
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 219–228,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Feature-Rich Translation by Quasi-Synchronous Lattice Parsing

Kevin Gimpel and Noah A. Smith
Language Technologies Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{kgimpel,nasmith}@cs.cmu.edu

Abstract

We present a machine translation frame-
work that can incorporate arbitrary fea-
tures of both input and output sentences.
The core of the approach is a novel de-
coder based on lattice parsing with quasi-
synchronous grammar (Smith and Eis-
ner, 2006), a syntactic formalism that
does not require source and target trees
to be isomorphic. Using generic approx-
imate dynamic programming techniques,
this decoder can handle “non-local” fea-
tures. Similar approximate inference tech-
niques support efficient parameter esti-
mation with hidden variables. We use
the decoder to conduct controlled exper-
iments on a German-to-English transla-
tion task, to compare lexical phrase, syn-
tax, and combined models, and to mea-
sure effects of various restrictions on non-
isomorphism.

1 Introduction

We have seen rapid recent progress in machine
translation through the use of rich features and the
development of improved decoding algorithms,
often based on grammatical formalisms.1 If we
view MT as a machine learning problem, features
and formalisms imply structural independence as-
sumptions, which are in turn exploited by efficient
inference algorithms, including decoders (Koehn
et al., 2003; Yamada and Knight, 2001). Hence a
tension is visible in the many recent research ef-
forts aiming to decode with “non-local” features
(Chiang, 2007; Huang and Chiang, 2007).

Lopez (2009) recently argued for a separation
between features/formalisms (and the indepen-

1Informally, features are “parts” of a parallel sentence pair
and/or their mutual derivation structure (trees, alignments,
etc.). Features are often implied by a choice of formalism.

dence assumptions they imply) from inference al-
gorithms in MT; this separation is widely appreci-
ated in machine learning. Here we take first steps
toward such a “universal” decoder, making the fol-
lowing contributions:

Arbitrary feature model (§2): We define a sin-
gle, direct log-linear translation model (Papineni
et al., 1997; Och and Ney, 2002) that encodes most
popular MT features and can be used to encode
any features on source and target sentences, de-
pendency trees, and alignments. The trees are op-
tional and can be easily removed, allowing sim-
ulation of “string-to-tree,” “tree-to-string,” “tree-
to-tree,” and “phrase-based” models, among many
others. We follow the widespread use of log-linear
modeling for direct translation modeling; the nov-
elty is in the use of richer feature sets than have
been previously used in a single model.

Decoding as QG parsing (§3–4): We present a
novel decoder based on lattice parsing with quasi-
synchronous grammar (QG; Smith and Eisner,
2006).2 Further, we exploit generic approximate
inference techniques to incorporate arbitrary “non-
local” features in the dynamic programming algo-
rithm (Chiang, 2007; Gimpel and Smith, 2009).

Parameter estimation (§5): We exploit simi-
lar approximate inference methods in regularized
pseudolikelihood estimation (Besag, 1975) with
hidden variables to discriminatively and efficiently
train our model. Because we start with inference
(the key subroutine in training), many other learn-
ing algorithms are possible.

Experimental platform (§6): The flexibility
of our model/decoder permits carefully controlled
experiments. We compare lexical phrase and de-
pendency syntax features, as well as a novel com-

2To date, QG has been used for word alignment (Smith
and Eisner, 2006), adaptation and projection in parsing
(Smith and Eisner, 2009), and various monolingual recog-
nition and scoring tasks (Wang et al., 2007; Das and Smith,
2009); this paper represents its first application to MT.

219

Σ, T source and target language vocabularies, respectively
Trans : Σ ∪ {NULL} → 2T function mapping each source word to target words to which it may translate
s = 〈s0, . . . , sn〉 ∈ Σn source language sentence (s0 is the NULL word)
t = 〈t1, . . . , tm〉 ∈ Tm target language sentence, translation of s
τs : {1, . . . , n} → {0, . . . , n} dependency tree of s, where τs(i) is the index of the parent of si (0 is the root, $)
τt : {1, . . . , m} → {0, . . . , m} dependency tree of t, where τt(i) is the index of the parent of ti (0 is the root, $)
a : {1, . . . , m} → 2{1,...,n} alignments from words in t to words in s; ∅ denotes alignment to NULL
θ parameters of the model
gtrans(s, a, t) lexical translation features (§2.1):

f lex (s, t) word-to-word translation features for translating s as t
fphr (s

j
i , t

`
k) phrase-to-phrase translation features for translating sj

i as t`
k

glm(t) language model features (§2.2):
fN (tj

j−N+1) N -gram probabilities
gsyn(t, τt) target syntactic features (§2.3):

fatt(t, j, t
′, k) syntactic features for attaching target word t′ at position k to target word t at position j

f val(t, j, I) syntactic valence features with word t at position j having children I ⊆ {1, . . . , m}
greor (s, τs, a, t, τt) reordering features (§2.4):

fdist(i, j) distortion features for a source word at position i aligned to a target word at position j
gtree2(τs, a, τt) tree-to-tree syntactic features (§3):

f qg(i, i
′, j, k) configuration features for source pair si/si′ being aligned to target pair tj /tk

gcov (a) coverage features (§4.2)
fscov (a), fzth(a), fsunc(a) counters for “covering” each s word each time, the zth time, and leaving it “uncovered”

Table 1: Key notation. Feature factorings are elaborated in Tab. 2.

bination of the two. We quantify the effects
of our approximate inference. We explore the
effects of various ways of restricting syntactic
non-isomorphism between source and target trees
through the QG. We do not report state-of-the-art
performance, but these experiments reveal inter-
esting trends that will inform continued research.

2 Model

(Table 1 explains notation.) Given a sentence s
and its parse tree τs, we formulate the translation
problem as finding the target sentence t∗ (along
with its parse tree τ∗t and alignment a∗ to the
source tree) such that3

〈t∗, τ∗t ,a∗〉 = argmax
〈t,τt,a〉

p(t, τt,a | s, τs) (1)

In order to include overlapping features and permit
hidden variables during training, we use a single
globally-normalized conditional log-linear model.
That is, p(t, τt,a | s, τs) =

exp{θ>g(s, τs,a, t, τt)}∑
a′,t′,τ ′t

exp{θ>g(s, τs,a′, t′, τ ′t)}
(2)

where the g are arbitrary feature functions and the
θ are feature weights. If one or both parse trees or
the word alignments are unavailable, they can be
ignored or marginalized out as hidden variables.

In a log-linear model over structured objects,
the choice of feature functions g has a huge effect

3We assume in this work that s is parsed. In principle, we
might include source-side parsing as part of decoding.

on the feasibility of inference, including decoding.
Typically these feature functions are chosen to fac-
tor into local parts of the overall structure. We
next define some key features used in current MT
systems, explaining how they factor. We will use
subscripts on g to denote different groups of fea-
tures, which may depend on subsets of the struc-
tures t, τt, a, s, and τs. When these features fac-
tor into parts, we will use f to denote the factored
vectors, so that if x is an object that breaks into
parts {xi}i, then g(x) =

∑
i f(xi).4

2.1 Lexical Translations

Classical lexical translation features depend on s
and t and the alignment a between them. The sim-
plest are word-to-word features, estimated as the
conditional probabilities p(t | s) and p(s | t) for
s ∈ Σ and t ∈ T. Phrase-to-phrase features gen-
eralize these, estimated as p(t′ | s′) and p(s′ | t′)
where s′ (respectively, t′) is a substring of s (t).

A major difference between the phrase features
used in this work and those used elsewhere is
that we do not assume that phrases segment into
disjoint parts of the source and target sentences

4There are two conventional definitions of feature func-
tions. One is to let the range of these functions be conditional
probability estimates (Och and Ney, 2002). These estimates
are usually heuristic and inconsistent (Koehn et al., 2003).
An alternative is to instantiate features for different structural
patterns (Liang et al., 2006; Blunsom et al., 2008). This offers
more expressive power but may require much more training
data to avoid overfitting. For this reason, and to keep training
fast, we opt for the former convention, though our decoder
can handle both, and the factorings we describe are agnostic
about this choice.

220

(Koehn et al., 2003); they can overlap.5 Addi-
tionally, since phrase features can be any func-
tion of words and alignments, we permit features
that consider phrase pairs in which a target word
outside the target phrase aligns to a source word
inside the source phrase, as well as phrase pairs
with gaps (Chiang, 2005; Ittycheriah and Roukos,
2007).

Lexical translation features factor as in Eq. 3
(Tab. 2). We score all phrase pairs in a sentence
pair that pair a target phrase with the smallest
source phrase that contains all of the alignments in
the target phrase; if

⋃
k:i≤k≤j a(k) = ∅, no phrase

feature fires for tj
i .

2.2 N -gram Language Model

N -gram language models have become standard
in machine translation systems. For bigrams and
trigrams (used in this paper), the factoring is in
Eq. 4 (Tab. 2).

2.3 Target Syntax

There have been many features proposed that con-
sider source- and target-language syntax during
translation. Syntax-based MT systems often use
features on grammar rules, frequently maximum
likelihood estimates of conditional probabilities in
a probabilistic grammar, but other syntactic fea-
tures are possible. For example, Quirk et al.
(2005) use features involving phrases and source-
side dependency trees and Mi et al. (2008) use
features from a forest of parses of the source sen-
tence. There is also substantial work in the use
of target-side syntax (Galley et al., 2006; Marcu
et al., 2006; Shen et al., 2008). In addition, re-
searchers have recently added syntactic features to
phrase-based and hierarchical phrase-based mod-
els (Gimpel and Smith, 2008; Haque et al., 2009;
Chiang et al., 2008).

In this work, we focus on syntactic features of
target-side dependency trees, τt, along with the
words t. These include attachment features that
relate a word to its syntactic parent, and valence
features. They factor as in Eq. 5 (Tab. 2). Features
that consider only target-side syntax and words
without considering s can be seen as “syntactic
language model” features (Shen et al., 2008).

5Segmentation might be modeled as a hidden variable in
future work.

gtrans(s, a, t) =
Pm

j=1

P
i∈a(j) f lex (si, tj) (3)

+
P

i,j:1≤i<j≤m fphr (s
last(i,j)

first(i,j), t
j
i)

glm(t) =
P

N∈{2,3}
Pm+1

j=1 fN (tj
j−N+1) (4)

gsyn(t, τt) =
Pm

j=1 fatt(tj , j, tτt(j), τt(j))

+f val(tj , j, τ
−1
t (j)) (5)

greor (s, τs, a, t, τt) =
Pm

j=1

P
i∈a(j) fdist(i, j) (6)

gtree2(τs, a, τt) =

mX
j=1

f qg(a(j), a(τt(j)), j, τt(j)) (7)

Table 2: Factoring of global feature collections g into
f . xj

i denotes 〈xi, . . . xj〉 in sequence x = 〈x1, . . .〉.
first(i, j) = mink:i≤k≤j (min(a(k))) and last(i, j) =
maxk:i≤k≤j (max(a(k))).

2.4 Reordering

Reordering features take many forms in MT. In
phrase-based systems, reordering is accomplished
both within phrase pairs (local reordering) as
well as through distance-based distortion mod-
els (Koehn et al., 2003) and lexicalized reorder-
ing models (Koehn et al., 2007). In syntax-based
systems, reordering is typically parameterized by
grammar rules. For generality we permit these
features to “see” all structures and denote them
greor (s, τs,a, t, τt). Eq. 6 (Tab. 2) shows a factor-
ing of reordering features based on absolute posi-
tions of aligned words.

We turn next to the “backbone” model for our
decoder; the formalism and the properties of its
decoding algorithm will inspire two additional sets
of features.

3 Quasi-Synchronous Grammars

A quasi-synchronous dependency grammar
(QDG; Smith and Eisner, 2006) specifies a
conditional model p(t, τt,a | s, τs). Given a
source sentence s and its parse τs, a QDG induces
a probabilistic monolingual dependency grammar
over sentences “inspired” by the source sentence
and tree. We denote this grammar by Gs,τs ; its
(weighted) language is the set of translations of s.
Each word generated by Gs,τs is annotated with
a “sense,” which consists of zero or more words
from s. The senses imply an alignment (a) be-
tween words in t and words in s, or equivalently,
between nodes in τt and nodes in τs. In principle,
any portion of τt may align to any portion of τs,
but in practice we often make restrictions on the
alignments to simplify computation. Smith and
Eisner, for example, restricted |a(j)| for all words

221

tj to be at most one, so that each target word
aligned to at most one source word, which we also
do here.6

Which translations are possible depends heav-
ily on the configurations that the QDG permits.
Formally, for a parent-child pair 〈tτt(j), tj〉 in τt,
we consider the relationship between a(τt(j)) and
a(j), the source-side words to which tτt(j) and
tj align. If, for example, we require that, for
all j, a(τt(j)) = τs(a(j)) or a(j) = 0, and
that the root of τt must align to the root of τs

or to NULL, then strict isomorphism must hold
between τs and τt, and we have implemented a
synchronous CF dependency grammar (Alshawi
et al., 2000; Ding and Palmer, 2005). Smith and
Eisner (2006) grouped all possible configurations
into eight classes and explored the effects of per-
mitting different sets of classes in word align-
ment. (“a(τt(j)) = τs(a(j))” corresponds to
their “parent-child” configuration; see Fig. 3 in
Smith and Eisner (2006) for illustrations of the
rest.) More generally, we can define features on
tree pairs that factor into these local configura-
tions, as shown in Eq. 7 (Tab. 2).

Note that the QDG instantiates the model in
Eq. 2. Of the features discussed in §2, f lex , fatt ,
f val , and fdist can be easily incorporated into the
QDG as described while respecting the indepen-
dence assumptions implied by the configuration
features. The others (fphr , f2, and f3) are non-
local, or involve parts of the structure that, from
the QDG’s perspective, are conditionally indepen-
dent given intervening material. Note that “non-
locality” is relative to a choice of formalism; in §2
we did not commit to any formalism, so it is only
now that we can describe phrase and N -gram fea-
tures as non-local. Non-local features will present
a challenge for decoding and training (§4.3).

4 Decoding

Given a sentence s and its parse τs, at decoding
time we seek the target sentence t∗, the target tree
τ∗t , and the alignments a∗ that are most probable,
as defined in Eq. 1.7 (In §5 we will consider k-
best and all-translations variations on this prob-

6I.e., from here on, a : {1, . . . , m} → {0, . . . , n} where
0 denotes alignment to NULL.

7Arguably, we seek argmaxt p(t | s), marginalizing out
everything else. Approximate solutions have been proposed
for that problem in several settings (Blunsom and Osborne,
2008; Sun and Tsujii, 2009); we leave their combination with
our approach to future work.

lem.) As usual, the normalization constant is not
required for decoding; it suffices to solve:

〈t∗, τ∗t ,a∗〉 = argmax
〈t,τt,a〉

θ>g(s, τs,a, t, τt) (8)

For a QDG model, the decoding problem has
not been addressed before. It equates to finding the
most probable derivation under the s/τs-specific
grammar Gs,τs . We solve this by lattice parsing,
assuming that an upper bound on m (the length
of t) is known. The advantage offered by this
approach (like most other grammar-based trans-
lation approaches) is that decoding becomes dy-
namic programming (DP), a technique that is both
widely understood in NLP and for which practical,
efficient, generic techniques exist. A major advan-
tage of DP is that, with small modifications, sum-
ming over structures is also possible with “inside”
DP algorithms. We will exploit this in training
(§5). Efficient summing opens up many possibili-
ties for training θ, such as likelihood and pseudo-
likelihood, and provides principled ways to handle
hidden variables during learning.

4.1 Translation as Monolingual Parsing

We decode by performing lattice parsing on a lat-
tice encoding the set of possible translations. The
lattice is a weighted “sausage” lattice that permits
sentences up to some maximum length `; ` is de-
rived from the source sentence length. Let the
states be numbered 0 to `; states from bρ`c to `
are final states (for some ρ ∈ (0, 1)). For every
position between consecutive states j − 1 and j
(0 < j ≤ `), and for every word si in s, and
for every word t ∈ Trans(si), we instantiate an
arc annotated with t and i. The weight of such an
arc is exp{θ>f}, where f is the sum of feature
functions that fire when si translates as t in target
position j (e.g., f lex (si, t) and fdist(i, j)).

Given the lattice and Gs,τs , lattice parsing
is a straightforward generalization of standard
context-free dependency parsing DP algorithms
(Eisner, 1997). This decoder accounts for f lex ,
fatt , f val , fdist , and f qg as local features.

Figure 1 gives an example, showing a German
sentence and dependency tree from an automatic
parser, an English reference, and a lattice repre-
senting possible translations. In each bundle, the
arcs are listed in decreasing order according to
weight and for clarity only the first five are shown.
The output of the decoder consists of lattice arcs

222

können:can

können:may

sie:you

es:it

...

vorbei:by

$ können sie es vorbei leifern morgen früh ?

can you deliver it by tomorrow morning ?

can you deliver it by tomorrow morning ?

CAN YOU IT BY DELIVER TOMORROW-MORNING ?

...

...

...

können:can

liefern:deliver

sie:you

sie:it

es:it können:can

können:canliefern:deliver
sie:you

es:it

vorbei:by

morgen:tomorrow
morgen:tomorrow

liefern:deliver

es:it

vorbei:by

früh:morning

...

es:it

morgen:tomorrow

liefern:deliver

vorbei:by

früh:morning

früh:early

?:?

morgen:morning

konnten:could konnten:could

es:it

sie:you

konnten:might

...

konnten:couldn

...

sie:let

sie:you

sie:them

es:it sie:you

konnten:couldübersetzen:
translate

übersetzen:
translate
übersetzen:
translated

übersetzen:
translate
übersetzen:
translated

?:?

konnten:could

es:it

es:it

?:?

es:it

?:?

NULL:to

können:can

können:may

sie:you

es:it

...

vorbei:by

...

...

...

können:can

liefern:deliver

sie:you

sie:it

es:it können:can

können:canliefern:deliver
sie:you

es:it

vorbei:by

morgen:tomorrow
morgen:tomorrow

liefern:deliver

es:it

vorbei:by

früh:morning

früh:early

?:?

morgen:morning

...

früh:morning

morgen:tomorrow

morgen:morning

liefern:deliver

vorbei:by

$

$ können sie es vorbei leifern morgen früh ?

can you deliver it by tomorrow morning ?

$ können sie es vorbei leifern morgen früh ?

can you deliver it by tomorrow morning ?

Source: $ konnten sie es übersetzen ?

Reference: could you translate it ?

Decoder output:

Figure 1: Decoding as lattice parsing, with the highest-scoring translation denoted by black lattice arcs (others are grayed out)
and thicker blue arcs forming a dependency tree over them.

selected at each position and a dependency tree
over them.

4.2 Source-Side Coverage Features

Most MT decoders enforce a notion of “coverage”
of the source sentence during translation: all parts
of s should be aligned to some part of t (alignment
to NULL incurs an explicit cost). Phrase-based sys-
tems such as Moses (Koehn et al., 2007) explic-
itly search for the highest-scoring string in which
all source words are translated. Systems based
on synchronous grammars proceed by parsing the
source sentence with the synchronous grammar,
ensuring that every phrase and word has an ana-
logue in τt (or a deliberate choice is made by the
decoder to translate it to NULL). In such sys-
tems, we do not need to use features to implement
source-side coverage, as it is assumed as a hard
constraint always respected by the decoder.

Our QDG decoder has no way to enforce cov-
erage; it does not track any kind of state in τs

apart from a single recently aligned word. This
is a problem with other direct translation models,
such as IBM model 1 used as a direct model rather
than a channel model (Brown et al., 1993). This
sacrifice is the result of our choice to use a condi-
tional model (§2).

The solution is to introduce a set of coverage
features gcov (a). Here, these include:

• A counter for the number of times each source
word is covered: fscov (a) =

∑n
i=1 |a−1(i)|.

• Features that fire once when a source word is

covered the zth time (z ∈ {2, 3, 4}) and fire
again all subsequent times it is covered; these
are denoted f2nd, f3rd, and f4th.

• A counter of uncovered source words:
fsunc(a) =

∑n
i=1 δ(|a−1(i)|, 0).

Of these, only fscov is local.

4.3 Non-Local Features

The lattice QDG parsing decoder incorporates
many of the features we have discussed, but not
all of them. Phrase lexicon features fphr , lan-
guage model features fN for N > 1, and most
coverage features are non-local with respect to our
QDG. Recently Chiang (2007) introduced “cube
pruning” as an approximate decoding method that
extends a DP decoder with the ability to incorpo-
rate features that break the Markovian indepen-
dence assumptions DP exploits. Techniques like
cube pruning can be used to include the non-local
features in our decoder.8

5 Training

Training requires us to learn values for the param-
eters θ in Eq. 2. Given T training examples of the
form 〈t(i), τ

(i)
t , s(i), τ

(i)
s 〉, for i = 1, ..., T , max-

imum likelihood estimation for this model con-
sists of solving Eq. 9 (Tab. 3).9 Note that the

8A full discussion is omitted for space, but in fact we use
“cube decoding,” a slightly less approximate, slightly more
expensive method that is more closely related to the approxi-
mate inference methods we use for training, discussed in §5.

9In practice, we regularize by including a term −c‖θ‖2
2.

223

LL(θ) =

TX
i=1

log p(t(i), τ
(i)
t | s(i), τ (i)

s) =

TX
i=1

log

P
a exp{θ>g(s(i), τ

(i)
s , a, t(i), τ

(i)
t)}P

t,τt,a exp{θ>g(s(i), τ
(i)
s , a, t, τt)}

=

TX
i=1

log
“numerator”

“denominator”
(9)

PL(θ) =

TX
i=1

log

„X
a

p(t(i), a | τ
(i)
t , s(i), τ (i)

s)

«
+

TX
i=1

log

„X
a

p(τ
(i)
t , a | t(i), s(i), τ (i)

s)

«
(10)

“denominator” of
term 1 in Eq. 10 =

nX
i=0

X
t′∈Trans(si)

S(τ−1
t (0), i, t′)× exp

n
θ>

`
f lex (si, t

′) + fatt($, 0, t′, k) + f qg(0, i, 0, k)
´o

(11)

S(j, i, t) =
Y

k∈τ−1
t (j)

nX
i′=0

X
t′∈Trans(si′)

S(k, i′, t′)× exp

θ>

„
f lex (si′ , t

′) + fatt(t, j, t
′, k)+

f val(t, j, τ
−1
t (j)) + f qg(i, i

′, j, k)

«ff
(12)

S(j, i, t) = exp
n

θ>
`
f val(t, j, τ

−1
t (j))

´o
if τ−1

t (j) = ∅ (13)

Table 3: Eq. 9: Log-likelihood. Eq. 10: Pseudolikelihood. In both cases we maximize w.r.t. θ. Eqs. 11–13: Recursive DP
equations for summing over t and a.

alignments are treated as a hidden variable to be
marginalized out.10 Optimization problems of this
form are by now widely known in NLP (Koo and
Collins, 2005), and have recently been used for
machine translation as well (Blunsom et al., 2008).
Such problems are typically solved using varia-
tions of gradient ascent; in our experiments, we
will use an online method called stochastic gra-
dient ascent (SGA). This requires us to calculate
the function’s gradient (vector of first derivatives)
with respect to θ.11

Computing the numerator in Eq. 9 involves
summing over all possible alignments; with QDG
and a hard bound of 1 on |a(j)| for all j, a fast
“inside” DP solution is known (Smith and Eisner,
2006; Wang et al., 2007). It runs in O(mn2) time
and O(mn) space.

Computing the denominator in Eq. 9 requires
summing over all word sequences and depen-
dency trees for the target language sentence and
all word alignments between the sentences. With
a maximum length imposed, this is tractable us-
ing the “inside” version of the maximizing DP al-
gorithm of Sec. 4, but it is prohibitively expen-
sive. We therefore optimize pseudo-likelihood in-
stead, making the following approximation (Be-

10Alignments could be supplied by automatic word align-
ment algorithms. We chose to leave them hidden so that we
could make the best use of our parsed training data when con-
figuration constraints are imposed, since it is not always pos-
sible to reconcile automatic word alignments with automatic
parses.

11When the function’s value is computed by “inside” DP,
the corresponding “outside” algorithm can be used to obtain
the gradient. Because outside algorithms can be automati-
cally derived from inside ones, we discuss only inside algo-
rithms in this paper; see Eisner et al. (2005).

sag, 1975):

p(t, τt | s, τs) ≈ p(t | τt, s, τs) × p(τt | t, s, τs)

Plugging this into Eq. 9, we arrive at Eq. 10
(Tab. 3). The two parenthesized terms in Eq. 10
each have their own numerators and denomina-
tors (not shown). The numerators are identical to
each other and to that in Eq. 9. The denominators
are much more manageable than in Eq. 9, never
requiring summation over more than two struc-
tures at a time. We must sum over target word se-
quences and word alignments (with fixed τt), and
separately over target trees and word alignments
(with fixed t).

5.1 Summing over t and a

The summation over target word sequences and
alignments given fixed τt bears a resemblance to
the inside algorithm, except that the tree structure
is fixed (Pereira and Schabes, 1992). Let S(j, i, t)
denote the sum of all translations rooted at posi-
tion j in τt such that a(j) = i and tj = t.

Tab. 3 gives the equations for this DP: Eq. 11
is the quantity of interest, Eq. 12 is the recursion,
and Eq. 13 shows the base cases for leaves of τt.

Letting q = max0≤i≤n |Trans(si)|, this algo-
rithm runs in O(mn2q2) time and O(mnq) space.
For efficiency we place a hard upper bound on q
during training (details in §6).

5.2 Summing over τt and a

For the summation over dependency trees and
alignments given fixed t, required for p(τt |
t, s, τs), we perform “inside” lattice parsing with
Gs,τs . The technique is the summing variant of
the decoding method in §4, except for each state j,

224

the sausage lattice only includes arcs from j−1 to
j that are labeled with the known target word tj .
If a is the number of arcs in the lattice, which is
O(mn), this algorithm runs in O(a3) time and re-
quires O(a2) space. Because we use a hard upper
bound on |Trans(s)| for all s ∈ Σ, this summation
is much faster in practice than the one over words
and alignments.

5.3 Handling Non-Local Features

So far, all of our algorithms have exploited DP,
disallowing any non-local features (e.g., fphr , fN

for N > 1, f zth, fsunc). We recently proposed
“cube summing,” an approximate technique that
permits the use of non-local features for inside DP
algorithms (Gimpel and Smith, 2009). Cube sum-
ming is based on a slightly less greedy variation of
cube pruning (Chiang, 2007) that maintains k-best
lists of derivations for each DP chart item. Cube
summing augments the k-best list with a residual
term that sums over remaining structures not in
the k-best list, albeit without their non-local fea-
tures. Using the machinery of cube summing, it
is straightforward to include the desired non-local
features in the summations required for pseudo-
likelihood, as well as to compute their approxi-
mate gradients.

Our approach permits an alternative to mini-
mum error-rate training (MERT; Och, 2003); it is
discriminative but handles latent structure and reg-
ularization in more principled ways. The pseudo-
likelihood calculations for a sentence pair, taken
together, are faster than (k-best) decoding, making
SGA’s inner loop faster than MERT’s inner loop.

6 Experiments

Our decoding framework allows us to perform
many experiments with the same feature rep-
resentation and inference algorithms, includ-
ing combining and comparing phrase-based and
syntax-based features and examining how isomor-
phism constraints of synchronous formalisms af-
fect translation output.

6.1 Data and Evaluation

We use the German-English portion of the Ba-
sic Travel Expression Corpus (BTEC). The cor-
pus has approximately 100K sentence pairs. We
filter sentences of length more than 15 words,
which only removes 6% of the data. We end up
with a training set of 82,299 sentences, a develop-

ment set of 934 sentences, and a test set of 500
sentences. We evaluate translation output using
case-insensitive BLEU (Papineni et al., 2001), as
provided by NIST, and METEOR (Banerjee and
Lavie, 2005), version 0.6, with Porter stemming
and WordNet synonym matching.

6.2 Features

Our base system uses features as discussed
in §2. To obtain lexical translation features
gtrans(s,a, t), we use the Moses pipeline (Koehn
et al., 2007). We perform word alignment us-
ing GIZA++ (Och and Ney, 2003), symmetrize
the alignments using the “grow-diag-final-and”
heuristic, and extract phrases up to length 3. We
define f lex by the lexical probabilities p(t | s) and
p(s | t) estimated from the symmetrized align-
ments. After discarding phrase pairs with only
one target-side word (since we only allow a tar-
get word to align to at most one source word), we
define fphr by 8 features: {2, 3} target words ×
phrase conditional and “lexical smoothing” prob-
abilities × two conditional directions.

Bigram and trigam language model features, f2

and f3, are estimated using the SRI toolkit (Stol-
cke, 2002) with modified Kneser-Ney smoothing
(Chen and Goodman, 1998).

For our target-language syntactic features gsyn ,
we use features similar to lexicalized CFG events
(Collins, 1999), specifically following the de-
pendency model of Klein and Manning (2004).
These include probabilities associated with in-
dividual attachments (fatt) and child-generation
valence probabilities (f val). These probabilities
are estimated on the training corpus parsed using
the Stanford factored parser (Klein and Manning,
2003). The same probabilities are also included
using 50 hard word classes derived from the paral-
lel corpus using the GIZA++ mkcls utility (Och
and Ney, 2003). In total, there are 7 lexical and 7
word-class syntax features.

For reordering, we use a single absolute distor-
tion feature fdist(i, j) that returns |i−j| whenever
a(j) = i and i, j > 0. (Unlike the other feature
functions, which returned probabilities, this fea-
ture function returns a nonnegative integer.)

The tree-to-tree syntactic features gtree2 in our
model are binary features f qg that fire for particu-
lar QG configurations. We use one feature for each
of the configurations in (Smith and Eisner, 2006),
adding 7 additional features that score configura-

225

Phrase Syntactic Features:
features: +fatt ∪ f val +f qg

(base) (target) (tree-to-tree)
(base) 0.3727 0.4458 0.4424
+fphr 0.4682 0.4971 0.5142

Table 4: Feature set comparison (BLEU).

tions involving root words and NULL-alignments
more finely. There are 14 features in this category.

Coverage features gcov are as described in §4.2.
In all, 46 feature weights are learned.

6.3 Experimental Procedure

Our model permits training the system on the full
set of parallel data, but we instead use the parallel
data to estimate feature functions and learn θ on
the development set.12 We trained using three it-
erations of SGA over the development data with a
batch size of 1 and a fixed step size of 0.01. We
used `2 regularization with a fixed, untuned coef-
ficient of 0.1. Cube summing used a 10-best list
for training and a 7-best list for decoding unless
otherwise specified.

To obtain the translation lexicon (Trans) we
first included the top three target words t for each
s using p(s | t) × p(t | s) to score target words.
For any training sentence 〈s, t〉 and tj for which
tj 6∈ ⋃n

i=1 Trans(si), we added tj to Trans(si)
for i = argmaxi′∈I p(si′ |tj) × p(tj |si′), where
I = {i : 0 ≤ i ≤ n ∧ |Trans(si)| < qi}.
We used q0 = 10 and q>0 = 5, restricting
|Trans(NULL)| ≤ 10 and |Trans(s)| ≤ 5 for any
s ∈ Σ. This made 191 of the development sen-
tences unreachable by the model, leaving 743 sen-
tences for learning θ.

During decoding, we generated lattices with all
t ∈ Trans(si) for 0 ≤ i ≤ n, for every position.
We used ρ = 0.9, causing states within 90% of the
source sentence length to be final states. Between
each pair of consecutive states, we pruned edges
that fell outside a beam of 70% of the sum of edge
weights (see §4.1; edge weights use f lex , fdist ,
and fscov) of all edges between those two states.

6.4 Feature Set Comparison

Our first set of experiments compares feature sets
commonly used in phrase- and syntax-based trans-
lation. In particular, we compare the effects of
combining phrase features and syntactic features.
The base model contains f lex , glm , greor , and

12We made this choice both for similarity to standard MT
systems and a more rapid experiment cycle.

gcov . The results are shown in Table 4. The sec-
ond row contains scores when adding in the eight
fphr features. The second column shows scores
when adding the 14 target syntax features (fatt

and f val), and the third column adds to them the
14 additional tree-to-tree features (f qg). We find
large gains in BLEU by adding more features, and
find that gains obtained through phrase features
and syntactic features are partially additive, sug-
gesting that these feature sets are making comple-
mentary contributions to translation quality.

6.5 Varying k During Decoding

For models without syntactic features, we con-
strained the decoder to produce dependency trees
in which every word’s parent is immediately to its
right and ignored syntactic features while scoring
structures. This causes decoding to proceed left-
to-right in the lattice, the way phrase-based de-
coders operate. Since these models do not search
over trees, they are substantially faster during de-
coding than those that use syntactic features and
do not require any pruning of the lattice. There-
fore, we explored varying the value of k used dur-
ing k-best cube decoding; results are shown in
Fig. 2. Scores improve when we increase k up
to 10, but not much beyond, and there is still a
substantial gap (2.5 BLEU) between using phrase
features with k = 20 and using all features with
k = 5. Models without syntax perform poorly
when using a very small k, due to their reliance on
non-local language model and phrase features. By
contrast, models with syntactic features, which are
local in our decoder, perform relatively well even
with k = 1.

6.6 QG Configuration Comparison

We next compare different constraints on isomor-
phism between the source and target dependency

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0 5 10 15 20
Value of k for Decoding

B
L

E
U

Phrase + Syntactic
Phrase
Syntactic
Neither

Figure 2: Comparison of size of k-best list for cube decoding
with various feature sets.

226

QDG Configurations BLEU METEOR
synchronous 0.4008 0.6949
+ nulls, root-any 0.4108 0.6931
+ child-parent, same node 0.4337 0.6815
+ sibling 0.4881 0.7216
+ grandparent/child 0.5015 0.7365
+ c-command 0.5156 0.7441
+ other 0.5142 0.7472

Table 5: QG configuration comparison. The name of each
configuration, following Smith and Eisner (2006), refers to
the relationship between a(τt(j)) and a(j) in τs.

trees. To do this, we impose harsh penalties on
some QDG configurations (§3) by fixing their fea-
ture weights to −1000. Hence they are permit-
ted only when absolutely necessary in training
and rarely in decoding.13 Each model uses all
phrase and syntactic features; they differ only in
the sets of configurations which have fixed nega-
tive weights.

Tab. 5 shows experimental results. The
base “synchronous” model permits parent-child
(a(τt(j)) = τs(a(j))), any configuration where
a(j) = 0, including both words being linked to
NULL, and requires the root word in τt to be linked
to the root word in τs or to NULL(5 of our 14
configurations). The second row allows any con-
figuration involving NULL, including those where
tj aligns to a non-NULL word in s and its par-
ent aligns to NULL, and allows the root in τt to
be linked to any word in τs. Each subsequent
row adds additional configurations (i.e., trains its
θ rather than fixing it to −1000). In general, we
see large improvements as we permit more con-
figurations, and the largest jump occurs when we
add the “sibling” configuration (τs(a(τt(j))) =
τs(a(j))). The BLEU score does not increase,
however, when we permit all configurations in the
final row of the table, and the METEOR score in-
creases only slightly. While allowing certain cate-
gories of non-isomorphism clearly seems helpful,
permitting arbitrary violations does not appear to
be necessary for this dataset.

6.7 Discussion

We note that these results are not state-of-the-
art on this dataset (on this task, Moses/MERT
achieves 0.6838 BLEU and 0.8523 METEOR with
maximum phrase length 3).14 Our aim has been to

13In fact, the strictest “synchronous” model used the
almost-forbidden configurations in 2% of test sentences; this
behavior disappears as configurations are legalized.

14We believe one cause for this performance gap is the gen-
eration of the lattice and plan to address this in future work
by allowing the phrase table to inform lattice generation.

illustrate how a single model can provide a con-
trolled experimental framework for comparisons
of features, of inference methods, and of con-
straints. Our findings show that phrase features
and dependency syntax produce complementary
improvements to translation quality, that tree-to-
tree configurations (a new feature in MT) are help-
ful for translation, and that substantial gains can
be obtained by permitting certain types of non-
isomorphism. We have validated cube summing
and decoding as practical methods for approxi-
mate inference.

Our framework permits exploration of alter-
native objectives, alternative approximate infer-
ence techniques, additional hidden variables (e.g.,
Moses’ phrase segmentation variable), and, of
course, additional feature representations. The
system is publicly available at www.ark.cs.
cmu.edu/Quipu.

7 Conclusion

We presented feature-rich MT using a princi-
pled probabilistic framework that separates fea-
tures from inference. Our novel decoder is based
on efficient DP-based QG lattice parsing extended
to handle “non-local” features using generic tech-
niques that also support efficient parameter esti-
mation. Controlled experiments permitted with
this system show interesting trends in the use of
syntactic features and constraints.

Acknowledgments

We thank three anonymous EMNLP reviewers,
David Smith, and Stephan Vogel for helpful com-
ments and feedback that improved this paper. This
research was supported by NSF IIS-0836431 and
IIS-0844507, a grant from Google, and computa-
tional resources provided by Yahoo.

References
H. Alshawi, S. Bangalore, and S. Douglas. 2000.

Learning dependency translation modles as colec-
tions of finite-state head transducers. Computa-
tional Linguistics, 26(1):45–60.

S. Banerjee and A. Lavie. 2005. METEOR: An au-
tomatic metric for MT evaluation with improved
correlation with human judgments. In Proc. of
ACL Workshop on Intrinsic and Extrinsic Evalua-
tion Measures for MT and/or Summarization.

J. E. Besag. 1975. Statistical analysis of non-lattice
data. The Statistician, 24:179–195.

227

P. Blunsom and M. Osborne. 2008. Probabilistic infer-
ence for machine translation. In Proc. of EMNLP.

P. Blunsom, T. Cohn, and M. Osborne. 2008. A dis-
criminative latent variable model for statistical ma-
chine translation. In Proc. of ACL.

P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and
R. L. Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimation. Compu-
tational Linguistics, 19(2):263–311.

S. Chen and J. Goodman. 1998. An empirical study of
smoothing techniques for language modeling. Tech-
nical report 10-98, Harvard University.

D. Chiang, Y. Marton, and P. Resnik. 2008. On-
line large-margin training of syntactic and structural
translation features. In Proc. of EMNLP.

D. Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proc. of ACL.

D. Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, U. Penn.

D. Das and N. A. Smith. 2009. Paraphrase identifica-
tion as probabilistic quasi-synchronous recognition.
In Proc. of ACL-IJCNLP.

Y. Ding and M. Palmer. 2005. Machine translation us-
ing probabilistic synchronous dependency insertion
grammar. In Proc. of ACL.

J. Eisner, E. Goldlust, and N. A. Smith. 2005. Com-
piling Comp Ling: Practical weighted dynamic pro-
gramming and the Dyna language. In Proc. of HLT-
EMNLP.

J. Eisner. 1997. Bilexical grammars and a cubic-time
probabilistic parser. In Proc. of IWPT.

M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe,
W. Wang, and I. Thayer. 2006. Scalable infer-
ence and training of context-rich syntactic transla-
tion models. In Proc. of COLING-ACL.

K. Gimpel and N. A. Smith. 2008. Rich source-
side context for statistical machine translation. In
Proc. of ACL-2008 Workshop on Statistical Machine
Translation.

K. Gimpel and N. A. Smith. 2009. Cube summing,
approximate inference with non-local features, and
dynamic programming without semirings. In Proc.
of EACL.

R. Haque, S. K. Naskar, Y. Ma, and A. Way. 2009.
Using supertags as source language context in SMT.
In Proc. of EAMT.

L. Huang and D. Chiang. 2007. Forest rescoring:
Faster decoding with integrated language models. In
Proc. of ACL.

A. Ittycheriah and S. Roukos. 2007. Direct translation
model 2. In Proc. of HLT-NAACL.

D. Klein and C. D. Manning. 2003. Fast exact in-
ference with a factored model for natural language
parsing. In Advances in NIPS 15.

D. Klein and C. D. Manning. 2004. Corpus-based
induction of syntactic structure: Models of depen-
dency and constituency. In Proc. of ACL.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical
phrase-based translation. In Proc. of HLT-NAACL.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: Open source toolkit
for statistical machine translation. In Proc. of ACL
(demo session).

T. Koo and M. Collins. 2005. Hidden-variable models
for discriminative reranking. In Proc. of EMNLP.

P. Liang, A. Bouchard-Côté, D. Klein, and B. Taskar.
2006. An end-to-end discriminative approach to ma-
chine translation. In Proc. of COLING-ACL.

A. Lopez. 2009. Translation as weighted deduction.
In Proc. of EACL.

D. Marcu, W. Wang, A. Echihabi, and K. Knight. 2006.
Statistical machine translation with syntactified tar-
get language phrases. In Proc. of EMNLP.

H. Mi, L. Huang, and Q. Liu. 2008. Forest-based
translation. In Proc. of ACL.

F. J. Och and H. Ney. 2002. Discriminative train-
ing and maximum entropy models for statistical ma-
chine translation. In Proc. of ACL.

F. J. Och and H. Ney. 2003. A systematic comparison
of various statistical alignment models. Computa-
tional Linguistics, 29(1).

F. J. Och. 2003. Minimum error rate training for sta-
tistical machine translation. In Proc. of ACL.

K. Papineni, S. Roukos, and T. Ward. 1997. Feature-
based language understanding. In EUROSPEECH.

K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2001.
BLEU: a method for automatic evaluation of ma-
chine translation. In Proc. of ACL.

F. C. N. Pereira and Y. Schabes. 1992. Inside-outside
reestimation from partially bracketed corpora. In
Proc. of ACL.

C. Quirk, A. Menezes, and C. Cherry. 2005. De-
pendency treelet translation: Syntactically informed
phrasal SMT. In Proc. of ACL.

L. Shen, J. Xu, and R. Weischedel. 2008. A new
string-to-dependency machine translation algorithm
with a target dependency language model. In Proc.
of ACL.

D. A. Smith and J. Eisner. 2006. Quasi-synchronous
grammars: Alignment by soft projection of syntactic
dependencies. In Proc. of HLT-NAACL Workshop on
Statistical Machine Translation.

D. A. Smith and J. Eisner. 2009. Parser adaptation
and projection with quasi-synchronous features. In
Proc. of EMNLP.

A. Stolcke. 2002. SRILM—an extensible language
modeling toolkit. In Proc. of ICSLP.

X. Sun and J. Tsujii. 2009. Sequential labeling with
latent variables: An exact inference algorithm and
its efficient approximation. In Proc. of EACL.

M. Wang, N. A. Smith, and T. Mitamura. 2007. What
is the Jeopardy model? a quasi-synchronous gram-
mar for QA. In Proc. of EMNLP-CoNLL.

K. Yamada and K. Knight. 2001. A syntax-based sta-
tistical translation model. In Proc. of ACL.

228

