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Abstract

Set expansion refers to expanding a par-
tial set of “seed” objects into a more com-
plete set. One system that does set ex-
pansion is SEAL (Set Expander for Any
Language), which expands entities auto-
matically by utilizing resources from the
Web in a language-independent fashion.
In this paper, we illustrated in detail the
construction of character-level wrappers
for set expansion implemented in SEAL.
We also evaluated several kinds of wrap-
pers for set expansion and showed that
character-based wrappers perform better
than HTML-based wrappers. In addition,
we demonstrated a technique that extends
SEAL to learn binary relational concepts
(e.g., “x is the mayor of the city y”) from
only two seeds. We also show that the
extended SEAL has good performance on
our evaluation datasets, which includes
English and Chinese, thus demonstrating
language-independence.

1 Introduction

SEAL1 (Set Expander for Any Language) is a
set expansions system that accepts input ele-
ments (seeds) of some target set S and automat-
ically finds other probable elements of S in semi-
structured documents such as web pages. SEAL
is a research system that has shown good perfor-
mance in previously published results (Wang and
Cohen, 2007). By using only three seeds and
top one hundred documents returned by Google,
SEAL achieved 90% in mean average precision
(MAP), averaged over 36 datasets from three lan-
guages: English, Chinese, and Japanese. Un-
like other published research work (Etzioni et al.,
2005), SEAL focuses on finding small closed sets

1http://rcwang.com/seal

of items (e.g., Disney movies) rather than large
and more open sets (e.g., scientists).

In this paper, we explore the impact on perfor-
mance of one of the innovations in SEAL, specif-
ically, the use of character-level techniques to de-
tect candidate regular structures, or wrappers, in
web pages. Although some early systems for
web-page analysis induce rules at character-level
(e.g., such as WIEN (Kushmerick et al., 1997) and
DIPRE (Brin, 1998)), most recent approaches for
set expansion have used either tokenized and/or
parsed free-text (Carlson et al., 2009; Talukdar et
al., 2006; Snow et al., 2006; Pantel and Pennac-
chiotti, 2006), or have incorporated heuristics for
exploiting HTML structures that are likely to en-
code lists and tables (Nadeau et al., 2006; Etzioni
et al., 2005).

In this paper, we experimentally evaluate
SEAL’s performance under two settings: 1) us-
ing the character-level page analysis techniques
of the original SEAL, and 2) using page analy-
sis techniques constrained to identify only HTML-
related wrappers. Our conjecture is that the less
constrained character-level methods will produce
more candidate wrappers than HTML-based tech-
niques. We also conjecture that a larger number of
candidate wrappers will lead to better performance
overall, due to SEAL’s robust methods for ranking
candidate wrappers.

The experiments in this paper largely vali-
date this conjecture. We show that the HTML-
restricted version of SEAL performs less well,
losing 13 points in MAP on a dozen Chinese-
language benchmark problems, 8 points in MAP
on a dozen English-language problems, and 2
points in MAP on a dozen Japanese-language
problems.

SEAL currently only handles unary relation-
ships (e.g., “x” is a mayor). In this paper, we
show that SEAL’s character-level analysis tech-
niques can, like HTML-based methods, be read-
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ily extended to handle binary relationships. We
then demonstrate that this extension of SEAL can
learn binary concepts (e.g., “x is the mayor of
the city y”) from a small number of seeds, and
show that, as with unary relationships, MAP per-
formance is 26 points lower when wrappers are
restricted to be HTML-related. Furthermore, we
also illustrate that the learning of binary concepts
can be bootstrapped to improve its performance.

Section 2.1 explains how SEAL constructs
wrappers and rank candidate items for unary re-
lations. Section 3 describes the experiments and
results for unary relations. Section 4 presents the
method for extending SEAL to handle binary re-
lationships, as well as their experimental results.
Related work is discussed in Section 5, and the
paper concludes in Section 6.

2 SEAL

2.1 Identifying Wrappers for Unary
Relations

When SEAL performs set expansion, it accepts a
small number of seeds from the user (e.g., “Ford”,
“Nissan”, and “Toyota”). It then uses a web
search engine to retrieve some documents that
contain these instances, and then analyzes these
documents to find candidate wrappers (i.e., regu-
lar structures on a page that contain the seed in-
stances). Strings that are extracted by a candidate
wrapper (but are not equivalent to any seed) are
called candidate instances. SEAL then statisti-
cally ranks the candidate instances (and wrappers),
using the techniques outlined below, and outputs a
ranked list of instances to the user.

One key step in this process is identifying can-
didate wrappers. In SEAL, a candidate wrapper is
defined by a pair of left and right character strings,
` and r. A wrapper “extracts” items from a partic-
ular document by locating all strings in the docu-
ment that are bracketed by the wrapper’s left and
right strings, but do not contain either of the two
strings. In SEAL, wrappers are always learned
from, and applied to, a single document.

Table 1 illustrates some candidate wrappers
learned by SEAL. (Here, a wrapper is written as
`[...]r, with the [...] to be filled by an extracted
string.) Notice that the instances extracted by
wrappers can and do appear in surprising places,
such as embedded in URLs or in HTML tag at-
tributes. Our experience with these character-
based wrappers lead us to conjecture that exist-

ing heuristics for identifying structure in HTML
are fundamentally limited, in that many potentially
useful structures will not be identified by analyz-
ing HTML structure only.

SEAL uses these rules to find wrappers. Each
candidate wrapper `, r is a maximally long pair of
strings that bracket at least one occurrence of ev-
ery seed in a document: in other words, for each
pair `, r, the set of strings C extracted by `, r has
the properties that:

1. For every seed s, there exists some c ∈ C that
is equivalent to s; and

2. There are no strings `′, r′ that satisfy property
(1) above such that ` is a proper suffix of `′

and r is a proper prefix of r′.

SEAL’s wrappers can be found quite efficiently.
The algorithm we use has been described previ-
ously (Wang and Cohen, 2007), but will be ex-
plained again here for completeness. As an ex-
ample, below shows a mock document, written in
an unknown mark-up language, that has the seeds:
Ford, Nissan, and Toyota located (and boldfaced).
There are two other car makers hidden inside this
document (can you spot them?). In this section,
we will show you how to automatically construct
wrappers that reveal them.

GtpKxHnIsSaNxjHJglekuDialcLBxKHforDxkrpW
NaCMwAAHOFoRduohdEXocUvaGKxHaCuRAxjHjnOx
oTOyOTazxKHAUdIxkrOyQKxHToYotAxjHCRdmLxa
puRAPprtqOVKxHfoRdxjHaJAScRFrlaFoRDofwNL
WxKHtOYotaxkrHxQKlacXlGEKtxKHNisSanxkrEq

Given a set of seeds and a semi-structured doc-
ument, the wrapper construction algorithm starts
by locating all strings equivalent to a seed in the
document; these strings are called seed instances
below. (In SEAL, we always use case-insensitive
string matching, so a string is “equivalent to” any
case variant of itself.) The algorithm then inserts
all the instances into a list and assigns a unique id
to each of them by its index in the list (i.e., the id
of an instance is its position in the list.)

For every seed instance in the document, its
immediate left character string (starting from the
first character of the document) and right charac-
ter string (ending at the last character of the docu-
ment) are extracted and inserted into a left-context
trie and a right-context trie respectively, where the
left context is inserted in reversed character or-
der. (Here, we implemented a compact trie called
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URL: http://www.shopcarparts.com/
Wrapper: .html" CLASS="shopcp">[...] Parts</A> <br>
Content: acura, audi, bmw, buick, cadillac, chevrolet, chevy, chrysler, daewoo, daihatsu, dodge, eagle, ford, ...

URL: http://www.allautoreviews.com/
Wrapper: </a><br> <a href="auto reviews/[...]/
Content: acura, audi, bmw, buick, cadillac, chevrolet, chrysler, dodge, ford, gmc, honda, hyundai, infiniti, isuzu, ...

URL: http://www.hertrichs.com/
Wrapper: <li class="franchise [...]"> <h4><a href="#">
Content: buick, chevrolet, chrysler, dodge, ford, gmc, isuzu, jeep, lincoln, mazda, mercury, nissan, pontiac, scion, ...

URL: http://www.metacafe.com/watch/1872759/2009 nissan maxima performance/
Wrapper: videos">[...]</a> <a href="/tags/
Content: avalon, cars, carscom, driving, ford, maxima, nissan, performance, speed, toyota

URL: http://www.worldstyling.com/
Wrapper: ’>[...] Accessories</option><option value=’
Content: chevy, ford, isuzu, mitsubishi, nissan, pickup, stainless steel, suv, toyota

Table 1: Examples of wrappers constructed from web pages given the seeds: Ford, Nissan, Toyota.

Patricia trie where every node stores a substring.)
Every node in the left-context trie maintains a list
of ids for keeping track of the seed instances that
follow the string associated with that node. Same
thing applies to the right-context trie symmetri-
cally. Figure 1 shows the two context tries and
the list of seed instances when provided the mock
document with the seeds: Ford, Nissan, and Toy-
ota.

Provided that the left and right context tries are
populated with all the contextual strings of ev-
ery seed instance, the algorithm then finds maxi-
mally long contextual strings that bracket at least
one seed instance of every seed. The pseudo-code
for finding these strings for building wrappers is
illustrated in Table 2, where Seeds is the set of
input seeds and ` is the minimum length of the
strings. We observed that longer strings produce
higher precision but lower recall. This is an in-
teresting parameter that is worth exploring, but
for this paper, we consider and use only a min-
imum length of one throughout the experiments.
The basic idea behind the pseudo-code is to first
find all the longest possible strings from one trie
given some constraints, then for every such string
s, find the longest possible string s′ from another
trie such that s and s′ bracket at least one occur-
rence of every given seed in a document.

The wrappers constructed as well as the items
extracted given the mock document and the exam-
ple seeds are shown below. Notice that Audi and
Acura are uncovered (did you spot them?).

Wrapper: xKH[...]xkr
Content: audi, ford, nissan, toyota

Wrapper: KxH[...]xjH
Content: acura, ford, nissan, toyota

Wrappers MakeWrappers(Trie `, Trie r)
Return Wraps(l, r) ∪Wraps(r, l)

Wrappers Wraps(Trie t1, Trie t2)
For each n1 ∈ TopNodes(t1, `)

For each n2 ∈ BottomNodes(t2, n1)
For each n1 ∈ BottomNodes(t1, n2)

Construct a new Wrapper(Text(n1), Text(n2))
Return a union of all wrappers constructed

Nodes BottomNodes(Trie t1, Node n′)
Find node n ∈ t1 such that:

(1) NumCommonSeeds(n, n′) == |Seeds|, and
(2) All children nodes of n (if exist) fail on (1)

Return a union of all nodes found

Nodes TopNodes(Trie t, int `)
Find node n ∈ t such that:

(1) Text(n).length ≥ `, and
(2) Parent node of n (if exist) fails on (1)

Return a union of all nodes found

String Text(Node n)
Return the textual string represented by the
path from root to n in the trie containing n

Integer NumCommonSeeds(Node n1, Node n2)
For each index i ∈ Intersect(n1, n2):

Find the seed at index i of seed instance list
Return the size of the union of all seeds found

Integers Intersect(Node n1, Node n2)
Return n1.indexes ∩ n2.indexes

Table 2: Pseudo-code for constructing wrappers.

Table 1 shows examples of wrappers con-
structed from real web documents. We have also
observed items extracted from plain text (.txt),
comma/tab-separated text (.csv/.tsv), latex (.tex),
and even Word documents (.doc) of which the
wrappers have binary character strings. These ob-
servations support our claim that the algorithm is
independent of mark-up language. In our experi-
mental results, we will show that it is independent
of human language as well.
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Figure 1: The context tries and the seed instance list constructed given the mock document presented in
Section 2.1 and the seeds: Ford, Nissan and Toyota.

2.2 Ranking Wrappers and Candidate
Instances

In previous work (Wang and Cohen, 2007), we
presented a graph-walk based technique that is
effective for ranking sets and wrappers. This
model encapsulates the relations between docu-
ments, wrappers, and extracted instances (entity
mentions). Similarly, our graph also consists of
a set of nodes and a set of labeled directed edges.
Figure 2 shows an example graph where each node
di represents a document, wi a wrapper, and mi

an extracted entity mention. A directed edge con-
nects a node di to a wi if di contains wi, a wi to a
mi ifwi extractsmi, and a di to ami if di contains
mi. Although not shown in the figure, every edge
from node x to y actually has an inverse relation
edge from node y to x (e.g., mi is extracted by wi)
to ensure that the graph is cyclic.

We will use letters such as x, y, and z to denote
nodes, and x r−→ y to denote an edge from x to
y with labeled relation r. Each node represents an
object (document, wrapper, or mention), and each
edge x r−→ y asserts that a binary relation r(x, y)
holds. We want to find entity mention nodes that
are similar to the seed nodes. We define the sim-
ilarity between two nodes by random walk with
restart (Tong et al., 2006). In this algorithm, to
walk away from a source node x, one first chooses
an edge relation r; then given r, one picks a target
node y such that x r−→ y. When given a source
node x, we assume that the probability of picking
an edge relation r is uniformly distributed among
the set of all r, where there exist a target node y
such that x r−→ y. More specifically,

Figure 2: Example graph built by Random Walk.

P (r|x) =
1

|r : ∃y x r−→ y| (1)

We also assume that once an edge relation r is
chosen, a target node y is picked uniformly from
the set of all y such that x r−→ y. More specifi-
cally,

P (y|r, x) =
1

|y : x r−→ y| (2)

In order to perform random walk, we will build
a transition matrix M where each entry at (x, y)
represents the probability of traveling one step
from a source node x to a target node y, or more
specifically,

Mxy =
∑
r

P (r|x)P (y|r, x) (3)

We will also define a state vector ~vt which rep-
resents the probability at each node after iterating
through the entire graph t times, where one itera-
tion means to walk one step away from every node.
The state vector at t+ 1 iteration is defined as:

~vt+1 = λ~v0 + (1− λ)M~vt (4)
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Since we want to start our walk from the seeds,
we initialize v0 to have probabilities uniformly
distributed over the seed nodes. In each step of
our walk, there is a small probability λ of tele-
porting back to the seed nodes, which prevents us
from walking too far away from the seeds. We
iterate our graph until the state vector converges,
and rank the extracted mentions by their probabil-
ities in the final state vector. We use a constant λ
of 0.01 in the experiments below.

2.3 Bootstrapping Candidate Instances
Bootstrapping refers to iterative unsupervised set
expansion. This process requires minimal super-
vision, but is very sensitive to the system’s perfor-
mance because errors can easily propagate from
one iteration to another. As shown in previous
work (Wang and Cohen, 2008), carefully designed
seeding strategies can minimize the propagated er-
rors. Below, we show the pseudo-code for our
bootstrapping strategy.

stats← ø, used← inputs
for i = 1 to M do
m = min(3, |used|)
seeds← selectm(used) ∪ top(list)
stats← expand(seeds, stats)
list← rank(stats)
used← used ∪ seeds

end for

where M is the total number of iterations, inputs
are the two initial input seeds, selectm(S) ran-
domly selects m different seeds from the set S,
used is a set that contains previously expanded
seeds, top(list) returns an item that has the high-
est rank in list, expand(seeds, stats) expands
the selected seeds using stats and outputs accu-
mulated statistics, and rank(stats) applies Ran-
dom Walk described in Section 2.2 on the accu-
mulated stats to produce a list of items. This
strategy dumps the highest-ranked item into the
used bucket after every iteration. It starts by ex-
panding two input seeds. For the second iteration,
it expands three seeds: two used plus one from
last iteration. For every successive iteration, it ex-
pands four seeds: three randomly selected used
ones plus one from last iteration.

3 Experiments with Unary Relations

We would like to determine whether character-
based or HTML-based wrappers are more suited
for the task of set expansion. In order to do that,

# L. Context [...]R. Context Eng Jap Chi Avg
1 .+[...].+ 87.6 96.9 95.4 93.3
2 .*[<>].*[...].*[<>].* 85.7 96.8 90.7 91.1
3 .*>[...]<.* 85.7 96.7 90.7 91.0
4 .*<.+?>.*[...].*<.+?>.* 80.1 95.8 83.7 86.5
5 .*<.+?>[...]<.+?>.* 79.6 94.9 82.4 85.6

Table 3: The performance (MAP) of various types
of wrappers on semi-structured web pages.

we introduce five types of wrappers, as illustrated
in Table 3. The first type is the character-based
wrapper that does not have any restriction on the
alphabets of its characters. Starting from the sec-
ond type, the allowable alphabets in a wrapper be-
come more restrictive. The fifth type requires that
an item must be tightly bracketed by two complete
HTML tags in order to be extracted.

All pure HTML-based wrappers are type 5, pos-
sibly with additional restrictions imposed (Nadeau
et al., 2006; Etzioni et al., 2005). SEAL cur-
rently does not use an HTML parser (or any other
kinds of parser), so restrictions cannot be easily
imposed. As far as we know, there isn’t an agree-
ment on what restrictions make the most sense
or work the best. Therefore, we evaluate perfor-
mance for varying wrapper constraints from type
1 (most general) to type 5 (most strict) in our ex-
periments.

For set expansion, we use the same evaluation
set as in (Wang and Cohen, 2007) which contains
36 manually constructed lists across three differ-
ent languages: English, Chinese, and Japanese (12
lists per language). Each list contains all instances
of a particular semantic class in a certain language,
and each instance contains a set of synonyms (e.g.,
USA, America).

Since the output of our system is a ranked list
of extracted instances, we choose mean average
precision (MAP) as our evaluation metric. MAP
is commonly used in the field of Information Re-
trieval for evaluating ranked lists because it is sen-
sitive to the entire ranking and it contains both re-
call and precision-oriented aspects. The MAP for
multiple ranked lists is simply the mean value of
average precisions calculated separately for each
ranked list. We define the average precision of a
single ranked list as:

AvgPrec(L) =

|L|∑
r=1

Prec(r)× isFresh(r)

Total # of Correct Instances
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where L is a ranked list of extracted instances, r
is the rank ranging from 1 to |L|, Prec(r) is the
precision at rank r, or the percentage of correct
synonyms above rank r (inclusively). isFresh(r)
is a binary function for ensuring that, if a list con-
tains multiple synonyms of the same instance (or
instance pair), we do not evaluate that instance (or
instance pair) more than once. More specifically,
the function returns 1 if a) the synonym at r is cor-
rect, and b) it is the highest-ranked synonym of its
instance in the list; it returns 0 otherwise.

We evaluate the performance of each type of
wrapper by conducting set expansion on the 36
datasets across three languages. For each dataset,
we randomly select two seeds, expand them by
bootstrapping ten iterations (where each iteration
retrieves at most 200 web pages only), and evalu-
ate the final result. We repeat this process three
times for every dataset and report the average
MAP for English, Japanese, and Chinese in Ta-
ble 3. As illustrated, the more restrictive a wrapper
is, the worse it performs. As a result, this indicates
that further restrictions on wrappers of type 5 will
not improve performance.

4 Set Expansion for Binary Relations

4.1 Identifying Wrappers for Binary
Relations

We extend the wrapper construction algorithm de-
scribed in Section 2.1 to support relational set ex-
pansion. The major difference is that we introduce
a third type of context called the middle context
that occurs between the left and right contexts of
a wrapper for separating any two items. We ex-
ecute the same algorithm as before, except that a
seed instance in the algorithm is now a seed in-
stance pair bracketing some middle context (i.e.,
“s1·middle· s2”).

Given some seed pairs (e.g., Ford and USA),
the algorithm first locates the seeds in some given
documents. For every pair of seeds located, it ex-
tracts their left, middle, and right contexts. The
left and right contexts are inserted into their corre-
sponding tries, while the middle context is inserted
into a list. Every middle context is assigned a flag
indicating whether the two instances bracketing it
were found in the same or reversed order as the
input seed pairs. Every entry in the seed instance
list described previously now stores a pair of in-
stances as one single string (e.g. “Ford/USA”). An
id stored in a node now matches the index of a pair

of instances as well as a middle context.
Shown below is a mock example document of

which the seed pairs: Ford and USA, Nissan and
Japan, Toyota and Japan are located (and bold-
faced).

GtpKxHnIsSaNoKpjaPaNxjHJgleTuoLpBlcLBxKH
forDEFcuSAxkrpWNapnIkAAHOFoRdawHDaUSauoh
deQsKxHaCuRAoKpJapANxjHdIjWnOxoTOyOTaVaq
jApaNzxKHAUdIEFcgErmANyxkrOyQKxHToYotAoK
pJApaNxjHCRdmtqOVKxHfoRdoKpusAxjHaJASzEi
nSfrlaFoRDLMmpuSaofwNLWxKHtOYotaEFcjAPan
xkrHxQKzrHpoKdGEKtxKHNisSanEFcJApAnxkrEq

After performing the abovementioned proce-
dures on this mock document, we now have con-
text tries that are much more complicated than
those illustrated in Figure 1, as well as a list of
middle contexts similar to the one shown below:

id Seed Pairs r Middle Context
0 Nissan/Japan No oKp
1 Nissan/Japan No EFc
2 Nissan/Japan Yes xkrHxQKzrHpoKd...
4 Toyota/Japan No oKp
6 Toyota/Japan Yes xjHdIjWnOxo
9 Ford/USA No EFc

13 Ford/USA Yes xkrpWNapnIkAAHO

where r indicates if the two instances bracketing
the middle context were found in the reversed or-
der as the input seed pairs. In order to find the
maximally long contextual strings, the “Intersect”
function in the set expansion pseudo-code pre-
sented in Table 2 needs to be replaced with the
following:

Integers Intersect(Node n1, Node n2)
Define S = n1.indexes ∩ n2.indexes
Return the largest subset s of S such that:

Every index ∈ s corresponds to same middle context

which returns those seed pairs that are bracketed
by the strings associated with the two input nodes
with the same middle context. A wrapper for re-
lational set expansion, or relational wrapper, is
defined by the left, middle, and right contextual
strings. The relational wrappers constructed from
the mock document given the example seed pairs
are shown below. Notice that Audi/Germany and
Acura/Japan are discovered.

Wrapper: xKH[.1.]EFc[.2.]xkr
Content: audi/germany, ford/usa, nissan/japan,

toyota/japan
Wrapper: KxH[.1.]oKp[.2.]xjH
Content: acura/japan, ford/usa, nissan/japan,

toyota/japan
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Dataset ID Item #1 vs. Item #2 Lang. #1 Lang. #2 Size Complete?
US Governor US State/Territory vs. Governor English English 56 Yes

Taiwan Mayor Taiwanese City vs. Mayor Chinese Chinese 26 Yes
NBA Team NBA Team vs. NBA Team Chinese English 30 Yes

Fed. Agency US Federal Agency Acronym vs. Full Name English English 387 No
Car Maker Car Manufacturer vs. Headquartered Country English English 122 No

Table 4: The five relational datasets for evaluating relational set expansion.

Mean Avg. Precision Precision@100
Datasets 1 2 3 4 5 1 2 3 4 5

US Governor 97.4 89.3 89.2 89.3 89.2 55 50 51 50 50
Taiwan Mayor 99.8 95.6 94.3 91.3 90.8 25 25 24 23 23

NBA Team 100.0 99.9 99.9 99.9 99.2 30 30 30 30 30
Fed. Agency 43.7 14.5 5.2 11.1 5.2 96 55 20 40 20

Car Maker 61.7 0.0 0.0 0.0 0.0 74 0 0 0 0
Average 80.5 59.9 57.7 58.3 56.9 56 32 25 29 25

Table 5: Performance of various types of wrappers on the five relational datasets after first iteration.

Mean Avg. Precision Precision@100
Datasets 1 2 3 4 5 1 2 3 4 5

US Governor 98.9 97.0 95.3 94.1 93.9 55 55 54 53 53
Taiwan Mayor 99.8 98.3 96.9 93.8 94.3 25 25 25 24 24

NBA Team 100.0 100.0 99.2 98.4 98.6 30 30 30 30 30
Fed. Agency 65.5 54.5 27.9 55.3 30.0 97 97 61 95 69

Car Maker 81.6 0.0 0.0 0.0 0.0 90 0 0 0 0
Average 89.2 70.0 63.9 68.3 63.4 59 41 34 40 35

Table 6: Performance of various types of wrappers on the five relational datasets after 10th iteration.

4.2 Experiments with Binary Relations

For binary relations, we performed the same ex-
periment as with unary relations described in Sec-
tion 3. A relational wrapper is of type t if the
wrapper’s left and right context match t’s con-
straint for left and right respectively, and also
that the wrapper’s middle context match both con-
straints.

For choosing the evaluation datasets for rela-
tional set expansion, we surveyed and obtained a
dozen relationships, from which we randomly se-
lected five of them and present in Table 4. Each
dataset was then manually constructed. For the
last two datasets, since there are too many items,
we tried our best to make the lists as exhaustive as
possible.

To evaluate relational wrappers, we performed
relational set expansion on randomly selected
seeds from the five relational datasets. For every
dataset, we select two seeds randomly and boot-
strap the relational set expansion ten times. The
results after the first iteration are shown in Table 5
and after the tenth iteration in Table 6. When com-
puting precision at 100 for each resulting list, we
kept only the top-most-ranked synonym of every

instance and remove all other synonyms from the
list; this ensures that every instance is unique. No-
tice that for the “Car Maker” dataset, there exists
no wrappers of types 2 to 5; thus resulting in zero
performance for those wrapper types. In each ta-
ble, the results indicate that character-based wrap-
pers perform the best, while those HTML-based
wrappers that require tight HTML bracketing of
items (type 3 and 5) perform the worse.

In addition, the results illustrate that bootstrap-
ping is effective for expanding relational pairs of
items. As illustrated in Table 6, the result of find-
ing translation pairs of NBA team names is per-
fect, and it is almost perfect for finding pairs of
U.S. states/territories and governors, as well as
Taiwanese cities and mayors. In finding pairs of
acronyms and full names of federal agencies, the
precision at top 100 is nearly perfect (97%). The
results for finding pairs of car makers and coun-
tries is good as well, with a high precision of
90%. For the last two datasets, we believe that
MAP could be improved by increasing the number
of bootstrapping iterations. Table 7 shows some
example wrappers constructed and instances ex-
tracted for wrappers of type 1.
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Seeds: kentucky / steve beshear, north dakota / john hoeven
URL: http://wikifoia.pbworks.com/Alaska-Governor-Sarah-Palin

Wrapper: Governor [.2.]">[.1.] Governor

URL: http://blogs.suntimes.com/sweet/2008/02/sweet state dinner for governo.html
Wrapper: <br /> <br /> The Honorable [.2.], Governor of [.1.] <br /> <br />

URL: http://en.wikipedia.org/wiki/United States Senate elections, 2010
Wrapper: " title="Governor of [.1.]">Governor</a> <a href="/wiki/[.2.]" title="

URL: http://ballotbox.governing.com/2008/07/index.html
Wrapper: , [.1.]’s [.2.],

Content: alabama / bob riley, alaska / sarah palin, arizona / janet napolitano, arkansas / mike huckabee, california /
arnold schwarzenegger, colorado / bill ritter, connecticut / mary jodi rell, delaware / ruth ann minner, florida
/ charlie crist, georgia / sonny perdue, hawaii / linda lingle, idaho / butch otter, illinois / rod blagojevich. . .

Seeds: cia / central intelligence agency, usps / united states postal service
URL: http://www1.american.edu/dccampus/links/whitehouse.html

Wrapper: <a href="http://www.[.1.].gov" class="Links2nd">[.2.]</a><span class="Links2nd">

URL: http://www.usembassy.at/en/us/gov.htm
Wrapper: /" target=" blank">[.2.] ([.1.])</a> -

URL: http://www.nationmaster.com/encyclopedia/List-of-United-States-federal-agencies
Wrapper: The [.2.] ([.1.]) is

URL: http://www.nationmaster.com/encyclopedia/List-of-United-States-federal-agencies
Wrapper: </li> <li>[.1.]- <a href="/encyclopedia/[.2.]" onmouseover="pv(event, 2

Content: achp / advisory council on historic preservation, arc / appalachian regional commission, cftc / commod-
ity futures trading commission, cia / central intelligence agency, cms / centers for medicare and medicaid
services, exim bank / export import bank of the united states, ntrc / national transportation research center. . .

Seeds: mazda / japan, venturi / france
URL: http://www.jrfilters.com/filtres/index.php?lng=en

Wrapper: &page=filtres&lng=en">[.1.]&nbsp;&nbsp;&nbsp;([.2.])</option><option value="index.php?

URL: http://www.jrfilters.com/suspensions/index.php?famille=1&lng=en
Wrapper: &lng=en">[.1.]&nbsp;&nbsp;&nbsp;([.2.])</option><option value="index.php?famille=1&rubrique1

URL: http://www.street-car.net/forums/forumdisplay.php?f=10
Wrapper: "><strong>[.1.]</strong></a> </div> <div class="smallfont">Country of origin:[.2.].

URL: http://www.allcarcentral.com/
Wrapper: file.html">[.1.],[.2.]</a><br />

Content: abarth / italy, acura / japan, alfa romeo / italy, aston martin / england, auburn / usa, audi / germany, austin
healey / england, austin / england, auto union / germany, balwin / usa, bandini / italy, bentley / england, bmw
/ germany, brabham / england, bricklin / usa, bristol / england, brm / england, bucciali / france. . .

Table 7: Examples of (type 1) wrappers constructed and instances (contents) extracted.
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5 Related Work

In recent years, many research has been done
on extracting relations from free text (e.g., (Pan-
tel and Pennacchiotti, 2006; Agichtein and Gra-
vano, 2000; Snow et al., 2006)); however, al-
most all of them require some language-dependent
parsers or taggers for English, which restrict
the language of their extractions to English only
(or languages that have these parsers). There
has also been work done on extracting relations
from HTML-structured tables (e.g., (Etzioni et al.,
2005; Nadeau et al., 2006; Cafarella et al., 2008));
however, they all incorporated heuristics for ex-
ploiting HTML structures; thus, they cannot han-
dle documents written in other mark-up languages.

Extracting relations at character-level from
semi-structured documents has been proposed
(e.g., (Kushmerick et al., 1997),(Brin, 1998)).
In particular, Brin’s approach (DIPRE) is the
most similar to ours in terms of expanding rela-
tional items. One difference is that it requires
maximally-long contextual strings to bracket all
seed occurrences. This technique has been experi-
mentally illustrated to perform worse than SEAL’s
approach on unary relations (Wang and Cohen,
2007). Brin presented five seed pairs of author
names and book titles that he used in the exper-
iment (unfortunately, he did not provide detailed
results). We input the top two seed pairs listed in
his paper into the relational SEAL, performed ten
bootstrapping iterations (took about 3 minutes),
and obtained 26,000 author name/book title pairs
of which the precision at 100 is perfect (100%).

6 Conclusions

In this paper, we have described in detail an al-
gorithm for constructing document-specific wrap-
pers automatically for set expansion. In the exper-
imental results, we have illustrated that character-
based wrappers are better suited than HTML-
based wrappers for the task of set expansion. We
also presented a method that utilizes an additional
middle context for constructing relational wrap-
pers. We also showed that our relational set ex-
pansion approach is language-independent; it can
be applied to non-English and even cross-lingual
seeds and documents. Furthermore, we have il-
lustrated that bootstrapping improves the perfor-
mance of relational set expansion. In the future,
we will explore automatic mining of binary con-
cepts given only the relation (e.g., “mayor of”).
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