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Abstract

The problem to replace a word with a syn-
onym that fits well in its sentential context
is known as the lexical substitution task. In
this paper, we tackle this task as a supervised
ranking problem. Given a dataset of target
words, their sentential contexts and the poten-
tial substitutions for the target words, the goal
is to train a model that accurately ranks the
candidate substitutions based on their contex-
tual fitness. As a key contribution, we cus-
tomize and evaluate several learning-to-rank
models to the lexical substitution task, includ-
ing classification-based and regression-based
approaches. On two datasets widely used for
lexical substitution, our best models signifi-
cantly advance the state-of-the-art.

1 Introduction

The task to generate lexical substitutions in context
(McCarthy and Navigli, 2007), i.e., to replace words
in a sentence without changing its meaning, has be-
come an increasingly popular research topic. This
task is used, e.g. to evaluate semantic models with
regard to their accuracy in modeling word meaning
in context (Erk and Padó, 2010). Moreover, it pro-
vides a basis of NLP applications in many fields,
including linguistic steganography (Topkara et al.,
2006; Chang and Clark, 2010), semantic text simi-
larity (Agirre et al., 2012) and plagiarism detection
(Gipp et al., 2011). While closely related to WSD,
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2 R. Busa-Fekete is on leave from the Research Group on
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lexical substitution does not rely on explicitly de-
fined sense inventories (Dagan et al., 2006): the pos-
sible substitutions reflect all conceivable senses of
the word, and the correct sense has to be ascertained
to provide an accurate substitution.

While a few lexical sample datasets (McCarthy
and Navigli, 2007; Biemann, 2012) with human-
provided substitutions exist and can be used to
evaluate different lexical paraphrasing approaches,
a practically useful system must also be able to
rephrase unseen words, i.e., any word for which
a list of synonyms is provided. Correspondingly,
unsupervised and knowledge-based approaches that
are not directly dependent on any training material,
prevailed in the SemEval 2007 shared task on En-
glish Lexical Substitution and dominated follow-up
work. The only supervised approach is limited to
the combination of several knowledge-based lexi-
cal substitution models based on different underly-
ing lexicons (Sinha and Mihalcea, 2009).3

A recent work by Szarvas et al. (2013) de-
scribes a tailor-made supervised system based on
delexicalized features that – unlike earlier super-
vised approaches, and similar to unsupervised and
knowledge-based methods proposed for this task –
is able to generalize to an open vocabulary. For
each target word to paraphrase, they first compute
a set of substitution candidates using WordNet: all
synonyms from all of the target word’s WordNet
synsets, together with the words from synsets in
similar to, entailment and also see relation to these
synsets are considered as potential substitutions.
Each candidate then constitutes a training (or test)

3Another notable example for supervised lexical substitu-
tion is Biemann (2012), but this is a lexical sample system ap-
plicable only to the target words of the training datasets.
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example, and these instances are characterized using
non-lexical features from heterogeneous evidence
such as lexical-semantic resources and distributional
similarity, n-gram counts and shallow syntactic fea-
tures computed on large, unannotated background
corpora. The goal is then i) to predict how well
a particular candidate fits in the original context,
and ii) given these predictions for each of the can-
didates, to correctly order the elements of the candi-
date set according to their contextual fitness. That is,
a model is successful if it prioritizes plausible substi-
tutions ahead of less likely synonyms (given the con-
text). This model is able to generate paraphrases for
target words not contained in the training material.
This favorable property is achieved using only such
features (e.g. local n-gram frequencies in context)
that are meaningfully comparable across the differ-
ent target words and candidate substitutions they are
computed from. More importantly, their model also
provides superior ranking results compared to state
of the art unsupervised and knowledge based ap-
proaches and therefore it defines the current state of
the art for open vocabulary lexical substitution.

Motivated by the findings of Szarvas et al. (2013),
we address lexical substitution as a supervised learn-
ing problem, and go beyond their approach from
a methodological point of view. Our experiments
show that the performance on the lexical substitution
task is strongly influenced by the way in which this
task is formalized as a machine learning problem
(i.e., as binary or multi-class classification or regres-
sion) and by the learning method used to solve this
problem. As a result, we are able to report the best
performances on this task for two standard datasets.

2 Related work
Previous approaches to lexical substitution often
seek to automatically generate a set of candidate
substitutions for each target word first, and to rank
the elements of this set of candidates afterward (Has-
san et al., 2007; Giuliano et al., 2007; Martinez et
al., 2007; Yuret, 2007). Alternatively, the candidate
set can be defined by all human-suggested substi-
tutions for the given target word in all of its con-
texts; then, the focus is just on the ranking problem
(Erk and Padó, 2010; Thater et al., 2010; Dinu and
Lapata, 2010; Thater et al., 2011). While only the
former approach qualifies as a full-fledged substitu-

tion system for arbitrary, previously unseen target
words, the latter simplifies the comparison of se-
mantic ranking models, as the ranking step is not
burdened with the shortcomings of automatically
generated substitution candidates.

As mentioned before, Szarvas et al. (2013) re-
cently formalized the lexical substitution problem as
a supervised learning task, using delexicalized fea-
tures. This non-lexical feature representation makes
different target word/substitution pairs in different
contexts4 directly comparable. Thus, it becomes
possible to learn an all-words system that is appli-
cable to unseen words, using supervised methods,
which provides superior ranking accuracy to unsu-
pervised and knowledge based models.

In this work, we build on the problem formu-
lation and the features proposed by Szarvas et
al. (2013) while largely extending their machine
learning methodology. We customize and experi-
ment with several different learning-to-rank models,
which are better tailored for this task. As our experi-
ments show, this contribution leads to further signif-
icant improvements in modeling the semantics of a
text and in end-system accuracy.

3 Datasets and experimental setup
Here we introduce the datasets, experimental setup
and evaluation measures used in our experiments.
Since space restrictions prohibit a comprehensive
exposition, we only provide the most essential in-
formation and refer to Szarvas et al. (2013), whose
experimental setup we adopted, for further details.
Datasets. We use two prominent datasets for lex-
ical substitution. The LexSub dataset introduced
in the Lexical Substitution task at Semeval 2007
(McCarthy and Navigli, 2007)5 contains 2002 sen-
tences for a total of 201 target words (from all
parts of speech), and lexical substitutions assigned
(to each target word and sentence pair) by 5 na-
tive speaker annotators. The second dataset, TWSI
(Biemann, 2012)6, consists of 24,647 sentences for
a total of 1,012 target nouns, and lexical substitu-

4E.g., bright substituted with intelligent in “He was bright
and independent and proud” and side for part in “Find someone
who can compose the biblical side”.

5http://nlp.cs.swarthmore.edu/
semeval/tasks/task10/data.shtml

6http://www.ukp.tu-darmstadt.de/data/
lexical-resources/twsi-lexical-substitutions/
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tions for each target word in context resulting from
a crowdsourced annotation process.

For each sentence in each dataset, the annotators
provided as many substitutions for the target word
as they found appropriate in the context. Each sub-
stitution is then labeled by the number of annotators
who listed that word as a good lexical substitution.
Experimental setup and Evaluation. On both
datasets, we conduct experiments using a 10-fold
cross validation process, and evaluate all learning al-
gorithms on the same train/test splits. The datasets
are randomly split into 10 equal-sized folds on the
target word level, such that all examples for a par-
ticular target word fall into either the training or
the test set, but never both. This way, we make
sure to evaluate the models on target words not seen
during training, thereby mimicking an open vocab-
ulary paraphrasing system: at testing time, para-
phrases are ranked for unseen target words, simi-
larly as the models would rank paraphrases for any
words (not necessarily contained in the dataset). For
algorithms with tunable parameters, we further di-
vide the training sets into a training and a validation
part to find the best parameter settings. For evalua-
tion, we use Generalized Average Precision (GAP)
(Kishida, 2005) and Precision at 1 (P@1), i.e., the
percentage of correct paraphrases at rank 1.
Features. In all experiments, we used the features
described in Szarvas et al. (2013), implemented pre-
cisely as proposed by the original work.

Each (sentence, target word, substitution)
triplet represents an instance, and the feature values
are computed from the sentence context, the target
word and the substitution word. The features used
fall into four major categories.

The most important features describe the syntag-
matic coherence of the substitution in context, mea-
sured as local n-gram frequencies obtained from
web data. The frequency for a 1-5gram context with
the substitution word is computed and normalized
with respect to either 1) the frequency of the origi-
nal context (with the target word) or 2) the sum of
frequencies observed for all possible substitutions.
A third feature computes similar frequencies for the
substitution and the target word observed in the lo-
cal context (as part of a conjunctive phrase).

A second group of features describe the (non-
positional, i.e. non-local) distributional similarity of

the target and its candidate substitution in terms
of sentence level co-occurrence statistics collected
from newspaper texts: 1) How many words from the
sentence appear in the top 1000 salient words listed
for the candidate substitution in a distributional the-
saurus, 2) how similar the top K salient words lists
are for the candidate and the target word, 3) how
similar the 2nd order distributional profiles are for
candidate and target, etc. All these features are care-
fully normalized so that values compare well accross
different words and contexts.

Another set of features capture the properties of
the target and candidate word in WordNet, such as
their 1) number of senses, 2) how frequent senses
are synonymous and 3) the lowest common ancestor
(and all synsets up) for the candidate and target word
in the WordNet hierarchy (represented as a nominal
feature, by the ID of these synsets).

Lastly a group of features capture shallow syntac-
tic patterns of the target word and its local context in
the form of 1) part of speech patterns (trigrams) in
a sliding window around the target word using main
POS categories, i.e. only the first letter of the Penn
Treebank codes, and 2) the detailed POS code of the
candidate word assigned by a POS tagger.

We omit a mathematically precise description of
these features for space reasons and refer the reader
to Szarvas et al. (2013) for a more formal and
detailed description of the feature functions. Im-
portantly, these delexicalized features are numeri-
cally comparable across the different target words
and candidate substitutions they are computed from.
This property enables the models to generalize over
the words in the datasets and thus enables a super-
vised, all-words lexical substitution system.

4 Learning-to-Rank methods
Machine learning methods for ranking are tradition-
ally classified into three categories. In the point-
wise approach, a model is trained that maps in-
stances (in this case candidate substitutions in a con-
text) to scores indicating their relevance or fitness;
to this end, one typically applies standard regression
techniques, which essentially look at individual in-
stances in isolation (i.e., independent of any other
instances in the training or test set). To predict a
ranking of a set of query instances, these are sim-
ply sorted by their predicted scores (Li et al., 2007).
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The pairwise approach trains models that are able
to compare pairs of instances. By marking such a
pair as positive if the first instance is preferred to the
second one, and as negative otherwise, the problem
can formally be reduced to a binary classification
task (Freund et al., 2003). Finally, in the listwise ap-
proach, tailor-made learning methods are used that
directly optimize the ranking performance with re-
spect to a global evaluation metric, i.e., a measure
that evaluates the ranking of a complete set of query
instances (Valizadegan et al., 2009).

Below we give a brief overview of the methods in-
cluded in our experiments. We used the implementa-
tions provided by the MultiBoost (Benbouzid et al.,
2012), RankSVM and RankLib packages.7 For a de-
tailed description, we refer to the original literature.

4.1 MAXENT

The ranking model proposed by Szarvas et al. (2013)
was used as a baseline. This is a pointwise approach
based on a maximum entropy classifier, in which
the ranking task is cast as a binary classification
problem, namely to discriminate good (label > 0)
from bad substitutions. The actual label values for
good substitutions were used for weighting the train-
ing examples. The underlying MaxEnt model was
trained until convergence, i.e., there was no hyper-
parameter to be tuned. For a new target/substitution
pair, the classifier delivers an estimation of the pos-
terior probability for being a good substitution. The
ranking is then produced by sorting the candidates
in decreasing order according to this probability.

4.2 EXPENS

EXPENS (Busa-Fekete et al., 2013) is a point-
wise method with listwise meta-learning step
that exploits an ensemble of multi-class classi-
fiers. It consists of three steps. First, AD-
ABOOST.MH (Schapire and Singer, 1999) classi-
fiers with several different weak learners (Busa-
Fekete et al., 2011; Kégl and Busa-Fekete, 2009)
are trained to predict the level of relevance (qual-
ity) of a substitution (i.e., the number of annotators
who proposed the candidate for that particular con-
text). Second, the classifiers are calibrated to obtain

7RankLib is available at http://people.cs.umass.
edu/˜vdang/ranklib.html. We extended the imple-
mentation of the LAMBDAMART algorithm in this package to
compute the gradients of and optimize for the GAP measure.

an accurate posterior distribution; to this end, several
calibration techniques, such as Platt scaling (Platt,
2000), are used to obtain a diverse pool of calibrated
classifiers. Note that this step takes advantage of
the ordinal structure of the underlying scale of rel-
evance levels, which is an important difference to
MAXENT. Third, the posteriors of these calibrated
classifiers are additively combined, with the weight
of each model being exponentially proportional to
its GAP score (on the validation set). This method
has two hyperparameters: the number of boosting it-
erations T and the scaling factor in the exponential
weighting scheme c. We select T and c from the in-
tervals [100, 2000] and [0, 100], with step sizes 100
and 10, respectively.

4.3 RANKBOOST

RANKBOOST (Freund et al., 2003) is a pairwise
boosting approach. The objective function is the
rank loss (as opposed to ADABOOST, which opti-
mizes the exponential loss). In each boosting it-
eration, the weak classifier is chosen by maximiz-
ing the weighted rank loss. For the weak learner,
we used the decision stump described in (Freund et
al., 2003), which is able to optimize the rank loss
in an efficient way. The only hyperparameter of
RANKBOOST to be tuned is the number of iterations
that we selected from the interval [1, 1000].

4.4 RANKSVM

RANKSVM (Joachims, 2006) is a pairwise method
based on support vector machines, which formulates
the ranking task as binary classification of pairs of
instances. We used a linear kernel, because the opti-
mization using non-linear kernels cannot be done in
a reasonable time. The tolerance level of the op-
timization was set to 0.001 and the regularization
parameter was validated in the interval [10−6, 104]
with a logarithmically increasing step size.

4.5 LAMBDAMART

LAMBDAMART (Wu et al., 2010) is a listwise
method based on the gradient boosted regression
trees by Friedman (1999). The ordinal labels are
learned directly by the boosted regression trees
whose parameters are tuned by using a gradient-
based optimization method. The gradient of parame-
ters is calculated based on the evaluation metric used
(in this case GAP). We tuned the number of boosting
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Database LexSub TWSI
Candidates WN Gold WN Gold

GAP
MaxEnt 43.8 52.4 36.6 47.2
ExpEns 44.3 53.5 37.8 49.7
RankBoost 44.0 51.4 37.0 47.8
RankSVM 43.3 51.8 35.5 45.2
LambdaMART 45.5 55.0 37.8 50.1

P@1
MaxEnt 40.2 57.7 32.4 49.5
ExpEns 39.8 58.5 33.8 53.2
RankBoost 40.7 55.2 33.1 50.8
RankSVM 40.3 51.7 33.2 45.1
LambdaMART 40.8 60.2 33.1 53.6

Table 1: GAP and p@1 values, with significant improve-
ments over the performance of MaxEnt marked in bold.

System GAP
Erk and Padó (2010) 38.6
Dinu and Lapata (2010) 42.9
Thater et al. (2010) 46.0
Thater et al. (2011) 51.7
Szarvas et al. (2013) 52.4
EXPENS 53.5
LAMBDAMART 55.0

Table 2: Comparison to previous studies (dataset LexSub,
candidates Gold).

iterations in the interval [10, 1000] and the number
of tree leaves in {8, 16, 32}.

5 Results and discussion

Our results using the above learning methods are
summarized in Table 1. As can be seen, the two
methods that exploit the cardinal structure of the
label set (relevance degrees), namely EXPENS and
LAMBDAMART, consistently outperform the base-
line taken from Szarvas et al. (2013) – the only ex-
ception is the p@1 score for EXPENS on the Semeval
Lexical Substitution dataset and the candidate sub-
stitutions extracted from WordNet. The improve-
ments are significant (using paired t-test, p < 0.01)
for 3 out of 4 settings for EXPENS and in all settings
for LAMBDAMART. In particular, the results of
LAMBDAMART are so far the best scores that have
been reported for the best studied setting, i.e. the
LexSub dataset using substitution candidates taken
from the gold standard (see Table 2).

We suppose that the relatively good results
achieved by the LAMBDAMART and EXPENS

methods are due to that, first, it seems crucial to
properly model and exploit the ordinal nature of

the annotations (number of annotators who sug-
gested a given word as a good paraphrase) pro-
vided by the datasets. Second, the RANKBOOST and
RANKSVM are less complex methods than the EX-
PENS and LAMBDAMART. The RANKSVM is the
least complex method from the pool of learning-to-
rank methods we applied, since it is a simple lin-
ear model. The RANKBOOST is a boosted decision
stump where, in each boosting iteration, the stump
is found by maximizing the weighted exponential
rank loss. On the other hand, both the EXPENS

and LAMBDAMART make use of tree learners in the
ensemble classifier they produce. We believe that
overfitting is not an issue in a learning task like the
LexSub task: most features are relatively weak pre-
dictors on their own, and we can learn from a large
number of data points (2000 sentences with an av-
erage set size of 20, about 40K data points for the
smallest dataset and setting). Rather, as our results
show, less complex models tend to underfit the data.
Therefore we believe that more complex models can
achieve a better performance, of course with an in-
creased computational cost.

6 Conclusion and future work

In this paper, we customized and applied some rela-
tively novel algorithms from the field of learning-to-
rank for ranking lexical substitutions in context. In
turn, we achieved significant improvements on the
two prominent datasets for lexical substitution.

Our results indicate that an exploitation of the or-
dinal structure of the labels in the datasets can lead to
considerable gains in terms of both ranking quality
(GAP) and precision at 1 (p@1). This observation
is supported both for the theoretically simpler point-
wise learning approach and for the most powerful
listwise approach. On the other hand, the pairwise
methods that cannot naturally exploit this property,
did not provide a consistent improvement over the
baseline. In the future, we plan to investigate this
finding in the context of other, similar ranking prob-
lems in Natural Language Processing.
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Collin, and B. Kégl. 2012. MultiBoost: a multi-
purpose boosting package. Journal of Machine Learn-
ing Research, 13:549–553.

Chris Biemann. 2012. Creating a System for Lexi-
cal Substitutions from Scratch using Crowdsourcing.
Language Resources and Evaluation: Special Issue
on Collaboratively Constructed Language Resources,
46(2).
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