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Abstract

We discuss and analyze the problem of find-
ing a distribution that minimizes the relative
entropy to a prior distribution while satisfying
max-norm constraints with respect to an ob-
served distribution. This setting generalizes
the classical maximum entropy problems as
it relaxes the standard constraints on the ob-
served values. We tackle the problem by in-
troducing a re-parametrization in which the
unknown distribution is distilled to a single
scalar. We then describe a homotopy between
the relaxation parameter and the distribution
characterizing parameter. The homotopy also
reveals an aesthetic symmetry between the
prior distribution and the observed distribu-
tion. We then use the reformulated problem to
describe a space and time efficient algorithm
for tracking theentire relaxation path. Our
derivations are based on a compact geomet-
ric view of the relaxation path as a piecewise
linear function in atwo dimensional space
of the relaxation-characterization parameters.
We demonstrate the usability of our approach
by applying the problem to Zipfian distribu-
tions over a large alphabet.

1 Introduction

Maximum entropy (max-ent) models and its dual
counterpart, logistic regression, is a popular and ef-
fective tool in numerous natural language process-
ing tasks. The principle of maximum entropy was
spelled out explicitly by E.T. Jaynes (1968). Ap-
plications of maximum entropy approach to natural
language processing are numerous. A notable ex-
ample and probably one of the earliest usages and

generalizations of the maximum entropy principle
to language processing is the work of Berger, Della
Pietra×2, and Lafferty (Berger et al., 1996, Della
Pietra et al., 1997). The original formulation of
max-ent cast the problem as the task of finding the
distribution attaining the highest entropy subject to
equality constraints. While this formalism is aes-
thetic and paves the way to a simple dual in the form
of a unique Gibbs distribution (Della Pietra et al.,
1997), it does not provide sufficient tools to deal
with input noise and sparse representation of the
target Gibbs distribution. To mitigate these issues,
numerous relaxation schemes of the equality con-
straints have been proposed. A notable recent work
by Dudik, Phillips, and Schapire (2007) provided a
general constraint-relaxation framework. See also
the references therein for an in depth overview of
other approaches and generalizations of max-ent.
The constraint relaxation surfaces a natural param-
eter, namely, a relaxation value. The dual form of
this free parameter is the regularization value of pe-
nalized logistic regression problems. Typically this
parameter is set by experimentation using cross val-
idation technique. The relaxed maximum-entropy
problem setting is the starting point of this paper.

In this paper we describe and analyze a frame-
work for efficiently tracking the entire relaxation
path of constrained max-ent problems. We start in
Sec. 2 with a generalization in which we discuss the
problem of finding a distribution that minimizes the
relative entropy to a given prior distribution while
satisfying max-norm constraints with respect to an
observed distribution. In Sec. 3 we tackle the prob-
lem by introducing a re-parametrization in which the

941



unknown distribution is distilled to a single scalar.
We next describe in Sec. 4 a homotopy between the
relaxation parameter and the distribution character-
izing parameter. This formulation also reveals an
aesthetic symmetry between the prior distribution
and the observed distribution. We use the reformu-
lated problem to describe in Secs. 5-6 space and time
efficient algorithms for tracking theentirerelaxation
path. Our derivations are based on a compact ge-
ometric view of the relaxation path as a piecewise
linear function in atwo dimensional space of the
relaxation-characterization parameters. In contrast
to common homotopy methods for the Lasso Os-
borne et al. (2000), our procedure for tracking the
max-ent homotopy results in an uncharacteristically
low complexity bounds thus renders the approach
applicable for large alphabets. We provide prelim-
inary experimental results with Zipf distributions in
Sec. 8 that demonstrate the merits of our approach.
Finally, we conclude in Sec. 9 with a brief discus-
sion of future directions.

2 Notations and Problem Setting

We denote vectors with bold face letters, e.g.v.
Sums are denoted by calligraphic letters, e.g.M =∑

j mj. We use the shorthand[n] to denote the set
of integers{1, . . . , n}. Then’th dimensional sim-
plex, denoted∆, consists of all vectorsp such that,∑n

j=1 pj = 1 and for allj ∈ [n], pj ≥ 0. We gen-
eralize this notion to multiplicity weighted vectors.
Formally, we say that a vectorp with multiplicity m
is in the simplex,(p,m) ∈ ∆, if

∑n
j=1mjpj = 1,

and for allj ∈ [n], pj ≥ 0, andmj ≥ 0.
The generalized relaxed maximum-entropy prob-

lem is concerned with obtaining an estimatep, given
a prior distributionu and an observed distributionq
such that the relative entropy betweenp andu is as
small as possible whilep andq are within a given
max-norm tolerance. Formally, we cast the follow-
ing constrained optimization problem,

min
p

n∑

j=1

mjpj log

(
pj
uj

)
, (1)

such that(p,m) ∈ ∆ ; ‖p − q‖∞ ≤ 1/ν. The
vectorsu andq are dimensionally compatible with
p, namely,(q,m) ∈ ∆ and(u,m) ∈ ∆. The scalar

ν is a relaxation parameter. We use1/ν rather than
ν itself for reasons that become clear in the sequel.

We next describe the dual form of (1). We derive
the dual by introducing Lagrange-Legendre multi-
pliers for each of the constraints appearing in (1).
Let α+

j ≥ 0 denote the multiplier for the constraint

qj − pj ≤ 1/ν andα−
j ≥ 0 the multiplier for the

constraintqj − pj ≥ −1/ν. In addition, we useγ as
the multiplier for the constraint

∑
j mjpj = 1. fter

some routine algebraic manipulations we get that the
Lagrangian is,
∑n

j=1mi

(
pj log

(
pj
uj

)
+ αj(qj − pj) +

|αj |
ν

)

+ γ
(∑n

j=1mjpj − 1
)

. (2)

To find the dual form we take the partial derivative
of the Lagrangian with respect to eachpj, equate to

zero, and get thatlog
(

pj
uj

)
+1−αj +γ = 0, which

implies thatpj ∼ uje
αj . We now employ the fact

that(p,m) ∈ ∆ to get that the exact form forpj is

pj =
uje

αj

∑n
i=1 miuieαi

. (3)

Using (3) in the compact form of the Lagrangian we
obtain the following dual problem

max
α
−



log (Z)−

n∑

j=1

mjqjαj +
n∑

j=1

mj

ν
|αj |



 ,

(4)
whereZ =

∑n
j=1mjuje

αj . We make rather little
use of the dual form of the problem. However, the
complementary slackness conditions that are neces-
sary for optimality to hold play an important role in
the next section in which we present a reformulation
of the relaxed maximum entropy problem.

3 Problem Reformulation

First note that the primal problem is a strictly con-
vex function over a compact convex domain. Thus,
its optimum exists and is unique. Let us now charac-
terize the form of the solution. We partition the set
of indices in[n] into three disjoint sets depending on
whether the constraint|pj − qj| ≤ 1/ν is active and
its form. Concretely, we define

I− = {1 ≤ j ≤ n | pj = qj − 1/ν}
I0 = {1 ≤ j ≤ n | |pj − qj| < 1/ν} (5)

I+ = {1 ≤ j ≤ n | pj = qj + 1/ν} .
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F(1,1)

(-1,-1)

Figure 1: The capping functionF .

Recall thatZ =
∑n

j=1mjuje
αj . Thus, from

(3) we can rewritepj = uje
αj/Z. We next use

the complementary slackness conditions (see for in-
stance (Boyd and Vandenberghe, 2004)) to further
characterize the solution. For anyj ∈ I− we must
haveα−

j = 0 andα+
j ≥ 0 thereforeαj ≥ 0, which

immediately implies thatpj ≥ uj/Z. By definition
we have thatpj = qj − 1/ν for j ∈ I−. Combin-
ing these two facts we get thatuj/Z ≤ qj − 1/ν for
j ∈ I−. Analogous derivation yields thatuj/Z ≥
qj + 1/ν for j ∈ I+. Last, if the setI0 is not empty
then for eachj in I0 we must haveα+

j = 0 and
α−
j = 0 thusαj = 0. Resorting again to the def-

inition of p from (3) we get thatpj = uj/Z for
j ∈ I0. Since |pj − qj| < 1/ν for j ∈ I0 we
get that|uj/Z − qj| < 1/ν. To recap, there ex-
istsZ > 0 such that the optimal solution takes the
following form,

pj =





qj − 1/ν uj/Z ≤ qj − 1/ν
uj/Z |uj/Z − qj| < 1/ν
qj + 1/ν uj/Z ≥ qj + 1/ν

. (6)

We next introduce an key re-parametrization,
defining µ = ν/Z. We also denote byF (·) the
capping functionF (x) = max {−1,min {1, x}}. A
simple illustration of the capping function is given
in Fig. 1. Equipped with these definition we can
rewrite (6) as follows,

pj = qj +
1

ν
F (µuj − νqj) . (7)

Givenu, q, andν, the value ofµ can be found by
using

∑
j mjpj =

∑
j mjqj = 1, which implies

G(ν, µ)
def
=

n∑

j=1

mjF (µuj − νqj) = 0 . (8)

We defer the derivation of the actual algorithm for
computingµ (and in turnp) to the next section. In
the meanwhile let us continue to explore the rich

structure of the general solution. Note thatµ,u are
interchangeable withν,q. We can thus swap the
roles of the prior distribution with the observed dis-
tribution and obtain an analogous characterization.
In the next section we further explore the depen-
dence ofµ on ν. The structure we reveal shortly
serves as our infrastructure for deriving efficient al-
gorithms for following the regularization path.

4 The function µ(ν)

In order to explore the dependency ofµ on ν let us
introduce the following sums

M =
∑

j∈I+
mj −

∑

j∈I−
mj

U =
∑

j∈I0
mj uj

Q =
∑

j∈I0
mj qj . (9)

Fixing ν and using (9), we can rewrite (8) as follows

µU − νQ+M = 0 . (10)

Clearly, so long as the partition of[n] into the sets
I+, I−, I0 is intact, there is a simple linear relation
betweenµ andν. The number of possible subsets
I−, I0, I+ is finite. Thus, the range0 < ν < ∞
decomposes into a finite number of intervals each
of which corresponds to a fixed partition of[n] into
I+, I−, I0. In each intervalµ is a linear function of
ν, unlessI0 is empty. Letν∞ be the smallestν value
for which I0 is empty. Letµ∞ be its corresponding
µ value. IfI0 is never empty for any finite value ofν
we defineν∞ = µ∞ =∞. Clearly, replacing(ν, µ)
with (κν, κµ) for any κ ≥ 1 and ν ≥ ν∞ yields
the same feasible solution asI+(κν) = I+(ν),
I−(αν) = I−(ν). Hence, as far as the original prob-
lem is concerned there is no reason to go pastν∞
during the process of characterizing the solution. We
recap our derivation so far in the following lemma.

Lemma 4.1 For 0 ≤ ν ≤ ν∞, the value ofµ as
defined by (7) is a unique. Further, the functionµ(ν)
is a piecewise linear continuous function inν. When
ν ≥ ν∞ lettingµ = µ∞ν/ν∞ keeps (7) valid.

We established the fact thatµ(ν) is a piecewise lin-
ear function. The lingering question is how many
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linear sub-intervals the function can attain. To study
this property, we take a geometric view of the plane
defined by(ν, µ). Our combinatorial characteriza-
tion of the number of sub-intervals makes use of the
following definitions of lines inR2,

ℓ+j = {(ν, µ) | ujµ− qjν = +1} (11)

ℓ−j = {(ν, µ) | ujµ− qjν = −1} (12)

ℓ0 = {(ν, µ) | µU − νQ+M = 0} , (13)

where−∞ < ν <∞ andj ∈ [n]. The next theorem
gives an upper bound on the number of linear seg-
ments the functionµ() may attain. While the bound
is quadratic in the dimension, for both artificial data
and real data the bound is way too pessimistic.

Theorem 4.2 The piecewise linear functionµ(ν)
consists of at mostn2 linear segments forν ∈ R+.

Proof Since we showed that thatµ(ν) is a piece-
wise linear function, it remains to show that it
has at mostn2 linear segments. Consider the
two dimensional functionG(ν, µ) from (8). The
(ν, µ) plane is divided by the2n straight lines
ℓ1, ℓ2, . . . , ℓn, ℓ−1, ℓ−2, . . . , ℓ−n into at most2n2+1
polygons. The latter property is proved by induc-
tion. It clearly holds forn = 0. Assume that it holds
for n − 1. Line ℓn intersects the previous2n − 2
lines at no more than2n − 2 points, thus splitting
at most2n − 1 polygons into two separate polygo-
nal parts. Lineℓ−n is parallel toℓn, again adding
at most2n − 1 polygons. Recapping, we obtain at
most2(n − 1)2 + 1 + 2(2n − 1) = 2n2 + 1 poly-
gons, as required per induction. Recall thatµ(ν) is
linear inside each polygon. The two extreme poly-
gons whereG(ν, µ) = ±∑n

j=1mj clearly disallow
G(ν, µ) = 0, henceµ(ν) can have at most2n2 − 1
segments for−∞ < ν < ∞. Lastly, we use the
symmetryG(−ν,−µ) = −G(ν, µ) which implies
that forν ∈ R+ there are at mostn2 segments.

This result stands in contrast to the Lasso homotopy
tracking procedure (Osborne et al., 2000), where the
worst case number of segments seems to be expo-
nential inn. Moreover, when the prioru is uniform,
uj = 1/

∑n
j=1mj for all j ∈ [n], the number of

segments is at mostn + 1. We defer the analysis of
the uniform case to a later section as the proof stems
from the algorithm we describe in the sequel.
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Figure 2: An illustration of the functionµ(ν) for a syn-
thetic3 dimensional example.
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Figure 3: An illustration of the functionG(µ) for a syn-
thetic4 dimensional example and aν = 17.

5 Algorithm for a Single Relaxation Value

Suppose we are givenu,q,m and a specific relax-
ation valueν̃. How can we findp? The obvious
approach is to solve the one dimensional monotoni-
cally nondecreasing equationG(µ)

def
= G(ν̃, µ) = 0

by bisection. In this section we present a more effi-
cient and direct procedure that is guaranteed to find
the optimal solutionp in a finite number of steps.
Clearly G(µ) is a piecewise linear function with
at most2n easily computable change points of the
slope. See also Fig. (5) for an illustration ofG(·).
In order to find the slope change points we need to
calculate the point(ν, µj) for all the linesℓ±j where
1 ≤ j ≤ n. Concretely, these values are

µj =
νq|j| + sign(j)

u|j|
. (14)

We next sort the above values ofµj and denote the
resulting sorted list asµπ1 ≤ µπ2 ≤ · · · ≤ µπ2n . For
any0 ≤ j ≤ 2n letMj ,Uj ,Qj be the sums, defined
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in (9), for the line segmentµπj−1 < µ < µπj (de-
noting µπ0 = −∞, µπ2n+1 = ∞). We compute
the sumsMj,Uj ,Qj incrementally, starting from
M0 = −∑n

i=1mi, U0 = Q0 = 0. Once the
values ofj−1’th sums are known, we can compute
the next sums in the sequence as follows,

Mj = Mj−1 +m|πj|
Uj = Uj−1 − sign(πj)m|πj | u|πj |
Qj = Qj−1 − sign(πj)m|πj | q|πj| .

From the above sums we can compute the value of
the functionG(ν, µ) at the end point of the line seg-
ment (µπj−1 , µπj), which is the same as the start
point of the line segment(µπj , µπj+1),

Gj = Mj−1 + Uj−1 µj −Qj−1 ν

= Mj + Uj µj −Qj ν .

The optimal value ofµ resides in the line segment
for whichG(·) attains0. Such a segment must exist
sinceG0 = M0 = −∑n

i=1mi < 0 andG2n =
−M0 > 0. Therefore, there exists an index1 ≤
j < 2n, whereGj ≤ 0 ≤ Gj+1. Once we bracketed
the feasible segment forµ, the optimal value ofµ is
found by solving the linear equation (10),

µ = (Qj ν − Mj) /Uj . (15)

From the optimal value ofµ it is straightforward to
constructp using (7). Due to the sorting step, the al-
gorithm’s run time isO(n log(n)) and it takes linear
space. The number of operations can be reduced to
O(n) using a randomized search procedure.

6 Homotopy Tracking

We now shift gears and focus on the main thrust
of this paper, namely, an efficient characterization
of the entire regularization path for the maximum
entropy problem. Since we have shown that the
optimal solution p can be straightforwardly ob-
tained from the variableµ, it suffices to efficiently
track the functionµ(ν) as we traverse the plane
(ν, µ) from ν = 0 through the last change point
which we denoted as(ν∞, µ∞). In this section
we give an algorithm that traversesµ(ν) by lo-
cating the intersections ofℓ0 with the fixed lines
ℓ−n, ℓ−n+1, . . . , ℓ−1, ℓ1, . . . , ℓn and updatingℓ0 af-
ter each intersection.

More formally, the local homotopy tracking fol-
lows the piecewise linear functionµ(ν), segment by
segment. Each segment corresponds to a subset of
the lineℓ0 for agiventriplet (M,U ,Q). It is simple
to show thatµ(0) = 0, hence we start with

ν = 0, M = 0, U = Q = 1 . (16)

We now track the value ofµ asν increases, and the
relaxation parameter1/ν decreases. The character-
ization of ℓ0 remains intact untilℓ0 hits one of the
lines ℓj for 1 ≤ |j| ≤ n. To find the line intersect-
ing ℓ0 we need to compute the potential intersection
points(νj, µj) = ℓ0 ∩ ℓj which amounts to calculat-
ing ν−n, ν−n+1, . . . , ν−1, ν1, ν2, · · · , νn where

νj =
Mu|j| + Usign(j)
Qu|j| − Uq|j|

. (17)

The lines for which the denominator is zero cor-
respond to infeasible intersection and can be dis-
carded. The smallest valueνj which is larger than
the current traced value ofν corresponds to the next
line intersectingℓ0.

While the above description is mathematically
sound, we devised an equivalent intersection in-
spection scheme which is more numerically stable
and efficient. We keep track of partitionI−, I0, I1
through the vector,

sj =




−1 j ∈ I−
0 j ∈ I0

+1 j ∈ I+

.

Initially s1 = s2 = · · · = sn = 0. What kind of
intersection doesℓ0 have withℓj? Recall thatQU is
the slope ofℓ0 while

q|j|
u|j|

is the slope ofℓj. Thus
Q
U >

q|j|
u|j|

means that the|j|’th constraint is moving

“up” from I− to I0 or fromI0 to I+. WhenQ
U <

q|j|
u|j|

the|j|’th constraint is moving “down” fromI+ to I0
or from I0 to I−. See also Fig. 4 for an illustration
of the possible transitions between the sets. For in-
stance, the slope ofµ(ν) on the bottom left part of
the figure is larger than the slope the line it inter-
sects. Since this line defines the boundary between
I− and I0, we transition fromI− to I0. We need
only consider1 ≤ |j| ≤ n of the following types.
Moving “up” from I− to I0 requires

s|j| = −1 j < 0 Qu|j| − Uq|j| > 0 .
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Figure 4: Illustration of the possible intersections be-
tweenµ(ν) andℓj and the corresponding transition be-
tween the setsI±, I0.

Similarly, moving “down” fromI+ to I0 requires

s|j| = 1 j > 0 Qu|j| − Uq|j| < 0 .

Finally, moving “up” or “down” fromI0 entails

s|j| = 0 j(Qu|j| − Uq|j|) > 0 .

If there are no eligibleνj ’s, we have finished travers-
ing µ(). Otherwise let indexj belong to the the
smallest eligibleνj . Infinite accuracy guarantees
thatνj ≥ ν. In practice we perform the update

ν ← max(ν, νj)

M ← M+ sign(Qu|j| − Uq|j|)m|j|
U ← U +

(
2
∣∣s|j|

∣∣− 1
)
m|j| u|j|

Q ← Q+
(
2
∣∣s|j|

∣∣− 1
)
m|j| q|j|

sj ← sj + sign(Qu|j| − Uq|j|) .

We are done with the tracking process whenI0 is
empty, i.e. for allj sj 6= 0.

The local homotopy algorithm takesO(n) mem-
ory andO(nk) operations wherek is the number of
change points in the functionµ(ν). This algorithm
is simple to implement, and whenk is relatively
small it is efficient. An illustration of the tracking
result,µ(ν), along with the linesℓ±j , that provide a
geometrical description of the problem, is given in
Fig. 5.

7 Uniform Prior

We chose to denote the prior distribution asu to un-
derscore the fact that in the case of no prior knowl-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−4

−2

0

2

4

6

8

10

ν

µ

Figure 5: The result of the homotopy tracking for a4
dimensional problem. The linesℓj for j < 0 are drawn in
blue and forj > 0 in red. The functionµ(ν) is drawn in
green and its change points in black. Note that although
the dimension is4 the number of change points is rather
small and does not exceed4 either in this simple example.

edgeu is theuniformdistribution,

u
def
= uj =

(
n∑

i=1

mi

)−1

.

In this case the objective function amounts to the
negative entropy and by flipping the sign of the ob-
jective we obtain the classical maximum entropy
problem. The fact that the prior probability is the
same for all possible observations infuses the prob-
lem with further structure which we show how to
exploit in this section. Needless to say though that
all the results we obtained thus far are still valid.

Let us consider a point(ν, µ) on the boundary be-
tweenI0 andI+, namely, there exist a lineℓ+i such
that,

µui − νqi = µu− νqi = 1 .

By definition, for anyj ∈ I0 we have

µuj − νqj = µu− νqj < 1 = µu− νqi .

Thus,qi < qj for all j ∈ I0 which implies that

mj u qj > mj u qi . (18)

Summing overj ∈ I0 we get that

Qu =
∑

j∈I0
mj qj u >

∑

j∈I0
mj u qi = Uqi ,

hence,
qi
ui

=
qi
u

<
Q
U
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and we must be moving “up” fromI0 to I+ when the
line ℓ0 hits ℓi. Similarly we must be moving “down”
from whenℓ0 hits on the boundary betweenI0 and
I−. We summarize these properties in the following
theorem.

Theorem 7.1 When the prior distributionu is uni-
form, I−(ν) and I+(ν) are monotonically nonde-
creasing andI0(ν) is monotonically nonincreasing
in ν > 0 . Further, the piecewise linear function
µ(ν) consists of at mostn+ 1 line segments.

The homotopy tracking procedure when the prior
is uniform is particularly simple and efficient. In-
tuitively, there is a sole condition which controls
the order in which indices would enterI± from I0,
which is simply how “far” eachqi is fromu, the sin-
gle prior value. Therefore, the algorithm starts by
sortingq. Let qπ1 > qπ2 > · · · > qπn denote the
sorted vector. Instead of maintaining the vector of
set indicatorss, we merely maintain two indicesj−
andj+ which designate the size ofI− andI+ that
were constructed thus far. Due to the monotonic-
ity property of the setsI± asν grows, the two sets
can be written as,I− = {πj | 1 ≤ j < j−} and
I+ = {πj | j+ < j ≤ n}. The homotopy track-
ing procedure starts as before withν = 0,M = 0,
U = Q = 1. We also setj− = 1 andj+ = n which
by definition imply thatI± are empty andI0 = [n].
In each tracking iteration we need to compare only
two values which we compactly denote as,

ν± =
Mu ± U
Qu − Uqπj±

.

When ν− ≤ ν+ we just encountered a transition
from I0 to I− and as we encroachI− we perform
the updates,ν ← ν−, M ←M − mπj− , U ←
U −mπj−u, Q← Q−mπj−qπj− , j− ← j− + 1.
Similarly whenν− > ν+ we perform the updates
ν ← ν+, M←M + mπj+

, U ← U − mπj+
u,

Q← Q − mπj+
qπj+

, j+ ← j+ − 1.
The tracking process stops whenj− > j+ as we

exhausted the transitions out of the setI0 which be-
comes empty. Homotopy tracking for a uniform
prior takesO(n) memory andO(n log(n)) opera-
tions and is very simple to implement.

We also devised a global homotopy tracking algo-
rithms that requires a priority queue which facilitates
insertions, deletions, and finding the largest element
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Figure 6: The number of line-segments in the homotopy
as a function of the number of samples used to build the
observed distributionq.

in the queue inO(log(n)) time. The algorithm re-
quiresO(n) memory andO(n2 log(n)) operations.
Clearly, if the number of line segments constituting
µ(ν) is greater thann log(n) (recall that the upper
bound isO(n2)) then the global homotopy proce-
dure is faster than the local one. However, as we
show in Sec. 8, in practice the number of line seg-
ments is merely linear and it thus suffices to use the
local homotopy tracking algorithm.

8 Number of line segments in practice

The focus of the paper is the design and analysis
of a novel homotopy method for maximum entropy
problems. We thus left with relatively little space
to discuss the empirical aspects of our approach. In
this section we focus on one particular experimental
facet that underscores the usability of our apparatus.
We briefly discuss current natural language applica-
tions that we currently work on in the next section.

The practicality of our approach hinges on the
number of line segments that occur in practice. Our
bounds indicate that this number can scale quadrat-
ically with the dimension, which would render the
homotopy algorithm impractical when the size of the
alphabet is larger than a few thousands. We there-
fore extensively tested theactualnumber of line seg-
ments in the resulting homotopy whenu andq are
Zipf (1949) distributions. We used an alphabet of
size50, 000 in our experiments. The distributionu
was set to be the Zipf distribution with an offset pa-
rameter of2, that is,ui ∼ 1/(i + 2). We defined
a “mother” distribution forq, denotedq̄, which is
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a plain Zipf distribution without an offset, namely
q̄i ∼ 1/i. We then sampledn/2l letters according
to the distributionq̄ wherel ∈ −3, . . . , 3. Thus the
smallest sample wasn/23 = 6, 250 and the largest
sample wasn/3−3 = 40, 000. Based on the sample
we defined the observed distributionq such thatqi
is proportional to the number of times thei’th let-
ter appeared in the sample. We repeated the process
100 times for each sample size and report average
results. Note that when the sample is substantially
smaller than the dimension the observed distribution
q tends to be “simple” as it consists of many zero
components. In Fig. 6 we depict the average num-
ber line segments for each sample size. When the
sample size is one eighth of the dimension we aver-
age st most0.1n line segments. More importantly,
even when the size of the sample is fairly large, the
number of lines segments is linear in the dimension
with a constant close to one. We also performed
experiments with large sample sizes for which the
empirical distributionq is very close to the mother
distribution q̄. We seldom found that the number of
line segments exceeds4n and the mode is around
2n. These findings render our approach usable even
in the very large natural language applications.

9 Conclusions

We presented a novel efficient apparatus for tracking
the entire relaxation path of maximum entropy prob-
lems. We currently study natural language process-
ing applications. In particular, we are in the process
of devising homotopy methods for domain adapta-
tion Blitzer (2008) and language modeling based
on context tree weighting (Willems et al., 1995).
We also examine generalization of our approach in
which the relative entropy objective is replaced with
a separable Bregman (Censor and Zenios, 1997)
function. Such a generalization is likely to distill
further connections to the other homotopy methods,
in particular the least angle regression algorithm of
Efron et al. (2004) and homotopy methods for the
Lasso in general (Osborne et al., 2000). We also plan
to study separable Bregman functions in order to de-
rive entire path solutions for less explored objectives
such as the Itakura-Saito spectral distance (Rabiner
and Juang, 1993) and distances especially suited for
natural language processing.
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