering function over it. In con-
trast, here we learn both the structure and the re-
ordering function simultaneously. Furthermore, at
test time, our inference with MBR over a mea-
sure of permutation (Kendall) allows exploiting
both structure and reordering weights for infer-
ence, whereas test-time inference in (DeNero and
Uszkoreit, 2011) is also a two step process — the
parser forwards to the next stage the best parse.
Dyer and Resnik (2010) treat reordering as a la-
tent variable and try to sum over all derivations
that lead not only to the same reordering but also
to the same translation. In their work they consider
all permutations allowed by a given syntactic tree.
Saers et al (2012) induce synchronous gram-
mar for translation by splitting the non-terminals,
but unlike our approach they split generic non-
terminals and not operators. Their most expres-
sive grammar covers only binarizable permuta-
tions. The decoder that uses this model does not
try to sum over many derivations that have the
same yield. They do not make independence as-
sumption like our “unary trick” which is proba-
bly the reason they do not split more than 8 times.
They do not compare their results to any other
SMT system and test on a very small dataset.
Saluja et al (2014) attempts inducing a refined
Hiero grammar (latent synchronous CFG) from
Normalized Decomposition Trees (NDT) (Zhang
et al., 2008). While there are similarities with
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the present work, there are major differences. On
the similarity side, NDTs are decomposing align-
ments in ways similar to PETs, and both Saluja’s
and our models refine the labels on the nodes of
these decompositions. However, there are major
differences between the two:

e Our model is completely monolingual and
unlexicalized (does not condition its reorder-
ing on the translation) in contrast with the La-
tent SCFG used in (Saluja et al., 2014),

Our Latent PCFG label splits are defined
as refinements of prime permutations, i.e.,
specifically designed for learning reordering,
whereas (Saluja et al., 2014) aims at learn-
ing label splitting that helps predicting NDTs
from source sentences,

Our model exploits all PETs and all deriva-
tions, both during training (latent treebank)
and during inferences. In (Saluja et al., 2014)
only left branching NDT derivations are used
for learning the model.

The training data used by (Saluja et al., 2014)
is about 60 times smaller in number of words
than the data used here; the test set of (Saluja
et al., 2014) also consists of far shorter sen-
tences where reordering could be less crucial.

A related work with a similar intuition is presented
in (Maillette de Buy Wenniger and Sima’an,
2014), where nodes of a tree structure similar
to PETs are labeled with reordering patterns ob-
tained by factorizing word alignments into Hierar-
chical Alignment Trees. These patterns are used
for labeling the standard Hiero grammar. Unlike
this work, the labels extracted by (Maillette de
Buy Wenniger and Sima’an, 2014) are clustered
manually into less than a dozen labels without the
possibility of fitting the labels to the training data.



6 Conclusion

We present a generative Reordering PCFG model
learned from latent treebanks over PETs obtained
by factorizing permutations over minimal phrase
pairs. Our Reordering PCFG handles non-ITG
reordering patterns (up to 5-ary branching) and
it works with all PETs that factorize a permuta-
tion (rather than a single PET). To the best of our
knowledge this is the first time both extensions
are shown to improve performance. The empiri-
cal results on English-Japanese show that (1) when
used for preordering, the Reordering PCFG helps
particularly with relieving the phrase-based model
from long range reorderings, (2) combined with
a state-of-the-art phrase model, Reordering PCFG
shows performance not too different from Hiero,
supporting the common wisdom of factorizing
long range reordering outside the decoder, (3) Re-
ordering PCFG generates derivations that seem
to coincide well with linguistically-motivated re-
ordering patterns for English-Japanese. There are
various direction we would like to explore, the
most obvious of which are integrating the learned
reordering with other feature functions in a dis-
criminative setting, and extending the model to
deal with non-contiguous minimal phrases.
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Abstract

Divergent word order between languages
causes delay in simultaneous machine
translation. We present a sentence rewrit-
ing method that generates more mono-
tonic translations to improve the speed-
accuracy tradeoff. We design grammati-
cality and meaning-preserving syntactic
transformation rules that operate on con-
stituent parse trees. We apply the rules
to reference translations to make their
word order closer to the source language
word order. On Japanese-English transla-
tion (two languages with substantially dif-
ferent structure), incorporating the rewrit-
ten, more monotonic reference translation
into a phrase-based machine translation
system enables better translations faster
than a baseline system that only uses gold
reference translations.

1 Introduction

Simultaneous interpretation is challenging because
it demands both quality and speed. Conventional
batch translation waits until the entire sentence is
completed before starting to translate. This merely
optimizes translation quality and often introduces
undesirable lag between the speaker and the audi-
ence. Simultaneous interpretation instead requires
a tradeoff between quality and speed. A common
strategy is to translate independently translatable
segments as soon as possible. Various segmenta-
tion methods (Fujita et al., 2013; Oda et al., 2014)
reduce translation delay; they are limited, however,
by the unavoidable word reordering between lan-
guages with drastically different word orders. We
show an example of Japanese-English translation
in Figure 1. Consider the batch translation: in En-
glish, the verb change comes immediately after the
subject We, whereas in Japanese it comes at the end
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of the sentence; therefore, to produce an intelligible
English sentence, we must translate the object after
the final verb is observed, resulting in one large and
painfully delayed segment.

To reduce structural discrepancy, we can apply
syntactic transformations to make the word order
of one language closer to the other. Consider the
monotone translation in Figure 1. By passivizing
the English sentence, we can cache the subject and
begin translating before observing the final verb.
Furthermore, by using the English possessive, we
mimic the order of the Japanese genitive construc-
tion. These transformations enable us to divide the
input into shorter segments, thus reducing transla-
tion delay.

To produce such monotone translations, a
straightforward approach is to incorporate inter-
pretation data into the learning of a machine trans-
lation (MT) system, because human interpreters
use a variety of strategies (Shimizu et al., 2014;
Camayd-Freixas, 2011; Tohyama and Matsubara,
2006) to fine-tune the word order. Shimizu et
al. (2013) shows that this approach improves the
speed-accuracy tradeoff. However, existing paral-
lel simultaneous interpretation corpora (Shimizu
et al., 2014; Matsubara et al., 2002; Bendazzoli
and Sandrelli, 2005) are often small, and collecting
new data is expensive due to the inherent costs of
recording and transcribing speeches (Paulik and
Waibel, 2010). In addition, due to the intense time
pressure during interpretation, human interpreta-
tion has the disadvantage of simpler, less precise
diction (Camayd-Freixas, 2011; Al-Khanji et al.,
2000) compared to human translations done at the
translator’s leisure, allowing for more introspection
and precise word choice.

We aim to address the data scarcity problem and
combine translators’ lexical precision and inter-
preters’ syntactic flexibility. We propose to rewrite
the reference translation in a way that uses the
original lexicon, obeys standard grammar rules of
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Source:  F 413 B D g X ZH A % WE FANX P
We-TOP government-GEN structure and composition-ACC change should COP
Batch: P41l BN ORgERCHS Z L H g X & 72
We should change the structure and composition of the government

Monotone: ;4 14 |l Il

BF D

i X AR A

I BT NP

the government’s structure and composition should be changed by us

Figure 1: Divergent word order between language pairs can cause long delays in simultaneous translation:
Segments (||) mark the portions of the sentence that can be translated together. (Case markers: topic (TOP),

genitive (GEN), accusative (ACC), copula (COP).)

the target language, preserves the original seman-
tics, and yields more monotonic translations. We
then train the MT system with the rewritten refer-
ences so that it learns how to produce low-latency
translations from the data. A data-driven approach
to learning these rewriting rules is hampered by
the dearth of parallel data: we have few examples
of text that have been both interpreted and trans-
lated. Therefore, we design syntactic transforma-
tion rules based on linguistic analysis of the source
and the target languages. We apply these rules to
parsed text and decide whether to accept the rewrit-
ten sentence based on the amount of delay reduc-
tion. In this work, we focus on Japanese to English
translation, because (i) Japanese and English have
significantly different word orders (SOV vs. SVO);
and consequently, (ii) the syntactic constituents re-
quired earlier by an English sentence often come
late in the corresponding Japanese sentence.

We evaluate our approach using standard ma-
chine translation data (the Reuters newsfeed
Japanese-English corpus) in a simultaneous trans-
lation setting. Our experimental results show that
including the rewritten references into the learning
of a phrase-based MT system results in a better
speed-accuracy tradeoff against both the original
and the rewritten reference translations.

2 The Problem of Delay Reduction

Simultaneous interpretation has two goals: produc-
ing good translations and producing them promptly.
However, most existing parallel corpora and MT
systems do not address the issue of delay during
translation. We explicitly adapt the training data
by rewriting rules to reduce delay. We first define
translation delay and describe—in general terms—
our rewriting rules. In the next section, we describe
the rules in more detail.
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While we are motivated by real-time interpreta-
tion, to simplify our problem, we assume that we
have perfect text input. Given this constraint, a typ-
ical simultaneous interpretation system (Sridhar et
al., 2013; Fujita et al., 2013; Oda et al., 2014) pro-
duces partial translations of consecutive segments
in the source sentence and concatenates them to
produce a complete translation. We define the trans-
lation delay of a sentence as the average number
of tokens the system has to observe between trans-
lation of two consecutive segments (denoted by #
words/seg).! For instance, the minimum delay of
1 word/seg is achieved when we translate immedi-
ately upon hearing a word. At test time, when the
input is segmented, the delay is the average seg-
ment length. During the data preprocessing step of
rewriting, we calculate delay from word alignments
(Section 4).

Given a reference batch translation z, we ap-
ply a set of rewriting rules R to x to minimize its
delay. A rewriting rule » € R is a mapping that
takes the constituent parse tree of x as input and
outputs a modified parse tree, which specifies a
rewritten sentence . The tree-editing operation
includes node deletion, insertion, and swapping, as
well as induced changes of word form and node
label. A valid transformation rule should rearrange
constituents in x to follow the word order of the
input sentence as closely as possible, subject to
grammatical constraints and preservation of the
original meaning.

'Tdeally, delay should be based on time lapse. However,
timestamping is not applicable to typical MT corpus, therefore
we approximate it by number of tokens and ignore decoding
time.



3 Transformation Rules

We design a variety of syntactic transformation
rules for Japanese-English translation motivated by
their structural differences. Our rules cover verb,
noun, and clause reordering. While we specifi-
cally focus on Japanese to English, many rules are
broadly applicable to SOV to SVO languages.

3.1 Verb Phrases

The most significant difference between Japanese
and English is that the head of a verb phrase comes
at the end of Japanese sentences. In English, it occu-
pies one of the initial positions. We now introduce
rules that can postpone a head verb.

Passivization and Activization In Japanese, the
standard structure of a sentence is NP1 NPy verb,
where case markers following the verb indicate
the voice of the sentence. However, in English, we
have NP; verb NPy, where the form of the verb
indicates its voice. Changing the voice is particu-
larly useful when NPs (object in an active-voice
sentence and subject in a passive-voice sentence)
is long. By reversing positions of verb and NPg,
we are not held back by the upcoming verb and can
start to translate NP, immediately. Figure 1 shows
an example in which passive voice can help make
the target and source word orders more compatible,
but it is not the case that passivizing every sentence
would be a good idea; sometimes making a pas-
sive sentence active makes the word orders more
compatible if the objects are relatively short:

O: The talk was denied by the boycott group
spokesman.
R: The boycott group spokesman denied the talk.

Quotative Verbs Quotative verbs are verbs that,
syntactically and semantically, resemble said and
often start an independent clause. Such verbs are
frequent, especially in news, and can be moved to
the end of a sentence:

O: They announced that the president will re-
structure the division.

R: The president will restructure the division,
they announced.

In addition to quotative verbs, candidates typi-
cally include factive (e.g., know, realize, observe),
factive-like (e.g., announce, determine), belief (e.g.,
believe, think, suspect), and antifactive (e.g., doubt,
deny) verbs. When these verbs are followed by a
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clause (S or SBAR), we move the verb and its sub-
ject to the end of the clause.

While some exploratory work automatically ex-
tracts factive verbs, to our knowledge, an exhaus-
tive list does not exist. To obtain a list with rea-
sonable coverage, we exploit the fact that Japanese
has an unambiguous quotative particle, fo, that pre-
cedes such verbs.? We identify all of the verbs in
the Kyoto corpus (Neubig, 2011) marked by the
quotative particle and translate them into English.
We then use these as our quotative verbs.>

3.2 Noun Phrases

Another difference between Japanese and English
lies in the order of adjectives and the nouns they
modify. We identify two situations where we can
take advantage of the flexibility of English gram-
mar to favor sentence structures consistent with
positions of nouns in Japanese.

Genitive Reordering In Japanese, genitive con-
structions always occur in the form of X no Y,
where Y belongs to X. In English, however, the
order may be reversed through the of construction.
Therefore, we transform constructions NP of NPy
to possessives using the apostrophe-s, NP5’ (s) NP
(Figure 1). We use simple heuristics to decide if
such a transformation is valid. For example, when
X /'Y contains proper nouns (e.g., the City of New
York), numbers (e.g., seven pounds of sugar), or
pronouns (e.g., most of them), changing them to the
possessive case is not legal.

that Clause In English, clauses are often modi-
fied through a pleonastic pronoun. E.g., It is ADJP
to/that SBAR/S. In Japanese, however, the subject
(clause) is usually put at the beginning. To be con-
sistent with the Japanese word order, we move the
modified clause to the start of the sentence: 7o
S/SBAR is ADJP. The rewritten English sentence
is still grammatical, although its structure is less
frequent in common English usage. For example,

O: It is important to remain watchful.
R: To remain watchful is important.

2We use a morphological analyzer to distinguish between
the conjunction and quotative particles. Examples of words
marked by this particle include . 5N % (expect), E
(say), BN 5 (seem), T3 (assume), 12 L % (believe)
and so on.

3We also include the phrase It looks like.



Input: S (a) Detection: S (b) Modification: S
VRN 7 '\ VRN
NP VP NP, VP NP VP
| / N\ N\ 1\ / N\
PRP VBP NP VB* NP, DT JJ NN VBZ VP
I | VIR | I | | / '\
We love DT JJI NN swap NP, and NP2 the new world is VBN PP
| | | insert “be” before VB* I / \
the new world insert “by”” before NP> loved IN NP
| |
(c) Evaluation: by PRP

Target: We love the new world

| \

Source: We new world the love
(I J
Delay: 1 4

Delay:

New target: The new world is loved by us |

| us

Source: We new world the love
L

2

2 1

Figure 2: An example of applying the passivization rule to create a translation reference that is more

monotonic.

3.3 Conjunction Clause

In Japanese, clausal conjunctions are often marked
at the end of the initial clause of a compound sen-
tence. In English, however, the order of clauses is
more flexible. We can therefore reduce delay by
reordering the English clauses to mirror how they
typically appear in Japanese. Below we describe
rules reversing the order of clauses connected by
these conjunctions:

* Clausal conjunctions: because (of), in order
to

* Contrastive conjunctions:
though, although

» Conditionals: (even) if, as a result (of)

e Misc: according to

despite, even

In standard Japanese, such conjunctions include
no de, kara, de mo and so on. The sentence often
appears in the form of Sp conj, S;. In English,
however, two common constructions are

S1 conj So: We should march because win-
ter is coming.
conj Sg, S1: Because winter is coming, we
should march.

To follow the Japanese clause order, we adapt the
above two constructions to

So, conj’ Sp: Winter is coming, because of
this, we should march.

Here conj’ represents the original conjunction
word appended with simple pronouns/phrases to
refer to So. For example, because — because of
this, even if — even if this is the case.
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4 Sentence Rewriting Process

We now turn our attention to the implementation of
the syntactic transformation rules described above.
Applying a transformation consists of three steps:

1. Detection: Identify nodes in the parse tree for
which the transformation is applicable;

2. Modification: Transform nodes and labels;

3. Evaluation: Compute delay reduction, and
decide whether to accept the rewritten sen-
tence.

Figure 2 illustrates the process using passivization
as an example. In the detection step, we find the
subtree that satisfies the condition of applying a
rule. In this case, we look for an S node whose chil-
dren include an NP (denoted by NP1), the subject,
and a VP to its right, such that the VP node has
a leaf VB*, the main verb,* followed by another
NP (denoted by NP5), the object. We allow the par-
ent nodes (S and VP) to have additional children
besides the matched ones. They are not affected
during the transformation. In the modification step,
we swap the subject node and object node; we add
the verb be in its correct form by checking the tense
of the verb and the form of NPs;’and we add the
preposition by before the subject. The process is
executed recursively throughout the parse tree.

“The main verb excludes be and have when it indicates
tense (e.g., have done).

>We use the Nodebox linguistic library (nttps://www.
nodebox .net/code) to detect and modify word forms.



Although our rules are designed to minimize
long range reordering, there are exceptions.® Thus
applying a rule does not always reduce delay. In
the evaluation step, we compare translation delay
before and after applying the rule. We accept a
rewritten sentence if its delay is reduced; other-
wise, we revert to the input sentence. Since we do
not segment sentences during rewriting, we must
estimate the delay.

To estimate the delay, we use word alignments.
Figure 2c shows the source Japanese sentence in
its word-for-word English translation and align-
ments from the target words to the source words.
The first English word, We, is aligned to the first
Japanese word; it can thus be treated as an inde-
pendent segment and translated immediately. The
second English word, love, is aligned to the last
Japanese word, which means the system cannot
start to translate until four more Japanese words
are revealed. This alignment therefore forms a seg-
ment with delay of four words/seg. Alignments of
the following words come before the source word
aligned to love; hence, they are already translated
in the previous segment and we do not double count
their delay. In this example, the delay of the orig-
inal sentence is 2.5 word/seg; after rewriting, it
is reduced to 1.7 word/seg. Therefore, we accept
the rewritten sentence. However, when the subject
phrase is long and the object phrase is short, a swap
may not reduce delay.

We can now formally define the delay. Let e; be
the 7th target word in the input sentence x and a;
be the maximum index among indices of source
words that e; aligned to. We define the delay of e;
as d; = max(0, a; —max;; a;). The delay of z is
then -~ | d;/N, where the sum is over all aligned
words except punctuation and stopwords.

Given a set of rules, we need to decide which
rules to apply and in what order. Fortunately, our
rules have little interaction with each other, and
the order of application has a negligible effect. We
apply the rules, roughly, sequentially in order of
complexity: if the output of current rule is not ac-
cepted, the sentence is reverted to the last accepted
version.
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Train Tune  Test

Ja 21.3M  30.2k 23.3k
En-GD 16.8M 23.8k 18.5k
En-rw 16.8M 24.1k 18.7k

Table 1: Number of words in the training, tuning,
and test datasets. En-GD and En-RW represent the
gold reference set and the rewritten reference set.

5 Experiments

We evaluate our method on the Reuters Japanese-
English corpus of news articles (Utiyama and Isa-
hara, 2003). For training the MT system, we also
include the EIJTRO dictionary entries and the ac-
companying example sentences.’ Statistics of the
dataset are shown in Table 1. The rewritten trans-
lation is generally slightly longer than the gold
translation because our rewriting often involves
inserting pronouns (e.g. it, this) for antecedents.

We use the TreebankWordTokenizer
from NLTK (Bird et al., 2009) to tokenize En-
glish sentences and Kuromoji Japanese mor-
phological analyzer® to tokenize Japanese sen-
tences. Our phrase-based MT system is trained
by Moses (Koehn et al., 2003) with standard
parameters settings. We use GIZA++ (Och and
Ney, 2003) for word alignment and k-best batch
MIRA (Cherry and Foster, 2012) for tuning. The
translation quality is evaluated by BLEU (Papineni
et al., 2002) and RIBES (Isozaki et al., 2010).° To
obtain the parse trees for English sentences, we use
the Stanford Parser (Klein and Manning, 2003) and
the included English model.

5.1 Quality of Rewritten Translations

After applying the rewriting rules (Section 4), Ta-
ble 2 shows the percentage of sentences that are
candidates and how many rewrites are accepted.
The most generalizable rules are passivization and
delaying quotative verbs. We rewrite 32.2% of sen-
tences, reducing the delay from 9.9 words/seg to
6.3 words/seg per segment for rewritten sentences
and from 7.8 words/seg to 6.7 words/seg overall.

8For example, in clause transformation, the Japanese con-
junction moshi, which is clause initial, may appear at the
beginning of a sentence to emphasize conditionals, although
its appearance is relatively rare.

7 Available at http: //eijiro. jp

$Available at http://www.atilika.org/

°In contrast to BLEU, RIBES is an order-sensitive metric
commonly used for translation between Japanese and English.



verb voice noun conj.

Applicable % 39.9 50.0 264 4.8
Accepted % 22.5 240 51.2 384

Table 2: Percentage of sentences that each rule
category can be applied to (Applicable) and the
percentage of sentences for which the rule results
in a more monotonic sentence (Accepted).

We evaluate the quality of our rewritten sen-
tences from two perspectives: grammaticality and
preserved semantics. To examine how close the
rewritten sentences are to standard English, we
train a 5-gram language model using the English
data from the Europarl corpus, consisting of 46
million words, and use it to compute perplexity.
Rewriting references increases the perplexity un-
der the language model only slightly: from 332.0
to 335.4. To ensure that rewrites leave meaning
unchanged, we use the SEMAFOR semantic role
labeler (Das et al., 2014) on the original and mod-
ified sentence; for each role-labeled token in the
reference sentence, we examine its corresponding
role in the rewritten sentence and calculate the aver-
age accuracy acrosss all sentences. Even ignoring
benign lexical changes—for example, se becom-
ing him in a passivized sentence—95.5% of the
words retain their semantic roles in the rewritten
sentences.

Although our rules are conservative to minimize
corruption, some errors are unavoidable propaga-
tion of parser errors. For example, the sentence the
London Stock Exchange closes at 1230 GMT today
is parsed as:!?

(S (NP the London Stock Exchange)
(VP (VBZ closes)

(PP at 1230)

(NP GMT today)))
GMT today is separated from the PP as an NP and is
mistaken as the object. The passive version is then
GMT today is closed at 1230 by the London Stock
Exchange. Such errors could be reduced by skip-
ping nodes with low inside/outside scores given
by the parser, or skipping low-frequency patterns.
However, we leave this for future work.

5.2 Segmentation

At test time, we use right probability (Fujita et
al., 2013, RP) to decide when to start translating a

"For simplicity we show the shallow parse only.
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sentence. As we read in the source Japanese sen-
tence, if the input segment matches an entry in
the learned phrase table, we query the RP of the
Japanese/English phrase pair. A higher RP indicates
that the English translation of this Japanese phrase
will likely be followed by the translation of the
next Japanese phrase. In other words, translation
of the two consecutive Japanese phrases is mono-
tonic, thus, we can begin translating immediately.
Following (Fujita et al., 2013), if the RP of the
current phrase is lower than a fixed threshold, we
cache the current phrase and wait for more words
from the source sentence; otherwise, we translate
all cached phrases. Finally, translations of segments
are concatenated to form a complete translation of
the input sentence.

5.3 Speed/Accuracy Trade-off

To show the effect of rewritten references, we com-
pare the following MT systems:

GD: only gold reference translations;

RW: only rewritten reference translations;
RW+GD: both gold and the rewritten refer-
ences; and

RW-LM+GD: using gold reference transla-
tions but using the rewritten references for
training the LM and for tuning.

For RW+GD and RW-LM+GD, we interpolate the
language models of GD and RW. The interpolat-
ing weight is tuned with the rewritten sentences.
For RW+GD, we combine the translation models
(phrase tables and reordering tables) of RW and
GD by fill-up combination (Bisazza et al., 2011),
where all entries in the tables of RW are preserved
and entries from the tables of GD are added if new.

Increasing the RP threshold increases interpreta-
tion delay but improves the quality of the transla-
tion. We set the RP threshold at 0.0, 0.2, 0.4, 0.8
and finally 1.0 (equivalent to batch translation).
Figure 3 shows the BLEU/RIBES scores vs. the
number of words per segement as we increase the
threshold. Rewritten sentences alone do not sig-
nificantly improve over the baseline. We suspect
this is because the transformation rules sometimes
generate ungrammatical sentences due to parsing
errors, which impairs learning. However, combin-
ing RW and GD results in a better speed-accuracy
tradeoff: the RW+GD curve completely dominates
other curves in Figure 3a, 3c. Thus, using more
monotone translations improves simultaneous ma-
chine translation, and because RW-LM+GD is about



18

17t
16t
5 15}
w
-
0 14
130 *—% RW+GD
B—a RW-LM+GD
12¢ e—e RW
> GD
11 : : : : ‘ ‘
0 5 10 15 20 25 30 35
Average # of words per segment
(a) BLEU w.r.t. gold ref
18
17
16
15
>
Y14
m
13
*—% RW+GD
12 B8 RW-LM+GD
11 e—e RW
> GD
10 : : : : ‘ ‘
0 5 10 15 20 25 30 35

Average # of words per segment

(c) BLEU w.r.t. rewritten ref

RIBES

RIBES

62.5

62.0]

61.5

61.0

605 *—% RW+GD
B8 RW-LM+GD

60.0 e—e RW
> GD

59.5 ' : : ' ' '

0 5 10 15 20 25 30 35
Average # of words per segment
(b) RIBES w.r.t. gold ref

62.5

62.0

61.5

61.0

60.5 *—% RW+GD
B8 RW-LM+GD

60.0 e—e RW
> GD

29-% 5 10 15 20 25 30 35

Average # of words per segment

(d) RIBES w.r.t. rewritten ref

Figure 3: Speed/accuracy tradeoff curves: BLEU (left) / RIBES (right) versus translation delay (average

number of words per segment).

the same as GD, the major improvement likely
comes from the translation model from rewritten
sentences.

The right two plots recapitulate the evaluation
with the RIBES metric. This result is less clear, as
MT systems are optimized for BLEU and RIBES
penalizes word reordering, making it difficult to
compare systems that intentionally change word
order. Nevertheless, RW is comparable to GD on
gold references and superior to the baseline on
rewritten references.

5.4 Effect on Verbs

Rewriting training data not only creates lower la-
tency simultaneous translations, but it also im-
proves batch translation. One reason is that SOV
to SVO translation often drops the verb because of
long range reordering. (We see this for Japanese
here, but this is also true for German.) Similar word
orders in the source and target results in less re-
ordering and improves phrase-based MT (Collins
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Translation
GD RW RW+GD Gold ref
#of verbs 1971 2050 2224 2731

Table 3: Number of verbs in the test set transla-
tion produced by different models and the gold
reference translation. Boldface indicates the num-
ber is significantly larger than others (excluding
the gold ref) according to two-sample ¢-tests with
p < 0.001.

et al., 2005; Xu et al., 2009). Table 3 shows the
number of verbs in the translations of the test sen-
tences produced by GD, RW, RW+GD, as well as
the number in the gold reference translation. Both
RW and RW+GD produce more verbs (a statistically
significant result), although RW+GD captures the
most verbs.



he also said that the real dangers for the euro lay in the

potential for divergences in the domestic policy needs
among the various participating nations of the single
currency.

Ref

he also for the euro, is a real danger to launch a single
currency in many different countries and domestic
policies on the need for the possibility of a difference.

GD

he also for the euro is a real danger to launch a single
currency in many different countries and domestic
policies to the needs of the possibility of a difference,
he said.

RW

Table 4: Example of translation produced by GD
and RW.

5.5 Error Analysis

Table 4 compares translations by GD and RW. RW
correctly puts the verb said at the end, while GD
drops the final verb. However, RW still produces he
at the beginning (also the first word in the Japanese
source sentence). This is because our current seg-
mentation strategy do not preserve words for later
translation—a note-taking strategy used by human
interpreters.

6 Related Work

Previous approaches to simultaneous machine
translation have employed explicit interpretation
strategies for coping with delay. Two major ap-
proaches are segmentation and prediction.

Most segmentation strategies are based on
heuristics, such as pauses in speech (Fiigen et
al., 2007; Bangalore et al., 2009), comma predic-
tion (Sridhar et al., 2013) and phrase reordering
probability (Fujita et al., 2013). Learning-based
methods have also been proposed. Oda et al. (2014)
find segmentations that maximize the BLEU score
of the final concatenated translation by dynamic
programming. Grissom II et al. (2014) formulate
simultaneous translation as a sequential decision
making problem and uses reinforcement learning
to decide when to translate. One limitation of these
methods is that when learning with standard batch
MT corpus, their gain can be restricted by natural
word reordering between the source and the target
sentences, as explained in Section 1.

In an SOV-SVO context, methods to predict un-
seen words are proposed to alleviate the above re-
striction. Matsubara et al. (1999) predict the En-
glish verb in the target sentence and integrates it
syntactically. Grissom II et al. (2014) predict the fi-
nal verb in the source sentence and decide when to
use the predicted verb with reinforcement learning.
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Nevertheless, unless the predictor considers con-
textual and background information, which human
interpreters often rely on for prediction (Honig,
1997; Camayd-Freixas, 2011), such a prediction
task is inherently hard.

Unlike previous approaches to simultaneous
translation, we directly adapt the training data and
transform a translated sentence to an “interpreted”
one. We can, therefore, take advantage of the abun-
dance of parallel batch-translated corpora for train-
ing a simultaneous MT system. In addition, as a data
preprocessing step, our approach is orthogonal to
the others, with which it can be easily combined.

This work is also related to preprocessing re-
ordering approaches (Xu et al., 2009; Collins et
al., 2005; Galley and Manning, 2008; Hoshino et
al., 2013; Hoshino et al., 2014) in batch MT for
language pairs with substantially different word or-
ders. However, our problem is different in several
ways. First, while the approaches resemble each
other, our motivation is to reduce translation delay.
Second, they reorder the source sentence, which is
nontrivial and time-consuming when the sentence
is incrementally revealed. Third, rewriting the tar-
get sentence requires the output to be grammatical
(for it to be used as reference translation), which is
not a concern when rewriting source sentences.

7 Conclusion

Training MT systems with more monotonic
(interpretation-like) sentences improves the speed-
accuracy tradeoff for simultaneous machine trans-
lation. By designing syntactic transformations and
rewriting batch translations into more monotonic
translations, we reduce the translation delay. MT
systems trained on the rewritten reference transla-
tions learn interpretation strategies implicitly from
the data.

Our rewrites are based on linguistic knowledge
and inspired by techniques used by human inter-
preters. They cover a wide range of reordering phe-
nomena between Japanese and English, and more
generally, between SOV and SVO languages. A nat-
ural extension is to automatically extract such rules
from parallel corpora. While there exist approaches
that extract syntactic tree transformation rules auto-
matically, one of the difficulties is that most parallel
corpora is dominated by lexical paraphrasing in-
stead of syntactic paraphrasing.
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Abstract

This paper describes an approach to large-
scale modeling of sentiment analysis for
the social sciences. The goal is to model
relations between nation states through so-
cial media. Many cross-disciplinary appli-
cations of NLP involve making predictions
(such as predicting political elections), but
this paper instead focuses on a model that
is applicable to broader analysis. Do cit-
izens express opinions in line with their
home country’s formal relations? When
opinions diverge over time, what is the
cause and can social media serve to de-
tect these changes? We describe several
learning algorithms to study how the pop-
ulace of a country discusses foreign na-
tions on Twitter, ranging from state-of-the-
art contextual sentiment analysis to some
required practical learners that filter irrel-
evant tweets. We evaluate on standard
sentiment evaluations, but we also show
strong correlations with two public opin-
ion polls and current international alliance
relationships. We conclude with some po-
litical science use cases.

1 Introduction

The volume of text available on social media pro-
vides a new opportunity for public policy and po-
litical science. Specifically in the area of interna-
tional relations, advances in natural language un-
derstanding and sentiment analysis may offer new
insights into the sentiment of one nation toward
another. This paper processes 17 months of Twit-
ter data to identify discussions about sovereign
states, and it aggregates opinions toward these
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states from foreign nations. We present a novel
application of contextual sentiment with this task,
and identify several semi-supervised learning al-
gorithms that are needed to address the reference
resolution challenge inherent to country names.
We present intrinsic evaluations of our learners on
labeled datasets as well as four extrinsic politi-
cal science evaluations that show strong alignment
with our large-scale sentiment extraction.

An open question for international policy mak-
ers is the extent to which public opinion drives de-
cision making. How do military conflicts affect a
neutral nation’s relationship? Does public opin-
ion shift toward a country after a formal alliance is
created, or must popular opinion shift first? These
questions are difficult to address due to the lack of
measurable data. While polling data can be col-
lected, collection beyond a handful of countries
is cost prohibitive. This paper hypothesizes that
sentiment analysis can be used as a proxy to track
international relations between nation states. We
describe the largest attempt (over 2 billion tweets)
to measure nation state sentiment across hundreds
of country pairs.

The core challenge to measuring public opin-
ion between countries is an accurate algorithm to
judge the sentiment of a text toward another na-
tion. Unlike traditional sentiment analysis, the
general sentiment of the text is not adequate. Let
the following serve as an example.

I miss Pakistan. I am in full sad mode right about
now. @RachOrange (California)

This tweet is a positive example from the USA to-
ward Pakistan. However, a typical sentiment clas-
sifier misclassifies this as negative because miss
and sad express sadness. A contextual sentiment
classification is needed to identify that the predi-
cate miss is positive toward its argument. Several
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recent competitions included contextual classifi-
cation tasks, and this paper builds on the best of
those algorithms for a unique nation-nation sen-
timent classifier. We describe a multi-classifier
model that aggregates tweets into counts of pos-
itive and negative sentiment from one country to-
ward another. Several unique filters are required to
resolve textual references toward country names.

We first present standard NLP sentiment exper-
iments that show the classifiers achieve good per-
formance on individual tweets. To evaluate the
complete nation-nation system, we present four
novel evaluations, including two public opinion
polls. Correlation with the polls is high at p = .8,
and our nation-nation sentiment is 84% accurate
with NATO and EU relations. We then discuss the
implications for both NLP as a technical science
and political science as a social science.

2 Previous Work

Sentiment analysis is a large field applicable to
many genres. This paper focuses on social me-
dia and contextual polarity, so we only address the
closest work in those areas. For a broader perspec-
tive, several survey papers are available (Pang and
Lee, 2008; Tang et al., 2009; Liu and Zhang, 2012;
Tsytsarau and Palpanas, 2012).

Several sources for microblogs have been used
to measure a large population’s mood and opin-
ion. O’Connor et al. (2010) used Twitter data to
compute a ratio of positive and negative words to
measure consumer confidence and presidential ap-
proval. Kramer (2010) counted lexicon words on
Facebook for a general "happiness’ measure, and
Thelwall (2011) built a general sentiment model
on MySpace user comments. These are early gen-
eral sentiment algorithms for social media.

Other microblog research focused on finding
noisy training data with distant supervision. Many
of these algorithms use emoticons as semantic in-
dicators of polarity. For instance, a tweet that con-
tains a sad face likely contains a negative polar-
ity (Read, 2005; Go et al., 2009; Bifet and Frank,
2010; Pak and Paroubek, 2010; Davidov et al.,
2010; Kouloumpis et al., 2011). In a similar vein,
hashtags can serve as noisy labels (Davidov et al.,
2010; Kouloumpis et al., 2011). Our bootstrap
learner is similar in its selection of seed tokens.

Supervised learning for contextual polarity has
received more attention recently. Jiang et al.
(2011) is an early approach. Work on product
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reviews sought the sentiment toward particular
product features. These systems used rule based
models based on parts of speech and surface fea-
tures (Nasukawa and Yi, 2003; Hu and Liu, 2004;
Ding and Liu, 2007). Most notably, recent Se-
meval competitions addressed contextual polarity
(Nakov et al., 2013; Rosenthal et al., 2014). The
top performing systems learned their own lexicons
custom to the domain (Mohammad et al., 2013;
Zhu et al., 2014). Our proposed system includes
many of their features, but several fail to help on
nation-nation sentiment.

Early approaches to topic detection on social
media were straightforward, selecting a keyword
(e.g., “Obama”) to represent the topic (e.g., “US
President”) and retrieving tweets containing the
word (O’Connor et al., 2010; Tumasjan et al.,
2010; Tan et al., 2011). These systems classify the
polarity of the entire tweet, but ignore the ques-
tion of polarity toward the particular topic. This
paper focuses on identifying tweets with nation
mentions, and identifying the sentiment toward the
mention, not the overall sentiment of the text.

Event detection on Twitter is also relevant
(Sakaki et al., 2010; Becker et al., 2011). In fact,
O’Connor et al. (2013) modeled events to detect
international relations, but our goal is to model
long term relation trends, not isolated events.

Large-scale computational studies of social me-
dia are relatively new to the international relations
community. Barbera and Rivero (2014) is a no-
table example for election analysis. Some studied
online discussion about Palestine (Lynch, 2014)
and the role of Twitter in the Arab Spring (Howard
et al., 2011; Howard, 2013). However, they sim-
ply counted the volume of tweets containing key-
words. This paper applies a deeper NLP analysis
and we show that frequency alone fails at detecting
nation-nation relations.

Most relevant to this paper is a study of Ara-
bic tweets into anti-American sentiment. Jamal et
al. (2015) used a supervised sentiment classifier
on Arabic tweets to measure sentiment toward the
USA. Our paper differs by taking a broader view.
We investigate with state-of-the-art sentiment al-
gorithms, and we we study practical problems that
arise within when measuring nation-nation senti-
ment across all country pairs. To our knowledge,
this paper is the largest computational approach
(17 months with 2 billion tweets) to measuring in-
ternational relations on social media.



3 Microblog Datasets

The main dataset for this study is 17 months of
tweets obtained through the keyword Twitter API
that mention one of 187 unique countries. The
dataset spans from Sep. 3, 2013 to Jan 10, 2015
with 3-5 million tweets per day. Each tweet in-
cludes the profile location and geolocation data (if
available) of the user who posted the tweet. Col-
lection was not limited to a specific location in or-
der to retrieve samples from across the world. This
dataset is used in all political science experiments
(Sections 6.2 and 6.3).

A smaller labeled dataset is used for supervised
classification. We randomly sampled the data to
create a dataset of 4250 tweets. The authors ini-
tially labeled each tweet with one of four senti-
ment labels: positive, negative, objective, or ir-
relevant. Text was only labeled as positive if it
is positive toward the nation’s mention. Text that
contains a nation’s mention, but does not contain
sentiment toward the mention is labeled objective.
Text with a mention that is not referent to a phys-
ical country is labeled irrelevant despite presence
of sentiment. This irrelevant distinction is a depar-
ture from sentiment competitions. A second label-
ing added a fifth label to the irrelevant tweets to
split off dining topics.

Usernames (e.g., @Quser) and URLSs are replaced
with placeholder tokens. Multiple whitespace
characters are condensed and the text is split on
it. Punctuation attached to tokens is removed
(but saved) and used in later punctuation features.
Punctuation is not treated as separate tokens in
the n-gram features. We prepend occurrences of
“not” to their subsequent tokens, merging the two
into a new token (e.g., “not happy” becomes “not-
happy”). Once the raw text of the tweet is tok-
enized as above, non-English tweets are filtered
out. English filtering is performed by LingPipe'.
We manually evaluated this filter and found it
86.2% accurate over 400 tweets. Accuracy is lost
due to slang and the short nature of the text.

4 Classifying Nation-Nation Sentiment

Given a tweet containing a country’s name, our
goal is to identify the sentiment of the text toward
that nation. Unlike most work on contextual polar-
ity, this requires reference resolution of the target
phrase (e.g., the country name). Previous Semeval

Lalias-i.com/lingpipe/#lingpipe
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competitions evaluate the sentiment of a text to-
ward a phrase, but the semantics of the phrase is
largely ignored. For instance, the following exam-
ple would make an excellent Semeval test item, but
its classification is irrelevant to the goal of measur-
ing nation sentiment:

My daughter and I have been to Angelo’s several
times when in Little Italy. Love love it!

The author is obviously positively inclined to-
ward Little Italy, however, Little Italy does not
refer to the country of Italy. We found that
most tweets referring to dining or visiting foreign-
themed restaurants are not relevant to determining
nation to nation sentiment. It became necessary to
research new classifiers that perform basic refer-
ence resolution.

4.1 Reference Resolution: Irrelevant
Detection

This paper defines reference resolution in the tra-
ditional linguistic sense: determine the real-world
referent of a text mention. Most NLP tasks use
coreference resolution: determine the text an-
tecedent of a text mention. This paper requires ref-
erence resolution because the target phrase often
does not refer to an actual geolocated country. Af-
ter collecting months of tweets that include coun-
try name mentions, data analysis revealed several
types of these non-references. We treat reference
resolution as a classification problem. Below are
a variety of supervised and semi-supervised learn-
ers that identify different types of errant country
references, and ultimately serve to filter out these
irrelevant tweets.

4.1.1 Dining Classifier
One of our early observations was that mentions
of nations are often in the context of eating and
dining, as evidenced here:

This is the first turkey sandwich I've had in
awhile... It’s great turkey.

Taste of China For chinese food lover’s. For

more info Please visit

This class of tweet is problematic to our study
of international politics. While microblogs about
dining can contain heavy emotion, a link to the
writer’s opinion about the foreign nation itself
is ambiguous. We thus filter out dining text
through supervised classification. Using the la-
beled dataset in Section 3, we annotated a dine la-
bel for all dining tweets. Tweets without a dine



Dine

ot

All unigrams in text

1-3grams that include the country
Bigram and Trigram country pattern
Four Square app pattern

Named Entity 2-3grams w/ country
Emoticon happy or sad

Ending text punctuation

Binary: contains exclamation point

v
v
v

SNENENENENENENENE

Table 1: Dining and Relevant features.

label are considered not-dine. We ran a logistic
regression for two labels, dine and not-dine. Text
features are shown in Table 1.

4.1.2 Irrelevancy Classifier

Beyond dining, a broader class of irrelevant tweets
refer to non-nation entities. These microblogs
contain country names, but the mentions do not
reference the physical country. The following ex-
amples illustrate this class of irrelevant tweets (na-
tion tokens in bold):

Yesterday was chilly out and now today’s going
to be 80. New England weather is so bipolar 1
hate it so much

Bank Of America Upgrades ConocoPhillips On
More Favorable Outlook

Several types of irrelevancy can be found, but
the most common is a non-nation geolocation like
New England. Proper nouns like Bank of Amer-
ica are frequent as well. A named entity recog-
nizer (NER) identified some of these, but we ulti-
mately turned to supervised classification for bet-
ter accuracy (space constraints prevent discussion
of NER performance). We trained a logistic re-
gression classifier on the relevant tweets in the
Section 3 dataset, and mapped all other labels to
irrelevant. Features used are shown in Table 1.

4.1.3 Bootstrap Learner

After filtering non-referent tweets, we observed
that many positive and negative tweets reference
countries in the context of sporting events and mu-
sic/concerts. These are correctly labeled relevant
by the above binary classifiers (and possibly anno-
tated as positive or negative), but the topic (sports
or music) does not contain a strong semantic con-
nection to the author’s actual opinion about the
country. A couple of sport examples are given
here:

@SpecialKBrook Wow - the Brittish judge scored
the fight a draw - lucky England’s fighters are
better than their judges.
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Congo LFC now someone give me that goalie’s
Jjersey :p

The sport topic has a less diverse vocabulary
than other topics. We hypothesized that a boot-
strap learning framework (Riloff and Jones, 1999)
could quickly learn its unique language without
the need for supervised learning. Beginning with
a short list of sport keywords (football, basket-
ball, baseball, cricket, soccer, golf, hockey, rugby,
game, vs), we ran two iterations of a bootstrapped
learner. The first step retrieves tweets containing
one of the keywords. The second counts token oc-
currences in this set and computes pointwise mu-
tual information (PMI) scores for each unigram by
comparing with the unigram counts over the entire
corpus. The learner processed “190 million tweets
(a couple months of data). The PMI scores from
this process then form the basis of a simple topic
classifier.

A tweet is classified as a topic (e.g., sports) if its
average token PMI score is above a learned thresh-
old for that topic:

scorep(text) :% Z pmip(w) (1)

wetext

where N is the number of tokens in the text and
T € {sports,concerts}. The text is classified
as in topic if scorep(text) > A¢. The threshold
Ar was determined by visual inspection of a held
out 1000 tweets to maximize accuracy. The initial
seed words and Ar thresholds for each topic are

given here:
Seed Words A
football, basketball, baseball, cricket, soccer, 0.08
golf, hockey, rugby, game, vs
concert, music, album, song, playlist, stage, 0.15

drum

4.2 Contextual Sentiment Analysis

The above classifiers identify relevant tweets with
references to geolocated nations. Approximately
21% are filtered out, leaving 79% for the remain-
ing component of this paper: contextual sentiment
analysis. Contextual sentiment analysis focuses on
the disposition of text toward a word or phrase (in
this case, a country’s name). Most data-driven ap-
proaches rely on labeled corpora to drive the learn-
ing process, and this paper is no different.

Assigning polarity to a word/phrase requires
features that capture the surrounding context. The
following tweets are examples of context with
strong polarity toward the country in bold.



RT @ChrissyCostanza: Happiest girl ever. |

LOVE YOU SINGAPORE

there’s no Singapore Got Talent cus the only tal-
ent we have is stomping complaining & staring

Singapore is the target country here. The first
tweet is overtly positive toward it, but the second
requires a more subtle interpretation. The nega-
tive context is toward us, referencing the people of
the Singapore anaphor. It seems reasonable to in-
fer that they are negative toward the country as a
whole, but a deeper reasoning is required to make
the connection. These difficult decisions require a
wide-range of lexical features. We build on the top
performing features from contextual polarity sys-
tems in Semeval 2013 and 2014 (Mohammad et
al., 2013; Zhu et al., 2014). We used the following
set of features to capture these different contexts:

Token Features: All unigrams and bigrams.

Target Patterns: This feature creates patterns
from n-grams that include the target word. The
target is replaced with a variable to capture gen-
eralized patterns. For instance, “to France last”
becomes “to X last”. Bigram and trigram patterns
are created.

Punctuation: End of sentence punctuation and
punctuation attached to target words. Prefix and
postfix punctuation are separate features.

Emoticons: Two binary features for the pres-
ence/absence of smiley and sad face emoticons.

Hand-Built Dictionary: Two binary features,
postivemood and negativemood, indicate if a token
appears in a sentiment lexicon’s positive or nega-

tive list. We use Bing Liu’s Opinion Lexicon®.

Nation-Nation Learned Dictionary: Following
the success of Zhu et al. (2014), we learn a
mood dictionary from our domain-specific nation
dataset. We count unigrams (bigrams did not
improve performance) in one year of unfiltered
tweets with nation mentions that contain an emoti-
con. Using these counts, each unigram computes
its PMI scores toward happy and sad contexts. We
construct features based on these PMI scores: (1)
the highest happy PMI score of all unigrams in a
tweet, (2) the highest sad PMI score, (3) the num-
ber of positive tokens, (4) the number of negative
tokens, and (5) the sum of the token PMI differ-
ences between happy-sad.

2http:/fwww.cs.uic.edu/ Tiub/FBS/sentiment-analysis.html
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General Learned Dictionary: We computed the
same features as in the above learned dictionary,
but instead counted tokens in all tweets of the gen-
eral emoticon corpus of Go et al. (2009).

The contextual sentiment learner is trained on
the labeled dataset (Section 3). Only tweets with
positive, negative, or objective labels are included
(irrelevant and dining are ignored). Stanford’s
CoreNLP (nlp.stanford.edu/software) is used to
train a MaxEnt classifier with its default settings.

5 Nation to Nation Pipeline

The complete system to determine the nation-
nation sentiment of a tweet consists of 3 steps:
(1) identify the country origin of the tweet, (2) fil-
ter out tweets without references to geolocated na-
tions and filter out irrelevant topics, and (3) iden-
tify the sentiment toward the country. We pro-
cessed 17 months of tweets (Section 3).

The first step identifies the origin of the tweet
with either its GPS coordinates or the profile lo-
cation of the Twitter user. Profile locations are
mapped to countries with an exhaustive list of
country names, major cities, and patterns that
match US city/states (e.g., Pensacola, FL maps to
USA). Non-english tweets are removed with ling-
pipe. The second step filters non-referent, irrel-
evant, dining, and concert tweets with the clas-
sifiers from Section 4.1 (about 21% of tweets at
this stage). The final step is the contextual sen-
timent classifier (Section 4.2). Tweets that make
it through receive 1 of 3 possible labels: positive,
negative, objective.

The aggregate counts of the three labels are col-
lected for each day. This was around 1.2 million
nation labels per day over 17 months. The counts
are used for evaluation in the experiments.

6 Experiments

Our goal is to first prove the accuracy of our senti-
ment classifiers, then show the broader pipeline’s
correlation with known nation-nation politics.We
thus conducted three types of experiments. The
first is an intrinsic evaluation of the classifiers with
common frameworks from the NLP community.
The second is an extrinsic evaluation from multi-
ple political science datasets. The third is a set of
use case proposals for application of this analysis.



Dining Classifier

Irrelevant Classifier

Sentiment Classifier

Label P | R [FI Label | Prec | Recall | F1 | avel | Prec | Recall | T

dining 76 | 48 | 59 irrelevant | .84 90 | 87 Eegaﬁve - T

not-dining | 96 | 99 | .98 fevi‘,"t n 84 '7558 — 80 | Shjective |71 87 | 78

Baseline Accuracy 93.1% aseline Accuracy 1% -

Accuracy 953% Accuracy 84.0% Baseline Accuracy 59.0%
Accuracy 68.7%

Table 2: Classifier performance. Precision/Recall is calculated for each label separately. Accuracy is

over all labels: # correct/total.

6.1 Classifier Experiments

The dining, irrelevant, and sentiment classifiers
are supervised systems trained on a labeled dataset
of 4,250 tweets. We split the dataset into training,
dev, and test sets. The dev set contains 200 tweets,
the test set has 750 tweets, and the training set size
varied based on the available labels. The features
in this paper were developed solely on the training
and dev datasets. Reported results are on the un-
seen test set of 750 tweets. The bootstrapped clas-
sifiers for sports and concerts were learned with-
out labeled data, so we ran the sports and concerts
classifiers on an unseen portion of our data, and
manually evaluated the first 200 tweets that were
labeled by each classifier.

Precision and recall are calculated individually
for each class label: P = #correct/#guessed
and R = #correct/#gold. Where #guessed is
how many times the classifier predicted the target
label, and #gold is how many times the target la-
bel appears in the dataset. Accuracy is also shown,
calculated as a single score over all labels together:
Accuracy = #correct/N. The first table in Ta-
ble 2 shows the dining classifier’s performance.
The majority class baseline is high at 93% because
only 7% of the data is about dining. The clas-
sifier achieves a 29% decrease in accuracy error
(2% absolute increase). The second table shows
the more general irrelevant classifier. The majority
class baseline is much lower than dining at 58.7%.
Many tweets that contain a country name are not
relevant nor references to the geolocated country
itself. Our trained classifier does well on this task
achieving 84% accuracy, a 26% absolute increase
over baseline. It is 84% precise with 90% recall on
detecting irrelevant tweets. The third table in Ta-
ble 2 shows sentiment classifier results. Accuracy
is almost 10% absolute above the majority class.

Finally, the bootstrapped classifiers perform at
98% accuracy for sports and 90% for concerts.
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Positive/Negative Ratios

Target Ratio Target Ratio
US to Canada 11.9 | USto Ireland 3.2
US to Italy 10.8 US to Spain 3.0
US to Japan 7.7 US to France 2.7
US to Australia 3.5 US to Jordan 2.1
US to UK 3.5 US to Mexico 1.9

Table 3: Positive/Negative ratios for the US to-
ward its top 10 frequently mentioned nations.

6.2 Nation-Nation Sentiment Experiments

Nation opinions are represented as directed edges:
each edge (X,Y) represents the opinion of nation
X toward nation Y. The weight of an edge is the
ratio of positive to negative counts:

R(X,Y) = C(X,Y, positive) /C(X, Y, negative)

where C(X,Y,L) is the number of tweets by nation
X users about nation Y with sentiment L. Only
tweets that make it through the Nation to Nation
Pipeline of Section 5 receive sentiment labels. If
a nation pair (X,Y) was observed less than 1000
times, it is not included in the evaluations. We
provide experiments later to evaluate this cutoft’s
affect.

The dataset (Section 3) spans 17 months from
2013-2015. All tweets are classified or filtered
out, and R(X,Y) is computed for all pairs. Table
3 shows the top 10 nation pair ratios (with over
500k tweets between them) for the U.S.

We present four formal evaluations to answer
the central question of this paper: can sentiment
from social media be used to help approximate in-
ternational opinions? The first two experiments
use public opinion polls of national sentiment to-
ward other nations. The third uses military con-
flicts as a proxy for negative relations, and the
fourth uses current formal alliances as a proxy for
positive relations. None of these can provide a
complete picture of the connection between pop-
ular sentiment and international relations, but the
four together provide a strong case that sentiment
contains a useful signal.



Correlation: Public Opinion Polls

Human Poll | Sentiment | Freq. Baseline
Germany Canada China
Canada Japan Israel
UK EU USA
Japan France Russia
France UK India
EU Brazil Japan
Brazil USA Canada
USA India UK
China South Africa Pakistan
South Korea | South Korea France
South Africa Germany Iran
India Russia Brazil
Russia China Germany
Israel Israel North Korea
North Korea | North Korea South Korea
Pakistan Iran South Africa
Iran Pakistan EU
Correlation 0.80 -0.06

Table 4: Polling Data: ranking of a nation’s “posi-
tive contribution” to the world, compared to auto-
matically identified nation-nation sentiment.

Each year, GlobeScan/PIPA releases polling
data of 16 nations in a ranked ordering based on
how 26,000 people view their “positive contribu-
tion” to the world®. This poll helps to determine
whether or not this paper’s sentiment pipeline
matches human polling. We created our own rank-
ing by assigning a world score to each nation
n: the average sentiment ratio of all other na-
tions toward n. Since the polling data also ranks
the EU, we average the EU member nation world
scores for an EU world score. Table 4 shows the
PIPA poll (Human Poll) and our world ranking
(Sentiment). Using Spearman’s rank correlation
coefficient to measure agreement, our ranking is
strongly correlated at p = 0.8 (perfect is 1.0). The
main mistake in our ranking is Germany. We also
compare against a Frequency Baseline to elim-
inate the possibility that it’s simply a matter of
topic popularity. Poll rankings could simply be
correlated with who people choose to discuss, or
vice versa. The frequency baseline is the aver-
age number of twitter mentions per nation (i.e., the
most discussed). This baseline shows no correla-
tion at p = —.06.

We then evaluated against a US-centric polling
agency, Gallup. They asked Americans to rate
other nations as ’favorable’ or ’unfavorable’ in a
2014 poll*. The result is a ranking of favora-
bility. In contrast to the PIPA poll which evalu-

3http://www.worldpublicopinion.org/pipa/201 3CountryRatingPoll.pdf
4http://www. gallup.com/poll/1624/perceptions-foreign-countries.aspx
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ates many nations looking in, Gallup evaluates a
single nation looking out. Space constraints pre-
vent us from visually showing the US ranking,
but again the sentiment ratios have a strong cor-
relation at p = .81. The frequency baseline is
p = .23. The nation-nation sentiment extraction
strongly correlates with both world views (PIPA)
and US-specific views (Gallup).

The third evaluation uses a political science
dataset from the Correlates of War Project, the
Militarized Interstate Disputes v4.01 (MID)
(Ghosn et al.,, 2004). This dataset is used in
the field of international relations, listing conflicts
since 1816. We limit the evaluation to conflicts
after 1990 to keep relations current. The dataset
ends at 2001, so while not a completely current
evaluation, it stands as a proxy for negative rela-
tions. Each conflict in MID is labeled with a con-
flict severity. We convert severity labels between
nations to a pair score MID(X,Y):

MID(X,Y) = >

deDisputes(X,Y)

score(d) )
where Disputes(X,Y) is the set of conflicts be-
tween the two nations X and Y, and score(d) is a
severity score for the type of dispute d. War is -5,
use of force is -4, displays of force is -3, threaten-
ing use of force is -2, and no militarized action is
-1. We take the sum of severity scores and save all
nation pairs (X,Y) such that MID(X,Y) < —10.
This score indicates multiple conflicts and are thus
considered as nations with true negative relations.

We then compare our sentiment ratios R(X,Y)
against these gold negative pairs. Each continuous
R(X,Y) is discretized into sentiment categories for
ease of comparison. Since the mean across all
R(X,Y) is 1.25, we consider an interval around
1.25 as neutral and create positive and negative la-
bels above and below that neutral center:

positive, if Z>24
slightpos, if24>722>14
ratiolabel(Z) = { neutral, ifl4d>2Z2>1.1
slightneg, if1.1 > 7 > 0.8
negative, if0.8 > 272

The bottom table in Table 5 shows the number of
nation pairs that align with the negative labels of
the MID dataset. Only pairs that have at least 1000
tweets are evaluated. Of the resulting 90 pairs,
61 are correctly identified by our system as neg-
ative or slight negative for an accuracy of 68%.
19 positive pairs are incorrectly aligned with MID-
negative. Error analysis shows that many incorrect



Positive: Formal Alliances

Pos | SIPos | N | SINeg | Neg
# Nation Pairs | 341 | 65 | 22 | 26 28
Negative: Military Disputes
Pos | SIPos | N | SINeg | Neg
MID-Negative | 12 7 10| 15 46

Table 5: Top: The number of NATO/EU nation
pairs with automatic sentiment labels. Bottom:
The number of pairs with military disputes (MID
dataset) and automatic sentiment labels.

labels are between nations with a smaller Twit-
ter presence, so performance likely suffers due to
lack of data. For robustness testing, we shifted
the thresholds that discretize the nation ratios and
MID scores into postive and negative categories.
The accuracy result shows little change. We also
reran the experiment with a higher cutoff of 10,000
instead of 1,000. The negative disputes accuracy
increases from 68 % to 81 %, but the recall obvi-
ously drops as less countries are included. This
suggests the sentiment ratios might be used on
a sliding confidence scale based on frequency of
mention.

To evaluate positive relations, we use current
alliances as a fourth evaluation. NATO and the
EU are the main global alliances with elements
of mutual defense. We do not include trade-only
alliances as trade is not always an indication of
allegiance and approval (Russia and Ukraine is a
current example of this disparity). This evaluation
considers pairs of nations within NATO and within
the EU as gold positive relations. We compare our
sentiment ratios to these pairs in the top of Table 5.
This evaluation is broader than the conflict evalu-
ation because NATO and EU nations have more of
a Twitter presence. Of the 482 country pairs, our
positive/slightpos accuracy is 84.2%.

6.3 Application Experiments

We now briefly discuss how these positive results
for nation-nation sentiment relates to political sci-
ence analysis.

One core area of study is how national sen-
timent shifts over time, and why. Computing
R(X.,Y) on a bi-weekly basis, Figure 1 graphs the
sentiment ratio from the USA toward India and Is-
rael. The timeline shows significant favorability
toward India during their extended election sea-
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s |ndlia
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Positive/Negative Ratio
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Mar03 May03 Jun28 Aug23 Oct18 Dec13 Feb09

2-week Intervals from Sep16-2013 to Jun28-2014

T T
Sep16 Nov11 Jan06

Figure 1: USA opinion of India/Israel over 2-week
intervals from Sep-2013 to Feb-2015.

son, but afterward the opinion is similar to before
the election. In contrast, the 2014 Israel-Gaza con-
flict shows a very different effect. US opinion of
Israel is initially steady (slightly positive) until the
conflict causes a large dip. Unlike India’s spike,
US opinion stays depressed even after the conflict
concludes. It appears to have only risen to ‘nor-
mal’ levels months later. We do note that the wa-
ter is slightly muddied because our algorithm may
not distinguish well between sentiment toward the
war, Israel itself, or even sympathy toward casu-
alties. However, it’s clear that nation-nation sen-
timent is captured, and future work is needed to
identify finer grained sentiment as needed.

Another application is inter-alliance relations.
For instance, Table 6 shows how NATO member
nations view other alliances. The table shows the
average of all R(X,Y) edges for each nation within
an alliance to a nation in the other. According to
our ratios, NATO countries have stark differences
between how they view themselves versus how
they view African Union/Arab League nations.
Further, our pipeline enables analysis of outside
nations looking in. For instance, the nations with
the most positive view of the EU are Uruguay,
Lithuania (EU member), Belarus, Moldova, and
Slovakia (EU member). Almost all (not Uruguay)
are eastern european nations. Moldova is currently
seeking EU membership and Belarus had closer
ties until recently. Our results might point to po-
tential future alliances. Future work is needed to
explore this implied connection.

Finally, the R(X,Y) ratios can also represent a
nation’s opinion profile. Represent each nation X
by a vector of its R(X,Y) ratios. This represents
its entire international view based on social me-



Inter-Alliance Opinion Ratios

Source Target Average R(X,Y)
NATO African Union 0.45
NATO Arab League 0.48
NATO | European Union 1.51
NATO NATO 1.55

Table 6: Average pos/neg ratio of NATO nations
toward the nations in other formal alliances.

MID Accuracy with Filters

Filters Correct Incorrect Acc.
Dining+Sports 61 29 68 %
Sports only 61 37 62%
None 56 51 52%

Table 7: Filtering effects on the MID results.

dia sentiment. Space prohibits more detail, but
we clustered opinion profiles with k-means (k=12)
and cosine similarity. Typical alliances, such as
European and African clusters, are learned.

6.4 Ablation Tests

The sentiment pipeline includes two practical fil-
ters to remove tweets about dining and sports.
We added these during training and developement
solely based on our interpretation and analysis of
the data. We did not evaluate on the test datasets
until the very end. Table 7 shows results from the
MID evaluation with the dining and sports filters
removed in sequence.

The number of correctly identified negative na-
tion pairs is mostly unchanged, but the number of
incorrect decisions increases dramatically. This
occurs because a greater number of tweets make
it through the pipeline. Further, this shows that the
filters effectively remove tweets that cause mis-
classification errors.

7 Discussion

This work is an important first step toward auto-
matic means to broadly detect international rela-
tions from social media. We use sentiment analy-
sis as a proxy for extracting at least one aspect of
the large set of factors involved in such relations.
This paper is the largest application of sentiment
analysis across a diverse set of nation-nation pairs
(hundreds of country pairs over 17 months), and
we showed that this sentiment is strongly corre-
lated (p = 0.8) with two independent public opin-
ion polls. These correlations more importantly
suggest that we are not simply identifying a bi-
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nary positive or negative relation, but that the rela-
tive sentiment scores are useful. The failure of fre-
quency baselines on this ranking further suggests
that this is not a side effect of topic frequency.

One argument against using public opinion
polls for an evaluation is that the same people
who are polled by PIPA might be the same peo-
ple who tend to voice opinions on Twitter. The
Twitter dataset is not independent from the polls,
so the strong correlation we found could simply be
a matter of sampling the same population. This is
not possible to know, but whether or not it is the
case, this paper’s pipeline could be quite valuable
in automating expensive and time consuming hu-
man polls.

The results that focused on positive sentiment
(polls and alliances) are quite high. Negative sen-
timent revealed a lower 68% accuracy on the MID
dataset, but it is due to the fact that nation-nation
conflicts often occur between smaller nations that
are not represented well on Twitter. Requiring a
higher observed count improves accuracy to 81%.

While we are cautious not to make broad claims
about discovering international relations on Twit-
ter, we are encouraged by the experimental align-
ment with current alliances and historical conflict
data. The sentiment timeline for Israel and India
(Figure 1) is also intriguing. Tracking nation rela-
tions over a longer time period presents an oppor-
tunity for future study. This continual tracking of
sentiment is one of the most obvious benefits of an
automated approach.

Finally, an interactive world map is

available to browse this paper’s data at
www.usna.edu/Users/cs/nchamber/nations.
Each nation can be selected to visually color the
map with its positive/negative lens, and timelines
showing sentiment shifts between nations are vis-
ible. All code, data, and results are also available
on this page. We hope this work encourages even
further connections between NLP and political
science.
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Abstract

Text data has recently been used as evi-
dence in estimating the political ideologies
of individuals, including political elites
and social media users. While inferences
about people are often the intrinsic quan-
tity of interest, we draw inspiration from
open information extraction to identify a
new task: inferring the political import of
propositions like OBAMA IS A SOCIAL-
IST. We present several models that ex-
ploit the structure that exists between peo-
ple and the assertions they make to learn
latent positions of people and propositions
at the same time, and we evaluate them on
a novel dataset of propositions judged on a
political spectrum.

1 Introduction

Over the past few years, much work has fo-
cussed on inferring political preferences of peo-
ple from their behavior, both in unsupervised and
supervised settings. Classical ideal point models
(Poole and Rosenthal, 1985; Martin and Quinn,
2002) estimate the political ideologies of legisla-
tors through their observed voting behavior, pos-
sibly paired with the textual content of bills (Ger-
rish and Blei, 2012) and debate text (Nguyen et al.,
2015); other unsupervised models estimate ideolo-
gies of politicians from their speeches alone (Sim
et al., 2013). Twitter users have also been mod-
eled in a similar framework, using their observed
following behavior of political elites as evidence
to be explained (Barberd, 2015). Supervised mod-
els, likewise, have not only been used for assessing
the political stance of sentences (Iyyer et al., 2014)
but are also very popular for predicting the holis-
tic ideologies of everyday users on Twitter (Rao
et al., 2010; Pennacchiotti and Popescu, 2011;
Al Zamal et al., 2012; Cohen and Ruths, 2013;
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Volkova et al., 2014), Facebook (Bond and Mess-
ing, 2015) and blogs (Jiang and Argamon, 2008),
where training data is relatively easy to obtain—
either from user self-declarations, political follow-
ing behavior, or third-party categorizations.

Aside from their intrinsic value, estimates of
users’ political ideologies have been useful for
quantifying the orientation of news media sources
(Park et al., 2011; Zhou et al., 2011). We con-
sider in this work a different task: estimating the
political import of propositions like OBAMA 1S A
SOCIALIST.

In focusing on propositional statements, we
draw on a parallel, but largely independent, strand
of research in open information extraction. IE sys-
tems, from early slot-filling models with predeter-
mined ontologies (Hobbs et al., 1993) to the large-
scale open-vocabulary systems in use today (Fader
et al., 2011; Mitchell et al., 2015) have worked
toward learning type-level propositional informa-
tion from text, such as BARACK OBAMA IS PRES-
IDENT. To a large extent, the ability to learn these
facts from text is dependent on having data sources
that are either relatively factual in their presenta-
tion (e.g., news articles and Wikipedia) or are suf-
ficiently diverse to average over conflicting opin-
ions (e.g., broad, random samples of the web).

Many of the propositional statements that in-
dividuals make online are, of course, not objec-
tive descriptions of reality at all, but rather reflect
their own beliefs, opinions and other private men-
tal states (Wiebe et al., 2005). While much work
has investigated methods for establishing the truth
content of individual sentences — whether from
the perspective of veridicality (de Marneffe et al.,
2012), fact assessment (Nakashole and Mitchell,
2014), or subjectivity analysis (Wiebe et al., 2003;
Wilson, 2008) — the structure that exists between
users and their assertions gives us an opportunity
to situate them both in the same political space:
in this work we operate at the level of subject-
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predicate propositions, and present models that
capture not only the variation in what subjects
(e.g., OBAMA, ABORTION, GUN CONTROL) that
individual communities are more likely to discuss,
but also the variation in what predicates differ-
ent communities assert of the same subject (e.g.,
GLOBAL WARMING IS A HOAX vs. IS A FACT).
The contributions of this work are as follows:

e We present a new evaluation dataset of 766
propositions judged according to their positions
in a political spectrum.

e We present and evaluate several models for es-
timating the ideal points of subject-predicate
propositions, and find that unsupervised meth-
ods perform best (on sufficiently partisan data).

2 Task and Data

The task that we propose in this work is assessing
the political import of type-level propositions; on
average, are liberals or conservatives more likely
to claim that GLOBAL WARMING IS A HOAX? To
support this task, we create a benchmark of po-
litical propositions, extracted from politically par-
tisan data, paired with human judgments (details
in §2.3). We define a proposition to be a tuple
comprised of a subject and predicate, each consist-
ing of one or more words, such as (global warm-
ing, is a hoax).! We adopt an open vocabulary
approach where each unique predicate defines a
unary relation.

2.1 Data

In order to extract propositions that are likely to be
political in nature and exhibit variability accord-
ing to ideology, we collect data from a politically
volatile source: comments on partisan blogs.

We draw data from NPR,2 Mother Jones® and
Politico®, all listed by Pew Research (Mitchell
et al., 2014) as news sources most trusted by
those with consistently liberal views; Breitbart,’
most trusted by those with consistently conser-
vative views; and the Daily Caller,® Young Con-
servatives’ and the Independent Journal Review,?

"We use these typographical conventions throughout:
Subjects are in sans serif, predicates in italics.
http://www.npr.org
*http://www.motherjones.com
*nttp://www.politico.com
Shttp://www.breitbart.com
Shttp://dailycaller.com
"http://www.youngcons.com
https://www.ijreview.com

all popular among conservatives (Kaufman, 2014).
All data comes from articles published between
2012-2015 and is centered on the US political
landscape.

[ Source | Articles | Posts | Tokens | Users |
Politico 10,305 9.8M | 348.4M | 173,519
Breitbart 46,068 8.8M | 336.4M | 165,607

Daily Caller 46,114 5.4M | 240.4M | 228,696
Mother Jones 16,830 19M | 119.2M | 138,995

NPR 14993 | 1.6M | 82.6M | 62,600
1 Review 3396 | 278K | 13.IM | 51,589
Young Cons. | 4948 | 222K | 10.6M | 34,434

[ Total [ 142,654 | 28.0M | 1.I5B | 621,231 |

Table 1: Data.

We gather comments using the Disqus API;” as
a comment hosting service, Disqus allows users to
post to different blogs using a single identity. Ta-
ble 1 lists the total number of articles, user com-
ments, unique users and tokens extracted from
each blog source. In total, we extract 28 million
comments (1.2 billion tokens) posted by 621,231
unique users.'?

2.2 Extracting Propositions

The blog comments in table 1 provide raw data
from which to mine propositional assertions. In
order to extract structured (subject, predicate)
propositions from text, we first parse all com-
ments using the collapsed dependencies (de Marn-
effe and Manning, 2008) of the Stanford parser
(Manning et al., 2014), and identify all subjects as
those that hold an nsub j or nsub jpass relation
to their head. In order to balance the tradeoff be-
tween generality and specificity in the representa-
tion of assertions, we extract three representations
of each predicate.

1. Exact strings, which capture verbatim the
specific nuance of the assertion. This in-
cludes all subjects paired with their heads and
all descendants of that head. Tense and num-
ber are preserved.

Example: (Reagan, gave amnesty to 3 mil-
lion undocumented immigrants)

2. Reduced syntactic tuples, which provide
a level of abstraction by lemmatizing word
forms and including only specific syntactic
relationships. This includes propositions de-

*https://disqus.com/api/

While terms of service prohibit our release of this data,
we will make available tools to allow others to collect similar
data from Disqus for these blogs.
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fined as nominal subjects paired with their
heads and children of that head that are
negators, modal auxiliaries (can, may, might,
shall, could, would), particles and direct ob-
jects. All word forms are lemmatized, remov-
ing tense information on verbs and number
on nouns.

Example: (Reagan, give amnesty)

3. Subject-verb tuples, which provide a more
general layer of abstraction by only encod-
ing the relationship between a subject and its
main action. In this case, a proposition is de-
fined as the nominal subject and its lemma-
tized head.

Example: (Reagan, give)

The human benchmark defined in §2.3 below
considers only verbatim predicates, while all mod-
els proposed in §3 and all baselines in §4 include
the union of all three representations as data.

Here, syntactic structure not only provides in-
formation in the representation of propositions,
but also allows us to define criteria by which to
exclude predicates — since we are looking to ex-
tract propositions that are directly asserted by an
author of a blog comment (and not second-order
reporting), we exclude all propositions dominated
by an attitude predicate (Republicans think that
Obama should be impeached) and all those con-
tained within a conditional clause (If Obama were
impeached...). We also exclude all assertions
drawn from questions (i.e., sentences containing
a question mark) and all assertions extracted from
quoted text (i.e., surrounded by quotation marks).

In total, from all 28 million comments across
all seven blogs, we extract all propositions defined
by the criteria above, yielding a total of 61 million
propositions (45 million unique).

2.3 Human Benchmark

From all propositions with a verbatim predicate
extracted from the entire dataset, we rank the
most frequent subjects and manually filter out non-
content terms (like that, one, someone, anyone,
etc.) to yield a set of 138 target topics, the most
frequent of which are obama, democrats, bush,
hillary, and america.

For each proposition containing one of these
topics as its subject and mentioned by at least
5 different people across all blogs, we randomly
sampled 1,000 in proportion to their frequency of
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use (so that sentences that appear more frequently
in the data are more likely to be sampled); the sen-
tences selected in this random way contain a va-
riety of politically charged viewpoints. We then
presented them to workers on Amazon Mechanical
Turk for judgments on the extent to which they re-
flect a US liberal vs. conservative political world-
view.

For each sentence, we paid 7 annotators in the
United States to a.) confirm that the extracted
sentence was a well-formed assertion and b.) to
rate “the most likely political belief of the per-
son who would say it” on a five-point scale: very
conservative/Republican (—2), slightly conserva-
tive/Republican (—1), neutral (0), slightly lib-
eral/Democrat (1), and very liberal/Democrat (2).

We keep all sentences that at least six annotators
have marked as meaningful (those excluded by
this criterion include sentence fragments like bush
wasn’t and those that are difficult to understand
without context, such as romney is obama) and
where the standard deviation of the responses is
under 1 (which excludes sentences with flat distri-
butions such as government does nothing well and
those with bimodal distributions, such as christie
is done). After this quality control, we average
the responses to create a dataset of 766 proposi-
tions paired with their political judgments. Table
2 presents a random sample of annotations from
this dataset.

[ proposition [ mean [ s.d. |
obama lied and people died -2.000 | 0.000
gay marriage is not a civil right | -1.857 | 0.350
obama can’t be trusted -1.714 | 0.452
hillary lied -0.857 | 0.990
hillary won’t run -0.714 | 0.452
bush was just as bad 0.857 | 0.639
obama would win 1.429 | 0.495
rand paul is a phony 1.429 | 0.495
abortion is not murder 1.571 | 0.495
hillary will win in 2016 1.857 | 0.350

Table 2: Random sample of AMT annotations.

3 Models

The models we introduce to assess the political
import of propositions are based on two funda-
mental ideas. First, users’ latent political pref-
erences, while unobserved, can provide an orga-
nizing principle for inference about propositions
in an unsupervised setting. Second, by decou-
pling the variation in subjects discussed by dif-
ferent communities (e.g., liberals may talk more



about global warming while conservatives may
talk more about gun rights) from variation in what
statements are predicated of those subjects (e.g.,
liberals may assert that (global warming, is a
fact) while conservatives may be more likely to
assert that it is a hoax), we are able to have a more
flexible and interpretable parameterization of ob-
served textual behavior that allows us to directly
measure both.

We present two models below: one that repre-
sents users and propositions as real-valued points,
and another that represents each as categorical
variables. For both models, the input is a set of
users paired with a list of (subject, predicate) tu-
ples they author; the variables of interest we seek
are representations of those users, subjects, and
predicates that explain the coupling between users
and propositions we see.

3.1 Additive Model

The first model we present (fig. 1) represents each
user, subject, and predicate as a real-valued point
in K-dimensional space. In the experiments that
follow, we consider the simple case where K = 1
but present the model in more general terms below.

In this model, we parameterize the generative
probability of a subject (like Obama) as used by
an individual » as the exponentiated sum of a
background log frequency of that subject in the
corpus overall (mg,;) and K additive effects, nor-
malized over the space of S possible subjects, as a
real-valued analogue to the SAGE model of Eisen-
stein et al. (2011). While the background term
controls the overall frequency of a subject in the
corpus, # € RX*S mediates the relative increase
or decrease in probability of a subject for each la-
tent dimension. Intuitively, when both 7, ; and
B, sp; (for a given user u, dimension k, and sub-
ject sbj) are the same sign (either both positive
or both negative), the probability of that subject
under that user increases; when they differ, it de-
creases. [3. q; is a K-dimensional representation
of subject sbj, and 7,,. is a K -dimensional repre-
sentation of user u.

P(sbj | u,n, B,mg;) =
exp <m3bj +38 nu,kﬁk,sbj) (D)

K
Zsbj' exp (msbj/ + Zk:l nu,kﬁk,sbj/)

Likewise, we parameterize the generative proba-
bility of a predicate (conditioned on a subject) in

the same way; for .S subjects, each of which con-
tains (up to) P predicates, 1) € RS*E*P captures
the relative increase or decrease in probability for
a given predicate conditioned on its subject, rel-
ative to its background frequency in the corpus
overall, 7 preq|sp;-

P(p'f’ed ’ Sbjauana¢>mpred|sbj) =

K
exp (mpred\sbj + Zk:l nu,kwsbj,k,pred)

K
Zpred’ exXp (mpred’|sbj + Zk:l nu,kdjsbj,k,pred’)
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Figure 1: Additive model with decoupled subjects
and predicates. 7 contains a K -dimensional repre-
sentation of each user; (3 captures the variation in
observed subjects, and 1) captures the variation in
predicates for a fixed subject.
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The full generative story for this model runs as
follows. For a vocabulary of subjects of size S,
where each subject s has P predicates:

— For each dimension k, draw subject coefficients

B € RS ~ Norm(u,, 051)

— For each subject s:

— For each dimension k, draw subject-specific
predicate coefficients s, € RP ~
Norm( iy, opI)

— For each user u:

— Draw user representation n € RX ~
Norm(p, o)

— For each proposition (sbj, pred) made by u:
— Draw sbj according to eq. 1
— Draw pred according to eq. 2

The unobserved quantities of interest in this
model are 7, 5 and v. In the experiments reported



below, we set the prior distributions on 7, 5 and
1) to be standard normals (¢ = 0,0 = 1) and per-
form maximum a posteriori inference with respect
to n, 0 and v in turn for a total of 25 iterations.

While ( and v provide scores for the polit-
ical import of subjects and of predicates condi-
tioned on fixed subjects, respectively, we can re-
cover a single ideological score for both a subject
and its predicate by adding their effects together.
In the evaluation given in §5, let the PREDICATE
SCORE for (subject, predicate) be that given by
Ysubject,. predicate- and let the PROPOSITION SCORE

be ﬁ,subject + 77/)Subject,~,predicate‘

3.2 Single Membership Model

While the additive model above represents each
user and proposition as a real-valued point in K-
dimensional space, we can also represent those
values as categorical variables in an unsupervised
naive Bayes parameterization; in this case, a user
is not defined as a mixture of different effects, but
rather belongs to a single unique community. The
generative story for this model (shown in fig. 2) is
as follows:

— Draw population distribution over categories
0 ~ Dir(«)

— For each category k, draw distribution over sub-
jects ¢y ~ Dir(y)

— For each category k and subject s:
— Draw distribution over subject-specific predi-

cates & s ~ Dir(~,)
— For each user u:

— Draw user type index z ~ Cat()

— For each proposition (sbj, pred) made by wu:
— Draw subject sbj ~ Cat(¢,)
— Draw predicate pred ~ Cat(&; s;)

We set K = 2 in an attempt to recover a dis-
tinction between liberal and conservative users.
For the experiments reported below, we run in-
ference using collapsed Gibbs sampling (Griffiths
and Steyvers, 2004) for 100 iterations, perform-
ing hyperparameter optimization on «, v and s
(all asymmetric) every 10 using the fixed-point
method of Minka (2003).

In order to compare the subject-specific predi-
cate distributions across categories, we first calcu-
late the posterior predictive distribution by taking
a single sample of all latent variables z to estimate
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Figure 2: Single membership model with decou-
pled subjects and predicates. z is the latent cate-
gory identity of a user (e.g., liberal or conserva-
tive); ¢ is a distribution over subjects for each cat-
egory; and £ is a distribution of predicates given
subject s.

the following (Asuncion et al., 2009):

c(z,0) + W
Zv’ C(Zv 1)/) + Vo

Cow = 3)

Where CAZVU is the vth element of the zth multino-
mial being estimated, c(z,v) is the count of ele-
ment v associated with category z and -, is the
associated Dirichlet hyperparameter for that ele-
ment. Given this smoothed distribution, for each
proposition we assign it a real valued score, the
log-likelihood ratio between its value in these two
distributions. In the evaluation that follows, let the
PREDICATE SCORE for a given (subject, predi-
cate) under this model be:

log (é;O,SubjeCt,predicate
®0,subject X £0,subject,predicate

“)

) (&)

The two models described in §3 are unsupervised
methods for estimating the latent political posi-
tions of users along with propositional assertions.
We compare with three other models, a mixture
of unsupervised, supervised, and semi-supervised
methods. Unlike our models, these were not de-
signed for the task described in §2.

gl,subject,predicate

Let the PROPOSITION SCORE be:

log (

4 Comparison

¢1,subject X fl,subject,predicate



4.1 Principal Component Analysis

To compare against another purely unsupervised
model, we evaluate against principal component
analysis (PCA), a latent linear model that min-
imizes the average reconstruction error between
an original data matrix X € R"™*P and a low-
dimensional approximation ZW ', where Z €
R™*K can be thought of as a K -dimensional la-
tent representation of the input and W ¢ RP¥K
contains the eigenvectors of the K largest eigen-
values of the covariance matrix XX ', providing
a K-dimensional representation for each feature.
We perform PCA with K = 1 on two representa-
tions of our data: a.) counts, where the input data
matrix contains the counts for each proposition for
each user, and b.) frequencies, where we normal-
ize those counts for each user to unit length. While
the input data is sparse, we must center each col-
umn to have a 0 mean (resulting in a dense ma-
trix) and perform PCA through a singular value
decomposition of that column-centered data using
the method of Halko (2011); in using SVD for
PCA, the right singular vectors correspond to the
principal directions; from these we directly read
off a K = 1 dimensional score for each proposi-
tion in our data.

4.2 /(>-Regularized Logistic Regression

While unsupervised methods potentially allow us
to learn interesting structure in data, they are of-
ten eclipsed in prediction tasks by the addition of
any form of supervision. While purely supervised
models give more control over the exact decision
boundary being learned, they can suffer by learn-
ing from a much smaller training set than unsu-
pervised methods have access to. To evaluate this
tradeoff, we compare against a supervised model
trained using naturally occurring data — users who
self-declare themselves in their profiles to be lib-
eral, conservative, democrat, or republican. We
randomly sampled 150 users who self-identify as
liberals and 150 who identify as conservatives. We
do not expect these users to be a truly random sam-
ple of the population — those who self-declare
their political affiliation are more likely to engage
with political content differently from those who
do not (Sandvig, 2015; Hargittai, 2015) — but is a
method that has been used for political prediction
tasks in the past (Cohen and Ruths, 2013).

We build a predictive model using two classes
of features: a.) binary indicators of the most
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frequent 25,000 unigrams and multiword expres-
sions'! in the corpus overall; and b.) features de-
rived from user posting activity to the seven blogs
shown in table 1 (binary indicators of the blogs
posted to, and the identity of the most frequent
blog). In a tenfold cross-validation (using ¢»-
regularized logistic regression), this classifier at-
tains an accuracy rate of 76.7% (with a standard
error of +1.7 across the ten folds).

In order to establish real-valued scores for
propositions, we follow the same method as for
the single membership model described above, us-
ing the log likelihood ratio of the probability of
the proposition under each condition, where that
probability is given as the count of the proposi-
tion among users classified as (e.g.) liberals (plus
some small smoothing factor) divided by the total
number of propositions used by them overall.

P(prop | z = conservative)

=1
score(prop) = log P(prop | z = liberal)

(6)
4.3 Co-Training

Since the features we use for the supervised model
provide two roughly independent views of the
data, we also evaluate against the semi-supervised
method of co-training (Blum and Mitchell, 1998).
Here, we train two different logistic regression
classifiers, each with access to only the unigrams
and multiword expressions employed by the user
(hwords) Or to binary indicators of the blogs posted
to and the identity of the most frequent blog
(Ppiogs)- For ten iterations, we pick a random sam-
ple U’ of 1,000 data points from the full dataset
U and classify each using the two classifiers;
each classifier then adds up to 100 of the highest-
confidence predictions to the training set, retaining
the class distribution balance of the initial training
set; after training, the final predictive probability
for an item is the product of the two trained clas-
sifiers. In a tenfold cross-validation, co-training
yielded a slightly higher (but not statistically sig-
nificant) accuracy over pure supervision (77.0%
+1.8). We calculate scores for propositions in the
same way as for the fully supervised case above.

5 Evaluation

For the experiments that follow, we limit the input
data available to all models to only those propo-

""Multiword expressions were found using the method of
Justeson and Katz (1995).



sitions whose subject falls within the evaluation
benchmark; and include only propositions used by
at least five different users, and only users who
make at least five different assertions, yielding a
total dataset of 40,803 users and 1.9 million propo-
sitions (81,728 unique), containing the union of all
three kinds of extracted propositions from §2.2.

Each of the automatic methods that we discuss
above assigns a real-valued score to propositions
like OBAMA IS A SOCIALIST. Our goal in evalu-
ation is to judge how well those model scores re-
cover those assigned by humans in our benchmark.
Since each method may make different assump-
tions about the distribution of scores (and normal-
izing them may be sensitive to outliers), we do not
attempt to model them directly, but rather use two
nonparametric tests: Spearman’s rank correlation
coefficient and cluster purity.

Spearman’s rank correlation coefficient. The
set of scores in the human benchmark and as out-
put by a model each defines a ranked list of propo-
sitions; Spearman’s rank correlation coefficient
(p) is a nonparametric test of the Pearson correla-
tion coefficient measured over the ranks of items
in two lists (rather than their values). We use
the absolute value of p to compare the degree to
which the ranked propositions of two lists are lin-
early correlated; a perfect correlation would have
p = 1.0; no correlation would have p = 0.0.

Purity. While Spearman’s rank correlation co-
efficient gives us a nonparametric estimate of the
degree to which the exact order of two sequences
are the same, we can also soften the exact order-
ing assumption and evaluate the degree to which a
ranked proposition falls on the correct side of the
political continuum (i.e., not considering whether
OBAMA IS A SOCIALIST is more or less conserva-
tive than OBAMA IS A DICTATOR but rather that it
is more conservative than liberal). For each ranked
list, we form two clusters of propositions, split at
the midpoint: all scores below the midpoint de-
fine one cluster, and all scores above or equal de-
fine a second. For N = 766 propositions, given
gold clusters G = {g1,¢92} and model clusters
Cn = {c1, c2} (each containing 383 propositions),
we calculate purity as the average overlap for the
best alignment between the two gold clusters and
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their model counterparts.'?

1
Purity = N (mjax lg1 Ncj| + mjax lg2 N cj\>
)

A perfect purity score (in which all items from
each cluster in C are matched to the same cluster
in G) is 1.0; given that all clusters are identically
sized (being defined as the set falling on each half
of a midpoint), a random assignment would yield
a score of (.50 in expectation.

[ Model | Purity | Spearman’s p |
Additive (PROP.) 0.757 +0.020 | 0.648 +0.017
Single mem. (PROP.) | 0.754 +0.019 | 0.628 +0.017
Single mem. (PRED.) | 0.702 £0.018 | 0.555 40.015
Additive (PRED.) 0.705 +0.018 | 0.490 +0.013
Co-training 0.695 +0.018 | 0.450 +0.013
LR 0.619 +0.016 | 0.278 40.010
PCA (frequency) 0.518 £0.014 | 0.098 £0.009
PCA (counts) 0.514 +0.014 | 0.066 40.008

Table 3: Evaluation. Higher is better.

Table 3 presents the results of this evaluation.
For both of the models described in §3, we present
results for scoring a proposition like OBAMA IS
A SOCIALIST based only on the conditional pred-
icate score (PRED.) and on a score that includes
variation in the subject as well (PROP.). Since both
models are fit using approximate inference with a
non-convex objective function, we run five models
with different random initializations and present
the average across all five.

We estimate confidence intervals using the
block jackknife (Quenouille, 1956; Efron and
Stein, 1981), calculating purity and Spearman’s
p over 76 resampled subsets of the full 766 ele-
ments, each leaving out 10.13 For both metrics,
the two best performing models show statistically
significant improvement over all other models, but
are not significantly different from each other.

We draw two messages from these results:

For heavily partisan data, unsupervised meth-
ods are sufficient. In drawing on comments on
politically partisan blogs, we are able to match hu-
man judgments of the political import of proposi-
tions quite well (both of the unsupervised models

"In this case, with two clusters on each side, the best
alignment in maximal in that gn s — Cn,j; = gn,—i — Cn,—j-

13 As a clustering metric, purity has no closed-form expres-
sion for confidence sets, and since its evaluation requires its
elements to be unique (in order to be matched across clus-
ters), we cannot use common resampling-with-replacement
techniques such as the bootstrap (Efron, 1979).



described in §3 outperform their supervised and
semi-supervised counterparts by a large margin),
which suggests that the easiest structure to find in
this particular data is the affiliation of users with
their political ideologies. Both unsupervised mod-
els are able to exploit the natural structure with-
out being constrained by a small amount of train-
ing data that may be more biased (e.g., in its class
balance) than helpful. The two generative models
also widely outperform PCA, which may reflect a
mismatch between its underlying assumptions and
the textual data we observe; PCA treats data spar-
sity as structural zeros (not simply missing data)
and so must model not only the variation that ex-
ists between users, but also the variation that exists
in their frequency of use; other latent component
models may be a better fit for this kind of data.

Joint information is important. For both mod-
els, including information about the full joint
probability of a subject and predicate together
yields substantial improvements for both purity
and the Spearman correlation coefficient com-
pared to scores calculated from variation in the
conditional predicate alone. While we might have
considered variation in the predicate to be suffi-
cient in distinguishing between political parties,
we see that this is simply not the case; variation
in the subject may help anchor propositions in the
spectrum relative to each other.

6 Convergent Validity

The primary quantity of interest that we are trying
to estimate in the models described above is the
political position of an assertion; a user’s latent
political affiliation is only a helpful auxiliary vari-
able in reaching this goal. We can, however, also
measure the correlation of those variables them-
selves with other variables of interest, such as
users’ self-declarations of political affiliation and
audience participation on the different blogs. Both
provide measures of convergent validity that con-
firm the distinction being made in our models is
indeed one of political ideology.

6.1 Correlation with Self-declarations

One form of data not exploited by the unsu-
pervised models described above are users’ self-
declarations; we omit these above in order to make
the models as general as possible (requiring only
text and not metadata), but they can provide an
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independent measure of the distinctions our un-
supervised models are learning. (The supervised
baselines in contrast are able to draw on this pro-
file information for training data.)

Approximately 12% of the users in the data in-
put to our models (4,718 of 40,804) have affiliated
self-declared profile information; the most fre-
quent of these include retired, businessman, stu-
dent, and patriot. For all of these users, we regress
binary indicators of the top 25,000 unigrams in
their profiles against the MAP estimate of their po-
litical affiliation in the single-membership model.
Across all 5 folds, the features with the highest
predictive weights for one class were patriot, con-
servative, obama, and god while the highest pre-
dictive weights for the other are progressive, voter,
liberal, and science.

6.2 Estimating Media Audience

We can also use users’ latent political ideologies to
estimate the overall ideological makeup of a blog’s
active audience. If we assign each post to our es-
timate of the political ideology of its author, we
find that Mother Jones has the highest fraction of
comments by estimated liberals at 80.4%, while
Breitbart has the highest percentage of comments
by conservatives (79.5%).

[ Blog | % Liberal by post |
Mother Jones 80.4%
NPR 67.4%
Politico 51.6%
Young Conservatives 38.0%
Daily Caller 28.4%
1J Review 28.0%
Breitbart 20.5%

Table 4: Media audience.

This broadly accords with Mitchell et al. (2014),
which finds that among the blogs in our dataset,
consistently liberal respondents trust NPR and
Mother Jones most, while consistent conservatives
trust Breitbart most and NPR and Mother Jones
the least.

7 Conclusion

We introduce the task of estimating the political
import of propositions such as OBAMA IS A SO-
CIALIST; while much work in open information
extraction has focused on learning facts such as
OBAMA IS PRESIDENT from text, we are able to
exploit structure in the users and communities who
make such assertions in order to align them all



within the same political space. Given sufficiently
partisan data (here, comments on political blogs),
we find that the unsupervised generative models
presented here are able to outperform other mod-
els, including those given access to supervision.
One natural downstream application of this
work is fine-grained opinion polling; while ex-
isting work has leveraged social media data on
Twitter for uncovering correlations with con-
sumer confidence, political polls (O’Connor et al.,
2010), and flu trends (Paul and Dredze, 2011),
our work points the way toward identifying fine-
grained, interpretable propositions in public dis-
course and estimating latent aspects (such as po-
litical affiliation) of the communities who as-
sert them. Data and code to support this work
can be found at http://people.ischool.
berkeley.edu/~dbamman/emnlp2015/.
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Abstract

In this paper, we present a comprehensive
study of the relationship between an indi-
vidual’s personal traits and his/her brand
preferences. In our analysis, we included
a large number of character traits such as
personality, personal values and individual
needs. These trait features were obtained
from both a psychometric survey and au-
tomated social media analytics. We also
included an extensive set of brand names
from diverse product categories. From this
analysis, we want to shed some light on (1)
whether it is possible to use personal traits
to infer an individual’s brand preferences
(2) whether the trait features automatically
inferred from social media are good prox-
ies for the ground truth character traits in
brand preference prediction.

1 Introduction

Brand preference analysis is an important topic in
marketing. To induce a desired brand choice, a
marketer must understand the main factors that in-
fluence a consumer’s brand preferences. This task
is not easy since many factors may play a role
in determining one’s brand preferences such as a
consumer’s individual characteristics and prefer-
ences as well as the properties of a brand (e.g.,
its perceived quality). Among consumer related
factors, demographics such as age, gender and in-
come have been studied extensively in marketing
research (Evans, 1959; Elliott, 1994; Lin, 2002).
In this study, we focus on analyzing a set of con-
sumer characteristics, which have received less
attention but with these features, potentially we
can build more precise and more accurate brand
preference prediction models. Especially, we fo-
cus on three types of personal traits: personality,
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personal values, and individual needs. Personal-
ity is a combination of characteristics or qualities
that form an individual’s distinctive character; Per-
sonal values reflect what are important to different
individuals and what motivate them in their deci-
sion making. Moreover, all people have certain
needs that they want to satisfy. Thus, analyzing a
comprehensive set of personal traits may help us
understand the way we react to a particular brand.

Previously, the relationship between personal
traits and brand preference/purchase decisions has
drawn limited interest in marketing research due
to the difficulty in obtaining consumer traits on a
large scale. Among these efforts, Westfall found
that differences exist between the personalities of
the owners of convertible cars and those of stan-
dard & compact cars (Westfall, 1962). Similarly,
the congruence of personal and brand personal-
ity was suggested to be a predictor of consumers’
brand preferences (Jamal and Goode, 2001; Dik-
cius et al., 2013). However, Shank & Lang-
meyer found personal traits less useful in building
a strategic marketing tool (Shank and Langmeyer,
1994).

Given limited and sometimes conflicting results
in previous research, in this study, we want to sys-
tematically investigate the relationship between a
comprehensive set of personal traits and brand
preferences. Specifically, we want to shed some
light on (1) whether it is possible to use personal
traits to predict consumer’s brand preferences? (2)
whether it is feasible to use automatically inferred
personal traits to build brand preference prediction
systems that are scalable?

Our study offers several significant contribu-
tions to the field of brand preference analysis:

1. Itis the first study that includes a comprehen-
sive set of personal traits in brand preference
analysis. Our current investigation includes
personality (5 general categories and 30 sub-
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facets), personal values (5 dimensions) and
individual needs (12 dimensions). In con-
trast, previous work typically only included
a small number of personal traits (e.g., just 5
personality traits in (Hirsh et al., 2012)).

. It is the first study that uses personal traits
obtained from both psychometric evaluation
and social media analytics. The traits scores
derived from psychometric tests are more ac-
curate, which allow us to focus on the re-
lationship between personal traits and brand
preferences without the distractions from the
mistakes introduced by an automated trait in-
ference system. However, since psychomet-
ric tests require users to answer a large num-
ber of survey questions, without sufficient in-
centives, it is difficult to perform psychomet-
ric evaluation for a large number of people.
In contrast, automatically derived trait fea-
tures based on social media analytics require
no user effort, and can be applied to millions
of social media users.

. Our study involves diverse brand categories
such as luxury car brands, retail brands, fast
food brands, and household product brands
(e.g., shampoo brands). With this data, we
can investigate whether the relationship be-
tween personal traits and brand preferences
varies across multiple product categories.

Since the current study focuses on a compre-
hensive set of consumer characteristics and pref-
erences which does not include many important
brand properties such as perceived quality, risk,
price and market presence, the main goal of our in-
vestigation is not to build a highly accurate brand
preference prediction system. Instead, we want to
first establish the feasibility of using derived trait
features in building large-scale brand preference
prediction systems. In the following, we first sum-
marize some prior work, then describe the details
of our experiments.

2 Related Work

Predicting brand preference is a hard problem. A
large number of factors may influence customers’
choices. Table 1 summarizes the factors that have
been explored in previous research. Due to the
scope, so far, there isn’t any prior investigation
that is capable of incorporating all the factors in
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a single model. Our study is one of the most com-
prehensive analyses so far. We not only investi-
gate the influence of a large number of personal
traits but also combine them with other known
consumer-related features such as demographics
and personal interests. We however have not in-
cluded any brand-related properties such as per-
ceived quality, risk and market presence because
we do not have access to these data.

Consumer]
Oriented
Features

Demographic characteristics (Evans, 1959; Koponen, 1960; El-
liott, 1994; Lin, 2002) including Age, Education, Gender, Fam-
ily dimensions, Marital Status, Ethnic group, Geographic loca-
tion, Social Class, Community

Attitude (Bass and Talarzyk, 1972; Haley and Case, 1979),
Personalities (Westfall, 1962; Shank and Langmeyer, 1994;
Myszkowski and Storme, 2012), Needs (Evans, 1959), Trust
(Chaudhuri and Holbrook, 2001), Customer Satisfaction (Bryant
and Cha, 1996; Mittal and Kamakura, 2001; Olsen, 2002),
Brand loyalty (Olsen, 2002), Group Influences (Witt and Bruce,
1972), Consumers’ memory (Hutchinson et al., 1994), Aspira-
tions (Truong et al., 2010), Purchase history (Dong and Stewart,
2012), Mental Accounting (Thaler, 1985), Involvement (Celsi
and Olson, 1988), Social Influence (Wood and Hayes, 2012)
Price, Market presence, Market response in (Papadopoulos et
al., 1990), Promotion (Graeff, 1996), Brand name (Zinkhan
and Martin Jr, 1987; Klink, 2001), Quality (Dickerson, 1982;
Olsen, 2002), Service quality, Equity, Value in (Hellier et
al., 2003), Country of origin (Han and Terpstra, 1988; Tse
and Gorn, 1993), Product image (Westfall, 1962), Brand per-
sonality (Aaker, 1997), Pioneering advantages (Carpenter and
Nakamoto, 1989), Recallability (Costley and Brucks, 1992),
Communication (advertising) (Nicholls et al., 2011; Liu and
Tang, 2011), Social environment (Witt and Bruce, 1972), Per-
ceived risk (Peter and Ryan, 1976; Campbell and Goodstein,
2001), Product attributes (Semeijn et al., 2004), Product visi-
bility (Sutton and Riesz, 1979)

Brand-
Related
Factors

Table 1: Features explored in previous studies

In recent social media studies, Wang et al. uti-
lized customer reviews to predict coffee brand sat-
isfaction (Wang et al., 2013). Also, there is a
large-body of work trying to predict brand pref-
erences based on one’s social media posts. Most
of these work, however is performed in the con-
text of sentiment analysis. In sentiment analy-
sis, the main focus was to infer the sentiment
associated with a post that mentions a particular
brand/product. For example, Kim et al. collected
600,000 tweets that contain smartphone-related
keywords and then performed sentiment analysis
to infer whether a user’s attitude toward a par-
ticular mobile phone is positive or negative (Kim
et al., 2012). Similarly, Mostafa analyzed the
sentiment associated with 3,500+ tweets, which
showed a generally positive consumer sentiment
towards several famous brands (Mostafa, 2013).
In contrast, our trait-based analysis is more gen-
eral since it does not require users to explicitly ex-
press their opinions about a specific brand. For ex-
ample, to infer whether an individual likes BMW
or not, with sentiment analysis, a user has to ex-



plicitly express his opinion towards BMW (e.g.
Driving BMVW is exciting!). In contrast, with our
system, if we know that he likes to seek excite-
ment (excitement, a needs dimension) and enjoys
luxury products (Hedonism, a values dimension),
we can guess he may like BMW although he has
never explicitly mentioned BMW in his social me-
dia posts before. This difference is important since
among the millions of products on social media,
only a small number of products have been explic-
itly rated/mentioned by a particular user.

In summary, brand preferences may be influ-
enced by many consumer and brand-related fac-
tors. Previous research has not paid sufficient at-
tention to the influence of personal traits. In ad-
dition, most previous studies used psychometric
surveys which are impractical in mass marketing
since it is unlikely that a large number of cus-
tomers would take the time to answer lengthy sur-
vey questions. In this study, we focus on inves-
tigating the feasibility of using automatically in-
ferred personal traits in large-scale brand prefer-
ence prediction. Next, we describe the dataset we
collected to support this study.

3 Data Collection

To investigate how personal traits are related to an
individual’s brand preferences, we collected two
datasets. In the first dataset, in addition to brand
preferences, we also used standard psychometric
tests to obtain clean and accurate personal trait
measures. With this dataset, we can build and
evaluate brand preference prediction models that
use accurate personal traits. In contrast, the second
dataset is used to build and evaluate brand prefer-
ence prediction models that use trait features auto-
matically inferred from social media. By compar-
ing the models built from both datasets, we can
answer questions such as: (1) whether personal
traits are useful in predicting brand preferences (2)
whether the traits automatically inferred from so-
cial media are useful in predicting brand prefer-
ences.

To collect these datasets, we designed two Ama-
zon Mechanical Turk (MTurk) ! tasks. All the
MTurk participants are from the US since people
outside the US may be unfamiliar with some of the
brands. In the following, we describe the details of
each MTurk task.

"http://mturk.com/
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Category Brand

Beverage (2) Coca-Cola, Pepsi

Luxury Car (3) [BMW, Cadillac, Lexus

Fast Food (4)  |Chipotle, McDonald’s, Panera Bread (PB) , Subway

Retail (4) Kohl’s, Macy’s, Nordstrom, Target

Shampoo (4) gead & Shoulders (HS), Herbal Essences (HE),
antene, Suave

Smart Phone (5)|HTC, iPhone, Samsung, SONY, Nokia

Table 2: Selected brand categories and brands

3.1 Task 1: PTBP Survey

To collect the first dataset, we conducted a Per-
sonal Traits & Brand Preferences (PTBP) survey.
Our trait survey includes five parts designed to
measure three types of personal traits: personal-
ity, values and needs plus demographics and per-
sonal interests. Specifically, since the Big-Five
model of personality is the most popular model
of personality traits among personality psycholo-
gists, we adopted a standard survey for Big 5 per-
sonality. Here to limit the time MTurkers need to
spend on the survey, instead of the full 300-item
personality test, we used the shorter 50-item IPIP
survey (Goldberg, 1993) which will score a user
along 5 general personality dimensions: open-
ness, conscientiousness, extraversion, agreeable-
ness and neuroticism. However, with the shorter
survey, we can not obtain the scores for 30 ad-
ditional personality facets. Similarly, we used
the standard 21-item PVQ survey to obtain the
values defined in Schwartz’s theory of basic val-
ues (Schwartz, 2003). We also used the 35-item
BNS survey to obtain the needs defined in Ford’s
needs model (Ford, 2005; Yang and Li, 2013). In
addition, we also included survey questions about
a user’s demographics (e.g., gender, age, marital
status, education and income) and personal inter-
ests (e.g,, automobile, sports, movies, travel) since
they were used in some previous studies on brand
preference (Pennacchiotti and Gurumurthy, 2011;
Lin, 2002). Finally for each user, we collected
her preferences for 22 brands in six categories.
We have chosen well-known brands from diverse
groups ranging from mobile phones to retail stores
and fast food restaurants. The brands within each
category are often competitors. For each brand in
each category, we asked users to rate their prefer-
ences using a 5-point scale: Love, Like, Neutral,
Dislike and Hate. A user can choose “n/a” if she
has no knowledge of a particular brand. In total,
we have collected the data from 1,207 MTurkers.
To ensure the quality of the data collected from
MTurk, we also included several validation ques-



tions. The validation questions are pairs of ques-
tions that are paraphrases of each other. If the an-
swers to a pair of validation questions are signif-
icantly different, the user data are excluded from
our analysis. Our final dataset has 1,017 valid re-
sponses. Table 2 lists all the brands used in our
study. All the measures used in our PTBP survey
are listed in Table 3.

Question

Category Features

Big-five personalities:

Agreeableness, Conscientiousness,
Extraversion, Neuroticism, Openness
Conservation, Hedonism, Openness to change,

Personalities (5)

Values (3) Self Enhancement, Self Transcendence
Challenge, Closeness, Curiosity, Excitement,
Needs (12) Harmony, Ideal, Liberty, Love, Practicality,
Self-expression, Stability, Structure
Politics, Business, Technology, Science, Health,
Topics of Sportis, .Education, Bogks, Dance, Movie, M}JSiC,
Interest (20) Television, Theater, Video games, Automobiles,
Dining wine, Fashion style, Home garden,
International news, US news
Location (2) City, State

Gender, Age, Marital status, Have children,
Education status, Income
Ratings for all the 22 brands

Demographics (6)
Brand Preferences (22)

Table 3: PTBP Survey Feature Summary

3.2 Task 2: TAE Survey

The data collected in the Text Analytics Evalu-
ation (TAE) survey are used to study the corre-
lation between the trait features inferred from a
person’s social media posts (e.g., tweets) and his
brand preferences. Before the TAE survey, the
participants were first asked to verify whether they
had a Twitter account, if so, provide us their Twit-
ter IDs. The users also agreed that we could access
their tweets after the survey. Since our automated
trait inference system relies on linguistic cues de-
rived from a person’s Twitter posts, to ensure we
can have a stable and reliable reading of one’s
personal traits from his tweets, only active Twit-
ter users with over 50 tweets (excluding retweets)
can participate this survey. Since the majority of
MTurkers are not active Twitter users, to increase
the size of our data, in addition to MTurk, we also
directly invited random Twitter users to participate
in our TAE survey.

In addition to Twitter IDs, we also asked par-
ticipants to provide their preferences for the same
22 brands as those used in the PTBP survey. Simi-
larly, to filter out data by people who do not follow
instructions, we also added two validation ques-
tions. In total, in the TAE survey, we have col-
lected data from 659 participants, out of which
608 are valid. (550 valid ones are from MTurk,
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and 109 are from direct Twitter invitation).

3.3 Data Preparation

To obtain the trait scores for each user based on his
answers in the PTBP survey, we first computed the
raw trait scores based on the original survey guide-
lines. Since different surveys used different scales,
we normalized the trait scores by using their rank
percentile (e.g., top 1%, top 5%). As a result, all
the normalized personal trait scores are between 0
and 1.

Moreover, for each of the 20 topics of interest,
we created a binary variable, indicating whether
a participant is interested in a specific topic. In
addition, each demographics feature such as age,
education, income, was first mapped to an integer
and then normalized into a number between 0 and
1.

To derive the trait scores for a user in the TAE
survey, we crawled all the tweets in his Twitter
account. Since personal traits are inferred from
the text authored by a user, we discarded all the
retweets. Due to the restrictions of the Twit-
ter API, we can only crawl a maximum of 3,200
tweets for each user?.

Recent research in psycholinguistics has shown
it is possible to automatically infer personal traits
from one’s linguistic footprints such as tweets and
blogs (Yarkoni, 2010; Chen et al., 2014; Yang
and Li, 2013). Here, we used a similar ap-
proach. Specifically, given input text authored by a
user (e.g., tweets), our system computed the word
counts of different psychologically-meaningful
word categories defined in the Linguistic Inquiry
and Word Count (LIWC) dictionary (Pennebaker
et al., 2001). The LIWC counts were then used
to build prediction models to correlate one’s word
usage with his ground truth personal traits ob-
tained via a prior psychometric survey. Then the
built models were used to automatically infer a
user’s personal traits. Based on a preliminary eval-
uation with 250 participants, more than 80 per-
cent of them, scores for traits that were inferred
for all three models correlated significantly with
survey-based scores (p<0.05 and correlation coef-
ficient between 0.05 and 0.8). Specifically, scores
that were derived by our system correlated with
survey-based scores for 80.8% of participants’ Big
Five scores (p<0.05 and correlation coefficients
between 0.05 and 0.75), for 86.6% of participants’

*https://dev.twitter.com



Needs scores (p<0.05 and correlation coefficient
between 0.05 and 0.8), and for 98.21% of partic-
ipants’ Values scores (p<0.05 and correlation co-
efficients between 0.05 and 0.55). Moreover, the
participants also rated on a five-point scale how
well each derived characteristic matched their per-
ceptions of themselves, and their ratings suggest
that the inferred characteristics largely matched
their self-perceptions. Specifically, means of all
ratings were above 3 (“somewhat”) out of 5 (“per-
fect”): 3.4 (with a std. of 1.14) for Big Five, 3.39
(with a std. of 1.34) for Needs, and 3.13 (with a
std. of 1.17) for Values.

In addition to personal traits, we also included
topics of interest in the TAE dataset. They were
automatically inferred from tweets using Latent
Dirichlet Allocation (LDA) (Blei et al., 2003).
Since we need a large Twitter dataset to mine a list
of general topics of interest, our current tweet col-
lection is not sufficient. Therefore, we use a sep-
arate and much larger Twitter dataset from 10,000
randomly selected Twitter users. For each user, we
crawled his tweets and then aggregated them into
a big document, one for each Twitter user. As a re-
sult, we have 10,000 documents in our dataset. We
then built an LDA topic model using this dataset.
From the LDA inference results, we can infer a
user’s topics of interest. Basically, for a given user
u, LDA outputs a per user topic distribution O,,,
which is a T'-dimensional vector where 1" is the
number of topics. The value 0, ; is an indication of
how likely Topic ¢ is mentioned in user u’s tweets.
The higher 6, ; is, the more likely that user u is
interested in topic ¢. Table 4 shows some of the
topics automatically learned by LDA.

Manually

Labeled Top 10 Topic keywords

Name

. google app apple data mobile

Mobile phone iphone web android tech windows

Alcohol drinking beer wine vegas earned badge tonight ale bar ipa

Travel travel hotel cruise ttot trip family great world tips top

Driving slow drive traffic lane car north south blvd lanes crash
game app ipad video ve games

Game gameinsight free android xbox

Table 4: Selected topics and top words from LDA

As a summary, table 5 shows all the features
from the TAE survey, including those automati-
cally inferred from tweets. For personality, fol-
lowing the same procedure defined in (Yarkoni,
2010), in addition to the Big five personality di-
mensions, our system is able to automatically ex-
tract 30 additional personality facets for the TAE
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dataset.

Question Category |

Features

Survey Features

Twitter ID

Brand Preference

for 22 Brands

Derived Features

Personalities (35)

Big-five personalities plus their sub-facets auto-
matically inferred from tweets (Yarkoni, 2010)

Interest (50)

Values (5) Same as those in Table 3 but inferred from
tweets

Needs (12) Same as those in Table 3 but inferred from
tweets

Topics of

Automatically inferred using a topic model

Location (2)

City, State inferred from IP address

Twitter Metadata
(5)

Number of tweets, Number of followers, Num-
ber of friends, Favorite count, Listed count

Online Behavior
(€2))

Avg. number of tweets posted in each of the 7
days in a week, and each of the 24 hours in a

day.

Table 5: TAE survey feature summary

In the following section, we explain two analy-
ses we performed on these datasets.

4 Experiment 1

The main objective of this analysis is twofold: (1)
to understand why people like or dislike a brand.
(2) to build a computational model that automati-
cally differentiates people who have positive, neg-
ative, or neutral opinions about a brand.

4.1 Definition and Statistics

For each brand in this study, we define people who
have positive opinions as those who gave a love or
like rating in their brand preference surveys. Simi-
larly, people who have negative opinions are those
who gave a hate or dislike rating. People who gave
a neutral rating are in the neutral category. Table 6
shows the number of instances in each of the three
categories for each brand.

4.2 Classification

In this experiment, we want to investigate whether
it is possible to differentiate people who have (Pos-
itive, Negative, or Neutral) opinions towards dif-
ferent brands. For each brand, we built three-
way classifiers using different classification algo-
rithms including AdaBoost (Freund and Schapire,
1996), Decision Tree (C4.5) (Quinlan, 1993), Lo-
gistic Regression, Naive Bayes, Random Forest
(Breiman, 2001), and SVM (Platt, 1999). In addi-
tion, for SVM, we have tested different kernels in-
cluding polynomial kernel, pearson VII function-
based universal kernel (Ustiin et al., 2006), and the
radial basis function kernel. They are all imple-
mented in the Weka machine learning toolkit (Hall



Brands PTBP Survey TAE Survey
Positive | Negative | Neutral | Positive | Negative | Neutral
Coca-Cola 519 190 115 363 73 67
Pepsi 360 315 153 261 132 110
BMW 382 85 113 280 34 183
Cadillac 239 162 144 212 61 226
Lexus 361 80 119 255 44 200
Chipotle 443 95 103 298 46 114
McDonald’s | 304 383 143 270 152 84
PB 437 99 135 316 36 119
Subway 534 176 123 371 75 61
Kohl’s 402 154 202 298 58 147
Macy’s 293 137 210 252 37 207
Nordstrom 227 196 176 177 39 256
Target 640 87 106 430 18 58
HS 314 260 166 246 68 175
HE 388 138 171 259 46 181
Pantene 377 165 173 259 52 177
Suave 362 225 173 238 85 175
HTC 280 111 165 180 46 249
iPhone 426 218 83 338 98 67
Samsung 564 62 104 344 28 128
SONY 114 222 181 61 82 316
Nokia 161 266 215 126 94 263

Table 6: Number of instances in each category

et al., 2009). Since our current goal is not to build
the best brand preference prediction system, but to
show the feasibility of building brand preference
prediction systems that are scalable to millions of
users, we ran all our classifiers using the default
parameter settings from Weka (E.g. for Random
Forest, we used 10 trees. The umber of features
was set to log2(number of all features)+1.). We
expect in the future, by optimizing model parame-
ters, we can further improve the prediction power
of each model.

The baseline classifiers classify every data in-
stance into the majority class. Among all the
classifiers we tested, we found that overall Naive
Bayes has the best performance on both the PTBP
and the TAE datasets. In the following, we report
the average F-scores and AUC across 22 different
brands using Naive Bayes with 10-fold cross val-
idations. We created models that use all the user
features and also those that use only trait features.
Table 7 shows the results.

Best PTBP TAE
Classifier F AUC F AUC
All features | 0.483 0.569 0.501 0.547
Traits only 0.475 0.556 | 0.502 | 0.528
Baseline 0.396 | 0.493 0.444 | 0.490

Table 7: 3-Way Classification Results

Overall, all the classifiers performed signifi-
cantly better than the baselines (p<0.05). More-
over, the models using all the features performed
similarly to those using only trait features. The
differences are not statistically significant. In ad-
dition, comparing the models trained on the PTBP
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data with those on the TAE dataset, their perfor-
mances are very similar, although the exact num-
bers are not directly comparable since they are
from two different datasets.

To break down the results by product category,
in Table 8, we list the per-brand classification re-
sults using only the trait features. The numbers
in the parentheses show the F-score percentage in-
crease from the baselines. In general, models with
trait features did much better than the baselines on
both datasets. But their effectiveness varied from
one brand to another. For example, the trait fea-
tures were very effective in predicting user prefer-
ences for Cadillac (50.8% increase on the PTBP
dataset and 68.5% increase on the TAE dataset).
In contrast, there was barely any improvement for
Target. After inspecting the data, it seems this
may be caused by the distribution of the data. For
instance, the Target TAE data was very skewed.
There were 430 people who had positive opinions
about Target versus 18 people who had negative
opinions. Since the baseline predicts “all people
like Target”, which resulted in a pretty high F-
score (0.781), any further improvement over this
baseline became more difficult.

Brand PTBP TAE
BLF | BestF | 1% BLF | BestF | 1%
Coca-Cola 0.487 | 0.503 | 3.3% 0.605 | 0.605 | 0.0%
Pepsi 0.263 | 0427 | 62.4% | 0355 | 0.416 17.2%
BMW 0.522 | 0.562 | 7.7% 0.406 | 0.499 | 22.9%
Cadillac 0.266 | 0.401 50.8% | 0.282 | 0.474 | 68.1%
Lexus 0.505 0.531 5.2% 0.346 0.5 44.5%
Chipotle 0.564 0.59 4.6% 0.513 0.53 3.3%
McDonald’s | 0.291 0.42 44.3% | 0.371 0.459 | 23.7%
PB 0.513 | 0.528 | 2.9% 0.539 0.58 7.6%
Subway 0.501 0.525 | 4.8% 0.618 | 0.623 | 0.8%
Kohl’s 0.368 | 0.466 | 26.6% | 0.441 0.506 14.7%
Macy’s 0.288 | 0.465 | 61.5% | 0.342 0.5 46.2%
Nordstrom 0.207 0.421 103.4%| 0.381 0.467 22.6%
Target 0.668 0.67 0.3% 0.781 0.781 0.0%
HS 0.253 | 0.399 | 57.7% | 0337 | 0454 | 347%
HE 0.397 0.43 8.3% 0.371 0.494 | 33.2%
Pantene 0.363 | 0.452 | 24.5% | 0.368 0.51 38.6%
Suave 0.307 | 0.375 | 22.2% | 0.309 | 0.434 | 40.5%
HTC 0.337 | 0411 22.0% | 0.361 0.455 | 26.0%
iPhone 0.432 | 0.501 16.0% | 0.54 0.557 | 3.2%
Samsung 0.673 0.673 0.0% 0.561 0.574 2.3%
SONY 0.258 | 0.407 | 57.8% | 0.561 0.575 | 2.5%
Nokia 0243 | 0.397 | 63.4% | 0384 | 0.432 12.5%

Table 8: Classification Results By Brand

In summary, for the task of differentiating peo-
ple who have positive, negative, or neutral opin-
ions towards different brands, automatically in-
ferred traits can be a good proxy for the clean data
derived from psychometric surveys. Models based
on the trait features inferred from social media can
perform similarly to those using a much larger set
of clean features. This result is encouraging since



it implies that it is possible to build large-scale
brand preference prediction systems that do not re-
quire costly psychometric surveys.

4.3 Top Features

In this study, we want to find out what are the most
significant features that can be used to differenti-
ate a brand’s likers from dislikers. The feature se-
lection was conducted using logistic regression in
SPSS3. Due to the page limit, we cannot list all the
significant features for all the 22 brands. Here we
only show the most important features in predict-
ing people who like and dislike luxury car brands
based on the PTBP dataset (Table 9). Based on
the regression analysis, all the features are sig-
nificantly associated with brand preferences ( p<
0.05). In this table, personal trait features are high-
lighted and followed by their types: P (Personali-
ties), V (Values), and N (Needs). “+” or “-” means
the features contribute positively or negatively to
the model. As shown in the table, more than half
of all the top features are trait features. For ex-
ample, the No. one trait feature to differentiate
BMW likers from dislikers is ideal, a trait associ-
ated with people who have a desire for perfection.
For Cadillac, the top trait is hedonism, which is
often associated with people who pursue pleasure
and sensuous gratification in life. For Lexus, the
most useful feature is self-expression, a trait often
associated with people who have a desire to assert
their own identifies. Other interesting findings in-
clude that females are less likely to be a fan of a
luxury car brand than males. This is true across all
three luxury car brands.

BMW Cadillac Lexus

ideal (N) + | have children(no) - | sports +
love (N) + | television + | self expression (N) +
conscientiousness (P) | + [ hedonism (V) + | television +
gender(female) - | home garden - | self enhancement (V) +
us news + | gender(female) - | fashion style +
health + | conservation (V) + | theater -
hedonism (V) - | self enha (V) | - | agr (P) +
chall (N) science + | openness to change (V) | -
conservation (V) love (N) - | curiosity (N)

self enhancement (V) | + | theater gender(female)

Table 9: Top 10 features for predicting opinions
toward cars

S Experiment 2

In the previous section, we demonstrated that
given a particular brand such as Pepsi, it is possi-
ble to automatically differentiate the people who
have positive, negative or neutral opinions. In

3http://www-01.ibm.com/software/analytics/spss/
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this section, we try to answer a different question:
given a list of competing brands in the same prod-
uct category, can we automatically rank a user’s
preferences of these brands? For example, given
popular beverage brands such as Pepsi and Coca-
Cola, can we automatically predict whether a per-
son will like Pepsi or Coca-Cola more?

5.1 Average Rank for Each Brand

For each user, we rank all the brands in each prod-
uct category based on his preferences in the sur-
vey (e.g., 1 means most preferred brand). We ag-
gregate the ranks from all the users and show the
overall brand preference ranks for both datasets.
As shown in table 10, the overall brand preference
ranks for the PTBP and TAE surveys are highly
correlated. Half of the product categories have ex-
act the same preference ranks for all the products;
The other half has only one slightly mis-matched
rank in each product category. This suggests that
the population participated in the PTBP and TAE
survey has very similar brand preference distribu-
tions. In the future, it maybe interesting to inves-
tigate how this rank is related to different brands’
market share.

PTBP TAE
Beverage 1. Cocq-cola 1. Coca.»cola

2. Pepsi 2. Pepsi

1. BMW 1. BMW
Car 2. Lexus 2. Lexus

3. Cadillac 3. Cadillac

1. Chipotle 1. Panera Bread

2. Panera Bread 2. Chipotle
Fast Food 3. Subway 3. Subway

4. McDonald’s 4. McDonald’s

1. Target 1. Target

. 2. Macy’s 2. Kohl’s

Retail 3. Kohl’s 3. Macy’s

4. Nordstrom 4. Nordstrom

1. Herbal Essences 1. Herbal Essences
Shampoo 2. Pantene 2. Pantene

3. Suave 3. Head & Shoulders

4. Head & Shoulders 4. Suave

1. Samsung 1. Samsung

2. iPhone 2. iPhone
Smart Phone 3. HTC 3. HTC

4. Nokia 4. Nokia

5. SONY 5. SONY

Table 10: Overall preference rank

5.2 Rank Correlation

To predict the rank of a product in each category,
we trained a multi-class classifier to estimate how
likely a user will like a brand. For example, for
smart phone brands, since we have four compet-
ing brands, we train a 4-way classifier to estimate
the likelihood a person likes iPhone, HTC, Nokia
and Sony. We then output the preference rank
based on the estimated likelihood. Higher likeli-
hood means a stronger preference. We also built



two types of models, one used all the user features,
the other used traits only. We applied them to both
the PTBP and the TAE datasets.

Since our model and the ground truth both pro-
duce a ranked list for each product category, here
we used rank correlation analysis to evaluate the
quality of the predicted ranks. For each user and
each product category, we computed the Spear-
man’s rank correlation coefficient p. If the coef-
ficient p is 1, there is a perfect positive correlation
between the predict rank and the ground truth (i.e.
both produce identical ranks). If p is -1, there is a
perfect negative correlation between the predicted
rank and the ground truth (i.e., the rank predicted
by the system is exactly the opposite of the ground
truth). If p is O, then the predicted rank and the
ground truth are randomly related. For each prod-
uct category, we report the average p across all the
users.

PTBP TAE
All Features | Traits Only | All Features | Traits Only
Brand avg. p avg. p avg. p avg. p
Beverage 0.264 0.301 0.234 0.372
Car 0.322 0.345 0.461 0.447
Fast Food 0.359 0.326 0.328 0.292
Retail 0.326 0.341 0.553 0.505
Shampoo 0.187 0.116 0.284 0.258
Smart Phone 0.414 0.403 0.497 0.545
All Avg. 0.312 0.305 0.393 0.403

Table 11: Evaluating predicted ranks

We use the overall rank data in Table 10 as our
baseline. Specifically, for each product category,
the baseline always ranks all its brands based on
the average ranks defined in Table 10. For each
user and each product category, we compute the p
between the user’s ground truth rank in the survey
and the rank produced by the baseline. We com-
pute the average p across all the users and all the
product categories to represent the baseline perfor-
mance. For the PTBP data, the average p for the
baseline is 0.193. For the TAE data, the average p
is 0.060.

There are several main findings from these re-
sults. First, for all the product categories, the
predicted ranks are all significantly and positively
correlated with the ground truth (p < 0.05). Also,
our models perform significantly better than the
non-personalized ranks produced by the baseline.
This result is important because it shows that there
is a stable and statistically significant agreement
between the predicted ranks and the ground truth
and the personalized models with additional trait
features perform significantly better than the non-
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personalized baseline system (on PTBP, the aver-
age p of the model with personal traits is 0.305
versus 0.193 of the baseline. It is 0.403 versus
0.060 on the TAE dataset). Second, the perfor-
mance on the TAE dataset is better than that on
the PTBP dataset (e.g., the average p is 0.403 on
TAE versus 0.305 on PTBP when only trait fea-
tures were used). This may be due to the fact that
in the TAE dataset, in addition to the Big 5 person-
ality features, we also automatically extracted 30
personality sub-facets from tweets using the pro-
cedure described in (Yarkoni, 2010). These finer-
grained personality features are not available in
the PTBP dataset. This result is encouraging since
it suggests that using automatically inferred traits
can predict brand preferences as well as if not bet-
ter than the clean trait features that can be obtained
only through costly psychometric evaluations. Fi-
nally, for our models, since the overall correlation
coefficients p are between 0.3 and 0.4, the strength
of these correlations is moderate. Thus, it may
not be sufficient to build an accurate brand pref-
erence prediction system with only user features.
Other features especially brand-related features as
well as features that capture the compatibility of a
brand and a user are needed.

5.3 Top Features

We used multinomial logistic regression to find the
most significant predicting features for each brand
category. We show the feature ranks by signifi-
cance for survey data in Table 12 and 13. Almost
all of the top 10 features for each brand are signif-
icantly correlated with the ranks. Again, the per-
sonal traits features are highlighted and followed
by their types: P (Personalities), V (Values), and
N (Needs).

6 Conclusion and Future Direction

In this paper, we present a comprehensive analy-
sis of the relationship between personal traits and
brand preferences. Our study includes a large
number of personal traits including personality,
personal values and individual needs. We collect
two datasets: one contains clean user features ob-
tained from psychometric surveys; The other in-
cludes noisy users features derived automatically
from social media posts. We investigate the in-
fluence of personal traits in two scenarios: (1) in
differentiating people who have positive, negative,
or neutral opinion about a brand, (2) in ranking



Beverage

Car

Fast Food

practicality (N)
us_news

stability (N)
science

curiosity (N)
have_children
agreeableness (P)

self_enhancement (V)
hedonism (V)
television

sports

ideal (N)
agreeableness (P)
excitement (N)

education_status
gender
conservation (V)
sports
video_games
marital status
science

love (N) gender age

books health automobiles
marital _status dining_wine business
Smart Phone Retail Shampoo
books stability (N) gender

ideal (N) structure (N) age
dining_wine automobiles openness (P)

closeness (N)
have_children
income
television

health
international_news
education
have_children

self_enh. t (V) pr: lity (N)
marital_status conservation (V)
automobiles gender

movie

education_status
structure (N)

curiosity (N)
openness_to_change (V)
theater
self_transcendence (V)

Table 12: Top 10 features for predicting rank cor-

relation (PTBP)
Beverage Car Fast Food
activity_level (P) altruism (P) friend_count
immoderation (P) adventurousness (P) sympathy (P)

altruism (P)
intellect (P)
cautiousness (P)
extraversion (P)
friendliness (P)
self_discipline (P)
openness (P)
closeness (N)

hedonism (V)
openness (P)

trust (P)
artistic_interests (P)
sympathy (P)
morality (P)
liberalism (P)
listed_count

conservation (V)
all_tweet_count
self_efficacy (P)
stability (N)
altruism (P)
depression (P)
liberty (N)
gregariousness (P)

Smart Phone

Retail

Shampoo

neuroticism (P)
openness (P)
achievement_striving (P)
altruism (P)

anger (P)

assertiveness (P)
cautiousness (P)
depression (P)
dutifulness (P)
immoderation (P)

openness_to_change (V)
love (N)

immoderation (P)
sympathy (P)
hedonism (V)
all_tweet_count
activity_level (P)

trust (P)

cautiousness (P)

liberty (N)

cautiousness (P)
cooperation (P)
intellect (P)
self_consciousness (P)
morality (P)
harmony (N)
activity_level (P)
vulnerability (P)
immoderation (P)
openness (P)

Table 13: Top 10 features for predicting rank cor-

relation (TAE)

a user’s preference of competing brands within a
product category. Our findings demonstrated that
it is possible to use personal traits in predicting
a user’s brand preferences. Moreover, we have
also shown that automatically inferred user fea-
tures are good proxies for the clean trait features
that can be acquired only from costly psychome-
tric surveys. This work may have significant im-
pact on the field of brand preference analysis since
this suggests that it is possible for businesses to
build scalable marketing tools to identify and tar-
get potential customers on social media.

Brand preference prediction is a hard problem.
So far, we have focused primarily on user features.
To further improve the prediction accuracy, in the
future, we will extend our current study by incor-
porating new features such as the properties of a
brand as well social influence from people in one’s
social network.
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Abstract

Trending topics in microblogs such as
Twitter are valuable resources to under-
stand social aspects of real-world events.
To enable deep analyses of such trends, se-
mantic annotation is an effective approach;
yet the problem of annotating microblog
trending topics is largely unexplored by
the research community. In this work, we
tackle the problem of mapping trending
Twitter topics to entities from Wikipedia.
We propose a novel model that comple-
ments traditional text-based approaches by
rewarding entities that exhibit a high tem-
poral correlation with topics during their
burst time period. By exploiting temporal
information from the Wikipedia edit his-
tory and page view logs, we have improved
the annotation performance by 17-28%, as
compared to the competitive baselines.

1 Introduction

With the proliferation of microblogging and its
wide influence on how information is shared and
digested, the studying of microblog sites has
gained interest in recent NLP research. Several ap-
proaches have been proposed to enable a deep un-
derstanding of information on Twitter. An emerg-
ing approach is to use semantic annotation tech-
niques, for instance by mapping Twitter informa-
tion snippets to canonical entities in a knowledge
base or to Wikipedia (Meij et al., 2012; Guo et al.,
2013), or by revisiting NLP tasks in the Twitter do-
main (Owoputi et al., 2013; Ritter et al., 2011).
Much of the existing work focuses on annotating
a single Twitter message (tweet). However, infor-
mation in Twitter is rarely digested in isolation, but
rather in a collective manner, with the adoption of
special mechanisms such as hashtags. When put
together, the unprecedentedly massive adoption of
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Hard to believe anyone can do worse than Russia in #Sochi. Brazil
seems to be trying pretty hard though! sportingnews.com...
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Figure 1: Example of trending hashtag annota-
tion. During the 2014 Winter Olympics, the hash-
tag ‘#sochi’ had a different meaning.

a hashtag within a short time period can lead to
bursts and often reflect trending social attention.
Understanding the meaning of trending hashtags
offers a valuable opportunity for various applica-
tions and studies, such as viral marketing, social
behavior analysis, recommendation, etc. Unfor-
tunately, the task of hashtag annotation has been
largely unexplored so far.

In this paper, we study the problem of annotat-
ing trending hashtags on Twitter by entities de-
rived from Wikipedia. Instead of establishing a
static semantic connection between hashtags and
entities, we are interested in dynamically linking
the hashtags to entities that are closest to the un-
derlying topics during burst time periods of the
hashtags. For instance, while ‘#sochi’ refers to
a city in Russia, during February 2014, the hash-
tag was used to report the 2014 Winter Olympics
(cf. Figure 1). Hence, it should be linked more
to Wikipedia pages related to the event than to the
location.

Compared to traditional domains of text (e.g.,
news articles), annotating hashtags poses addi-
tional challenges. Hashtags’ surface forms are

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 97-106,
Lisbon, Portugal, 17-21 September 2015. (©2015 Association for Computational Linguistics.



very ad-hoc, as they are chosen not in favor of
the text quality, but by the dynamics in attention
of the large crowd. In addition, the evolution
of the semantics of hashtags (e.g., in the case of
“#sochi’) makes them more ambiguous. Further-
more, a hashtag can encode multiple topics at once.
For example, in March 2014, ‘#oscar’ refers to the
86th Academy Awards, but at the same time also
to the Trial of Oscar Pistorius. Sometimes, it is
difficult even for humans to understand a trending
hashtag without knowledge about what was hap-
pening with the related entities in the real world.

In this work, we propose a novel solu-
tion to these challenges by leveraging temporal
knowledge about entity dynamics derived from
Wikipedia. We hypothesize that a trending hashtag
is associated with an increase in public attention to
certain entities, and this can also be observed on
Wikipedia. As in Figure 1, we can identify 20714
Winter Olympics as a prominent entity for ‘#sochi’
during February 2014, by observing the change of
user attention to the entity, for instance via the page
view statistics of Wikipedia articles. We exploit
both Wikipedia edits and page views for annota-
tion. We also propose a novel learning method,
inspired by the information spreading nature of so-
cial media such as Twitter, to suggest the optimal
annotations without the need for human labeling.
In summary:

e We are the first to combine the Wikipedia edit
history and page view statistics to overcome
the temporal ambiguity of Twitter hashtags.

e We propose a novel and efficient learning al-
gorithm based on influence maximization to
automatically annotate hashtags. The idea is
generalizable to other social media sites that
have a similar information spreading nature.

e We conduct thorough experiments on a real-
world dataset and show that our system can
outperform competitive baselines by 17-28%.

2 Related Work

Entity Linking in Microblogs The task of se-
mantic annotation in microblogs has been recently
tackled by different methods, which can be divided
into two classes, i.e., content-based and graph-
based methods. While the content-based methods
(Meij et al., 2012; Guo et al., 2013; Fang and
Chang, 2014) consider tweets independently, the
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graph-based methods (Cassidy et al., 2012; Liu et
al., 2013) use all related tweets (e.g., posted by a
user) together. However, most of them focus on
entity mentions in tweets. In contrast, we take
into account hashtags which reflect the topics dis-
cussed in tweets, and leverage external resources
from Wikipedia (in particular, the edit history and
page view logs) for semantic annotation.

Analysis of Twitter Hashtags In an attempt to
understand the user interest dynamics on Twitter,
a rich body of work analyzes the temporal pat-
terns of popular hashtags (Lehmann et al., 2012;
Naaman et al., 2011; Tsur and Rappoport, 2012).
Few works have paid attention to the semantics of
hashtags, i.e., to the underlying topics conveyed
in the corresponding tweets. Recently, Bansal et
al. (2015) attempt to segment a hashtag and link
each of its tokens to a Wikipedia page. However,
the authors only aim to retrieve entities directly
mentioned within a hashtag, which are very few
in practice. The external information derived from
the tweets is largely ignored. In contrast, we ex-
ploit both context information from the microblog
and Wikipedia resources.

Event Mining Using Wikipedia Recently some
works exploit Wikipedia for detecting and ana-
lyzing events on Twitter (Osborne et al., 2012;
Tolomei et al., 2013; Tran et al., 2014). However,
most of the existing studies focus on the statistical
signals of Wikipedia (such as the edit or page view
volumes). We are the first to combine the content
of the Wikipedia edit history and the magnitude of
page views to handle trending topics on Twitter.

3 Framework

Preliminaries We refer to an entity (denoted
by e) as any object described by a Wikipedia ar-
ticle (ignoring disambiguation, lists, and redirect
pages). The number of times an entity’s article has
been requested is called the entity view count. The
text content of the article is denoted by C(e). In
this work, we choose to study hashtags at the daily
level, i.e., from the timestamps of tweets we only
consider their creation day. A hashtag is called
trending at a time point (a day) if the number of
tweets where it appears is significantly higher than
that on other days. There are many ways to de-
tect such trendings. (Lappas et al., 2009; Lehmann
et al., 2012). Each trending hashtag has one or
multiple burst time periods, surrounding the trend-



ing day, where the users’ interest in the underly-
ing topic remains stronger than in other periods.
We denote with T'(h) (or T for short) one hashtag
burst time period, and with D (h) the set of tweets
containing the hashtag h created during 7.

Task Definition Given a trending hashtag h and
the burst time period T' of h, identify the top-k
most prominent entities to describe i during 7.

It is worth noting that not all trending hashtags
are mapable to Wikipedia entities, as the coverage
of topics in Wikipedia is much lower than on Twit-
ter. This is also the limitation of systems relying
on Wikipedia such as entity disambiguation, which
can only disambiguate popular entities and not the
ones in the long tail. In this study, we focus on the
precision and the popular trending hashtags, and
leave the improvement of recall to future work.

Overview We approach the task in three steps.
The first step is to identify all entity candidates by
checking surface forms of the constituent tweets
of the hashtag. In the second step, we compute
different similarities between each candidate and
the hashtag, based on different types of contexts,
which are derived from either side (Wikipedia or
Twitter). Finally, we learn a unified ranking func-
tion for each (hashtag, entity) pair and choose the
top-k entities with the highest scores. The ranking
function is learned through an unsupervised model
and needs no human-defined labels.

3.1 Entity Linking

The most obvious resource to identify candidate
entities for a hashtag is via its tweets. We follow
common approaches that use a lexicon to match
each textual phrase in a tweet to a potential en-
tity set (Shen et al., 2013; Fang and Chang, 2014).
Our lexicon is constructed from Wikipedia page ti-
tles, hyperlink anchors, redirects, and disambigua-
tion pages, which are mapped to the correspond-
ing entities. As for the tweet phrases, we extract
all n-grams (n < 5) from the input tweets within
T. We apply the longest-match heuristic (Meij et
al., 2012): We start with the longest n-grams and
stop as soon as the entity set is found, otherwise
we continue with the smaller constituent n-grams.

Candidate Set Expansion While the lexicon-
based linking works well for single tweets, ap-
plying it on the hashtag level has subtle implica-
tions. Processing a huge amount of text, especially
during a hashtag burst time period, incurs expen-
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sive computational costs. Therefore, to guarantee a
good recall in this step while still maintaining fea-
sible computation, we apply entity linking only on
a random sample of the complete tweet set. Then,
for each candidate entity e, we include all entities
whose Wikipedia article is linked with the article
of e by an outgoing or incoming link.

3.2 Measuring Entity—Hashtag Similarities

To rank the entity by prominence, we measure the
similarity between each candidate entity and the
hashtag. We study three types of similarities:

Mention Similarity This measure relies on the
explicit mentions of entities in tweets. It assumes
that entities directly linked from more prominent
anchors are more relevant to the hashtag. It is es-
timated using both statistics from Wikipedia and
tweet phrases, and turns out to be surprisingly ef-
fective in practice (Fang and Chang, 2014).

Context Similarity For entities that are not di-
rectly linked to mentions (the mention similar-
ity is zero) we exploit external resources instead.
Their prominence is perceived by users via exter-
nal sources, such as web pages linked from tweets,
or entity home pages or Wikipedia pages. By ex-
ploiting the content of entities from these external
sources, we can complement the explicit similarity
metrics based on mentions.

Temporal Similarity The two measures above
rely on the textual representation and are degraded
by the linguistic difference between the two plat-
forms. To overcome this drawback, we incorpo-
rate the temporal dynamics of hashtags and enti-
ties, which serve as a proxy to the change of user
interests towards the underlying topics (Ciglan and
Ngrvag, 2010). We employ the correlation be-
tween the times series of hashtag adoption and the
entity view as the third similarity measure.

3.3 Ranking Entity Prominence

While each similarity measure captures one evi-
dence of the entity prominence, we need to unify
all scores to obtain a global ranking function. In
this work, we propose to combine the individual
similarities using a linear function:

fle;h) = afm(e,h)+Bfc(e,h)+7 fe(e,h) (1)

where «, 3, « are model weights and f,,, f., f: are
the similarity measures based on mentions, con-
text, and temporal information, respectively, be-



tween the entity e and the hashtag h. We further
constrain that o + 3 + v = 1, so that the ranking
scores of entities are normalized between 0 and 1,
and that our learning algorithm is more tractable.
The algorithm, which automatically learns the pa-
rameters without the need of human-labeled data,
is explained in detail in Section 5.

4 Similarity Measures

We now discuss in detail how the similarity mea-
sures between hashtags and entities are computed.

4.1 Link-based Mention Similarity

The similarity of an entity with one individual
mention in a tweet can be interpreted as the prob-
abilistic prior in mapping the mention to the en-
tity via the lexicon. One common way to estimate
the entity prior exploits the anchor statistics from
Wikipedia links, and has been proven to work well
in different domains of text. We follow this ap-
proach and define LP(e|m) = % as the
link prior of the entity e given a mention m, where
l;m(e) is the set of links with anchor m that point
to e. The mention similarity f;,, is measured as the
aggregation of link priors of the entity e over all
mentions in all tweets with the hashtag h:

— 3 (LP(e|m) -

m

fm(e,h) q(m)) 2)

where ¢(m) is the frequency of the mention m over
all mentions of e in all tweets of h.

4.1.1 Context Similarity

To compute f., we first construct the contexts for
hashtags and entities. The context of a hashtag
is built by extracting all words from its tweets.
We tokenize and parse the tweets’ part-of-speech
tags (Owoputi et al., 2013), and remove words
of Twitter-specific tags (e.g., @-mentions, URLs,
emoticons, etc.). Hashtags are normalized using
the word breaking method by Wang et al. (2011).
The textual context of an entity is extracted from
its Wikipedia article. One subtle aspect is that the
articles are not created at once, but are incremen-
tally updated over time in accordance with chang-
ing information about entities. Texts added in the
same time period of a trending hashtag contribute
more to the context similarity between the entity
and the hashtag. Based on this observation, we use
the Wikipedia revision history — an archive of all
revisions of Wikipedia articles — to calculate the
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entity context. We collect the revisions of articles
during the time period T, plus one day to acknowl-
edge possible time lags. We compute the differ-
ence between two consecutive revisions, and ex-
tract only the added text snippets. These snippets
are accumulated to form the temporal context of
an entity e during 7', denoted by Cp(e). The dis-
tribution of a word w for the entity e is estimated
by a mixture between the probability of generating
w from the temporal context and from the general
context C'(e) of the entity:

P(wle) = AP(w| Mgy (o) + (1= X) P(w| M)

where M¢,. () and Mg, are the language mod-
els of e based on Cr(e) and Cf(e), respec-
tively. The probability P(w|MC(e)) can be re-
garded as corresponding to the background model,
while P(w|MOT(e)) corresponds to the fore-
ground model in traditional language modeling
settings. Here we use a simple maximum like-
lihood estimation to estimate these probabilities:

G and P(w| My ()

Cr ‘(6)|, where tf,, . and tf, ., are the term fre-
quencies of w in the two text sources of C'(e)
and Cr(e), respectively, and |C(e)| and |Cr(e)|
are the lengths of the two texts, respectively. We
use the same estimation for tweets: P(w|h) =
t{g’ﬁlg}‘l) , where D(h) is the concatenated text of
all tweets of h in T'. We use and normalize the
Kullback-Leibler divergence to compare the dis-
tributions over all words appearing both in the
Wikipedia contexts and the tweets:

Pwle)
L(e |l h) P(wle) - =
=2 Pwle) 5o
fele,h) =e™
4.1.2 Temporal Similarity

KL(e || h) 3)

The third similarity, f;, is computed using tem-
poral signals from both sources — Twitter and
Wikipedia. For the hashtags, we build the time
series based on the volume of tweets adopt-
ing the hashtag h on each day in 7: TS; =
[n1,7m2,...,np]. Similarly for the entities, we
build the time series of view counts for the entity e
inT: TS, = [v1,v2,...,vp|]. A time series sim-
ilarity metric is then used to compute f;. Several
metrics can be used, however most of them suf-
fer from the time lag and scaling discrepancy, or
incur expensive computational costs (Radinsky et
al., 2011). In this work, we employ a simple yet
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Figure 2: Excerpt of tweets about ice hockey results in the 2074 Winter Olympics (left), and the observed
linking process between time-aligned revisions of candidate Wikipedia entities (right). Links come more
from prominent entities to marginal ones to provide background, or more context for the topics. Thus,
starting from prominent entities, we can reach more entities in the graph of candidate entities

effective metric that is agnostic to the scaling and
time lag of time series (Yang and Leskovec, 2011).
It measures the distance between two time series
by finding optimal shifting and scaling parameters
to match the shape of two time series:

_ i 1TSh = 8dy(T'Se) |
ft(ev h) - IIql’lall ||TS}L||

“)

where dy(T'S,) is the time series derived from 7'S,
by shifting ¢ time units, and ||-|| is the Lo norm. It
has been proven that Equation 4 has a closed-form
solution for § given fixed ¢, thus we can design an
efficient gradient-based optimization algorithm to
compute f; (Yang and Leskovec, 2011).

5 Entity Prominence Ranking

5.1 Ranking Framework

To unify the individual similarities into one global
metric (Equation 1), we need a guiding premise
of what manifest the prominence of an entity to a
hashtag. Such a premise can be instructed through
manual assessment (Meij et al., 2012; Guo et al.,
2013), but it requires human-labeled data and is
biased from evaluator to evaluator. Other heuris-
tics assume that entities close to the main topic of
a text are also coherent to each other (Ratinov et
al., 2011; Liu et al., 2013). Based on this, state-of-
the-art methods in traditional disambiguation es-
timate entity prominence by optimizing the over-
all coherence of the entities’ semantic relatedness.
However, this coherence does not hold for topics
in hashtags: Entities reported in a big topic such
as the Olympics vary greatly with different sub-
events. They are not always coherent to each other,
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as they are largely dependent on the users’ diverse
attention to each sub-event. This heterogeneity of
hashtags calls for a different premise, abandoning
the idea of coherence.

Influence Maximization (IM) We propose a
new approach to find entities for a hashtag. We
use an observed behavioral pattern in creating
Wikipedia pages for guiding our approach to en-
tity prominence: Wikipedia articles of entities that
are prominent for a topic are quickly created or
updated,! and subsequently enriched with links to
related entities. This linking process signals the
dynamics of editor attention and exposure to the
event (Keegan et al., 2011). We argue that the pro-
cess does not, or to a much lesser degree, happen to
more marginal entities or to very general entities.
As illustrated in Figure 2, the entities closer to the
2014 Olympics get more updates in the revisions
of their Wikipedia articles, with subsequent links
pointing to articles of more distant entities. The
direction of the links influences the shifting atten-
tion of users (Keegan et al., 2011) as they follow
the structure of articles in Wikipedia.

We assume that, similar to Wikipedia, the entity
prominence also influences how users are exposed
and spread the hashtag on Twitter. In particular,
the initial spreading of a trending hashtag involves
more entities in the focus of the topic. Subsequent
exposure and spreading of the hashtag then include
other related entities (e.g., discussing background
or providing context), driven by interests in differ-
ent parts of the topic. Based on this assumption,

'Osborne et al. (2012) suggested a time lag of 3 hours.



we propose to gauge the entity prominence as its
potential in maximizing the information spreading
within all entities present in the tweets of the hash-
tag. In other words, the problem of ranking the
most prominent entities becomes identifying the
set of entities that lead to the largest number of en-
tities in the candidate set. This problem is known
in social network research as influence maximiza-
tion (Kempe et al., 2003).

Iterative Influence-Prominence Learning (IPL)
IM itself is an NP-hard problem (Kempe et al.,
2003). Therefore, we propose an approximation
framework, which can jointly learn the influence
scores of the entity and the entity prominence
together. The framework (called IPL) contains
several iterations, each consisting of two steps:
(1) Pick up a model and use it to compute the entity
influence score. (2) Based on the influence scores,
update the entity prominence. In the sequel we de-
tail our learning framework.

5.2 Entity Graph

Influence Graph To compute the entity influ-
ence scores, we first construct the entity influence
graph as follows. For each hashtag h, we construct
a directed graph G, = (E}, V},), where the nodes
E; C FE consist of all candidate entities (cf. Sec-
tion 3.1), and an edge (e;, ej) € V}, indicates that
there is a link from e;’s Wikipedia article to e;’s.
Note that edges of the influence graph are inversed
in direction to links in Wikipedia, as such a link
gives an “influence endorsement” from the desti-
nation entity to the source entity.

Entity Relatedness In this work, we assume that
an entity endorses more of its influence score to
highly related entities than to lower related ones.
We use a popular entity relatedness measure sug-
gested by Milne and Witten (2008):

_ 1 _ log(max(|I1|,|I2])—log(|/1NI2])))
MW (e1, €2) = 1 = o (B~ fog(mm( LT D)
where I and I are sets of entities having links to
e1 and eq, respectively, and F is the set of all enti-
ties in Wikipedia. The influence transition from e;
to e; is defined as the normalized value:

]\41/1/(61‘7 ej)
2 (eseryev MW ei,ex)
Influence Score Let r; be the influence score

vector of entities in (G,. We can estimate r;, effi-
ciently using random walk models, similarly to the

&)

bij =
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Algorithm 1: Entity Influence-Prominence Learning

Input :h,T,Dr(h),B, k, learning rate y, threshold e
Output: w, top-k most prominent entities.

Initialize: w = w(®
Calculate £, f., fi, f., == f o) using Eqs. 1,2, 3,4
while frue do

f'w := normalize f,,

Set sp, := £, calculate ry, using Eq. 6

Sort rp, get the top-k entities E(h, k)

3" cpnr L(fle, h),r(e, h)) < e then
| Stop

end

w=w — MZ@EE(hyk) VL(f(ev h),T’(e, h))
end

return w, E(h, k)

baseline method suggested by Liu et al. (2014):
ry = 7Brp + (1 — 7)sp 6)

where B is the influence transition matrix, sp, are
the initial influence scores that are based on the en-
tity prominence model (Step 1 of IPL), and 7 is the
damping factor.

5.3 Learning Algorithm

Now we detail the IPL algorithm. The objective
is to learn the model w = (a, 3,7) of the global
function (Equation 1). The general idea is that we
find an optimal w such that the average error with
respect to the top influencing entities is minimized

w = argmin Z L(f(e,h),r(e, h))

where 7 (e, h) is the influence score of e and h,
E(h,k) is the set of top-k entities with highest
r(e,h), and L is the squared error loss function,

L(z,y) = %

The main steps are depicted in Algorithm 1. We
start with an initial guess for w, and compute the
similarities for the candidate entities. Here f,,,, f,
f;, and f,, represent the similarity score vectors. We
use matrix multiplication to calculate the similari-
ties efficiently. In each iteration, we first normalize
f,, such that the entity scores sum up to 1. A ran-
dom walk is performed to calculate the influence
score ry. Then we update w using a batch gradient
descent method on the top-k influencer entities. To
derive the gradient of the loss function L, we first
remark that our random walk Equation 6 is similar
to context-sensitive PageRank (Haveliwala, 2002).
Using the linearity property (Fogaras et al., 2005),



Total Tweets 500,551,041
Trending Hashtags 2,444
Test Hashtags 30
Test Tweets 352,394
Distinct Mentions 145,941
Test (Entity, Hashtag) pairs 6,965
Candidates per Hashtag (avg.) 50
Extended Candidates (avg.) 182

Table 1: Statistics of the dataset.

we can express 7 (e, h) as the linear function of in-
fluence scores obtained by initializing with the in-
dividual similarities f,, fc, and f; instead of f,,.
The derivative thus can be written as:

VL(f(e7 h)7r(€7 h‘)) = a(rm(ev h) - fm(ev h))+

ﬁ(r6(67 h) - f0(67 h)) + 7(7475(67 h) - ft(e, h))

where 7,,(e, h),rc(e,h),ri(e, h) are the compo-
nents of the three vector solutions of Equation 6,
each having sy, replaced by f,,,, ., f; respectively.

Since both B and f;} are normalized such that
their column sums are equal to 1, Equation 6 is
convergent (Haveliwala, 2002). Also, as discussed
above, rp is a linear combination of factors that
are independent of w, hence L is a convex func-
tion, and the batch gradient descent is also guaran-
teed to converge. In practice, we can utilize sev-
eral indexing techniques to significantly speed up
the similarity and influence scores calculation.

6 Experiments and Results

6.1 Setup

Dataset There is no standard benchmark for our
problem, since available datasets on microblog an-
notation (such as the Microposts challenge (Basave
et al., 2014)) do not have global statistics, so we
cannot identify the trending hashtags. Therefore,
we created our own dataset. We used the Twitter
API to collect from the public stream a sample of
500, 551, 041 tweets from January to April 2014.
We removed hashtags that were adopted by less
than 500 users, having no letters, or having char-
acters repeated more than 4 times (e.g., ‘#oooom-
mgg’). We identified trending hashtags by comput-
ing the daily time series of hashtag tweet counts,
and removing those of which the time series’ vari-
ance score is less than 900. To identify the hashtag
burst time period T', we compute the outlier frac-
tion (Lehmann et al., 2012) for each hashtag h and
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day t: pi(h) = %, where 7, is the num-

ber of tweets containing h, ny is the median value
of n; over all points in a 2-month time window cen-
tered on ¢, and n,;, = 10 is the threshold to filter
low activity hashtags. The hashtag is skipped if its
highest outlier fraction score is less than 15. Fi-
nally, we define the burst time period of a trending
hashtag as the time window of size w, centered at
day to with the highest p;, (h).

For the Wikipedia datasets we process the dump
from 3rd May 2014, so as to cover all events in the
Twitter dataset. We have developed Hedera (Tran
and Nguyen, 2014), a scalable tool for process-
ing the Wikipedia revision history dataset based on
Map-Reduce paradigm. In addition, we download
the Wikipedia page view dataset that stores how
many times a Wikipedia article was requested on
an hourly level. We process the dataset for the four
months of our study and use Hedera to accumulate
all view counts of redirects to the actual articles.

Sampling From the trending hashtags, we sam-
ple 30 distinct hashtags for evaluation. Since our
study focuses on trending hashtags that are ma-
pable to entities in Wikipedia, the sampling must
cover a sufficient number of “popular” topics that
are seen in Wikipedia, and at the same time cover
rare topics in the long tail. To do this, we apply
several heuristics in the sampling. First, we only
consider hashtags where the lexicon-based link-
ing (Section 3.1) results in at least 20 different
entities. Second, we randomly choose hashtags
to cover different types of topics (long-running
events, breaking events, endogenous hashtags). In-
stead of inspecting all hashtags in our corpus, we
follow Lehmann et al. (2012) and calculate the
fraction of tweets published before, during and af-
ter the peak. The hashtags are then clustered in
this 3-dimensional vector space. Each cluster sug-
gests a group of hashtags with a distinct seman-
tics (Lehmann et al., 2012). We then pick up hash-
tags randomly from each cluster, resulting in 200
hashtags in total. From this rough sample, three
inspectors carefully checked the tweets and chose
30 hashtags where the meanings and hashtag types
were certain to the knowledge of the inspectors.

Parameter Settings We initialize the similarity
weights to %, the damping factor to 7 = 0.85, and
the weight for the language model to A = 0.9. The
learning rate p is empirically fixed to p = 0.003.



Tagme Wikiminer Meij Kauri M C T IPL
P@5 0.284 0.253 0.500 0.305 0.453 0.263 0.474 0.642
P@15 0.253 0.147 0.670 0319 0312 0.245 0.378 0.495
MAP  0.148 0.096 0.375 0.162 0.211 0.140 0.291 0.439

Table 2: Experimental results on the sampled trending hashtags.

Baseline We compare IPL with other entity an-
notation methods. Our first group of baselines in-
cludes entity linking systems in domains of gen-
eral text, Wikiminer (Milne and Witten, 2008),
and short text, Tagme (Ferragina and Scaiella,
2012). For each method, we use the default param-
eter settings, apply them for the individual tweets,
and take the average of the annotation confidence
scores as the prominence ranking function. The
second group of baselines includes systems specif-
ically designed for microblogs. For the content-
based methods, we compare against Meij et al.
(2012), which uses a supervised method to rank en-
tities with respect to tweets. We train the model us-
ing the same training data as in the original paper.
For the graph-based method, we compare against
KAURI (Shen et al., 2013), a method which uses
user interest propagation to optimize the entity
linking scores. To tune the parameters, we pick
up four hashtags from different clusters, randomly
sample 50 tweets for each, and manually annotate
the tweets. For all baselines, we obtained the im-
plementation from the authors. The exception is
Meij method, where we implemented ourselves,
but we clarified with the authors via emails on sev-
eral settings. In addition, we also compare three
variants of our method, using only local functions
for entity ranking (referred to as M, C, and T for
mention, context, and time, respectively).

Evaluation In total, there are 6,965 entity-
hashtag pairs returned by all systems. We employ
five volunteers to evaluate the pairs in the range
from O to 2, where 0 means the entity is noisy or
obviously unrelated, 2 means the entity is strongly
tied to the topic of the hashtag, and 1 means that
although the entity and hashtag might share some
common contexts, they are not involved in a di-
rect relationship (for instance, the entity is a too
general concept such as Ice hockey, as in the case
illustrated in Figure 2). The annotators were ad-
vised to use search engines, the Twitter search box
or Wikipedia archives whenever applicable to get
more background on the stories. Inter-annotator
agreement under Fleiss score is 0.625.
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6.2 Results and Discussion

Table 2 shows the performance comparison of the
methods using the standard metrics for a ranking
system (precision at 5 and 15 and MAP at 15). In
general, all baselines perform worse than reported
in the literature, confirming the higher complexity
of the hashtag annotation task as compared to tra-
ditional tasks. Interestingly enough, using our lo-
cal similarities already produces better results than
Tagme and Wikiminer. The local model f,, signif-
icantly outperforms both the baselines in all met-
rics. Combining the similarities improves the per-
formance even more significantly.> Compared to
the baselines, IPL improves the performance by
17-28%. The time similarity achieves the high-
est result compared to other content-based mention
and context similarities. This supports our assump-
tion that lexical matching is not always the best
strategy to link entities in tweets. The time series-
based metric incurs lower cost than others, yet it
produces a considerably good performance. Con-
text similarity based on Wikipedia edits does not
yield much improvement. This can be explained
in two ways. First, information in Wikipedia is
largely biased to popular entities, it fails to cap-
ture many entities in the long tail. Second, lan-
guage models are dependent on direct word rep-
resentations, which are different between Twitter
and Wikipedia. This is another advantage of non-
content measures such as f;.

For the second group of baselines (Kauri and
Meij), we also observe the reduction in precision,
especially for Kauri. This is because the method
relies on the coherence of user interests within a
group of tweets to be able to perform well, which
does not hold in the context of hashtags. One as-
tonishing result is that Meij performs better than
IPL in terms of P@15. However, it performs worse
in terms of MAP and P@5, suggesting that most
of the correctly identified entities are ranked lower
in the list. This is reasonable, as Meij attempts to
optimize (with human supervision effort) the se-

2All significance tests are done against both Tagme and
Wikiminer, with a p-value < 0.01.
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Figure 4: IPL compared to other baselines on dif-
ferent sizes of the burst time window 7.

mantic agreement between entities and informa-
tion found in the tweets, instead of ranking their
prominence as in our work. To investigate this
case further, we re-examined the hashtags and di-
vided them by their semantics, as to whether the
hashtags are spurious trends of memes inside so-
cial media (endogenous, e.g., “#stopasian2014”),
or whether they reflect external events (exogenous,
e.g., “#mh370”). The performance of the methods
in terms of MAP scores is shown in Figure 3. It can
be clearly seen that entity linking methods perform
well in the endogenous group, but then deteriorate
in the exogenous group. The explanation is that
for endogenous hashtags, the topical consonance
between tweets is very low, thus most of the as-
sessments become just verifying general concepts
(such as locations) In this case, topical annotation
is trumped by conceptual annotation. However,
whenever the hashtag evolves into a meaningful
topic, a deeper annotation method will produce a
significant improvement, as seen in Figure 3.
Finally, we study the impact of the burst time pe-
riod on the annotation quality. For this, we expand
the window size w (cf. Section 6.1) and examine
how different methods perform. The result is de-
picted in Figure 4. It is obvious that within the win-
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dow of 2 months (where the hashtag time series is
constructed and a trending time is identified), our
method is stable and always outperforms the base-
lines by a large margin. Even when the trending
hashtag has been saturated, hence introduced more
noise, our method is still able to identify the promi-
nent entities with high quality.

7 Conclusion and Future Work

In this work, we address the new problem of
topically annotating a trending hashtag using
Wikipedia entities, which has many important ap-
plications in social media analysis. We study
Wikipedia temporal resources and find that using
efficient time series-based measures can comple-
ment content-based methods well in the domain
of Twitter. We propose use similarity measures
to model both the local mention-based, as well as
the global context- and time-based prominence of
entities. We propose a novel strategy of topical
annotation of texts using and influence maximiza-
tion approach and design an efficient learning algo-
rithm to automatically unify the similarities with-
out the need of human involvement. The experi-
ments show that our method outperforms signifi-
cantly the established baselines.

As future work, we aim to improve the effi-
ciency of our entire workflow, such that the anno-
tation can become an end-to-end service. We also
aim to improve the context similarity between en-
tities and the topic, for example by using a deeper
distributional semantics-based method, instead of
language models as in our current work. In addi-
tion, we plan to extend the annotation framework
to other types of trending topics, by including the
type of out-of-k