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A b s t r a c t  

In this paper, we report on an effort to pro- 
vide a general-purpose spoken language gener- 
ation tool for Concept-to-Speech (CTS) appli- 
cations by extending a widely used text gener- 
ation package, FUF/SURGE, with an intona- 
tion generation component. As a first step, we 
applied machine learning and statistical models 
to learn intonation rules based on the semantic 
and syntactic information typically represented 
in FUF/SURGE at the sentence level. The re- 
sults of this study are a set of intonation rules 
learned automatically which can be directly im- 
plemented in our intonation generation compo- 
nent. Through 5-fold cross-validation, we show 
that the learned rules achieve around 90% accu- 
racy for break index, boundary tone and phrase 
accent and 80% accuracy for pitch accent. Our 
study is unique in its use of features produced by 
language generation to control intonation. The 
methodology adopted here can be employed di- 
rectly when more discourse/pragmatic informa- 
tion is to be considered in the future. 

1 M o t i v a t i o n  

Speech is rapidly becoming a viable medium for 
interaction with real-world applications. Spo- 
ken language interfaces to on-line informa- 
tion, such as plane or train schedules, through 
display-less systems, such as telephone inter- 
faces, are well under development. Speech in- 
terfaces are also widely used in applications 
where eyes-free and hands-free communication 
is critical, such as car navigation. Natural lan- 
guage generation (NLG) can enhance the abil- 
ity of such systems to communicate naturally 
and effectively by allowing the system to tailor, 
reorganize, or summarize lengthy database re- 
sponses. For example, in our work on a mul- 
timedia generation system where speech and 
graphics generation techniques are used to au- 

tomatically summarize patient's pre-, during, 
and post-, operation status to different care- 
givers (Dalal et al., 1996), records relevant to 
patient status can easily number in the thou- 
sands. Through content planning, sentence 
planning and lexical selection, ,the NLG com- 
ponent is able to provide a concise, yet infor- 
lnative, briefing automatically through spoken 
and written language coordinated with graph- 
ics (McKeown et al., 1997) . 

Integrating language generation with speech 
synthesis within a Concept-to-Speech (CTS) 
system not only brings the individual benefits 
of each; as an integrated system, CTS can take 
advantage of the availability of rich structural 
intbrmation constructed by the underlying NLG 
component to improve the quality of synthe- 
sized speech. Together, they have the potential 
of generating better speech than Text-to-Speech 
(TTS) systems. In this paper, we present a se- 
ries of experiments that use machine learning to 
identify correlation between intonation and fea- 
tures produced by a robust language generation 
tool, the FUF/SURGE system (Elhadad, 1993; 
Robin, 1994). The ultimate goal of this study 
is to provide a spoken language generation tool 
based on FUF/SURGE, extended with an in- 
tonation generation component to facilitate the 
development of new CTS applications. 

2 R e l a t e d  T h e o r i e s  

Two elements form the theoretical back- 
ground of this work: the grammar used in 
FUF/SURGE and Pierrehumbert 's intonation 
theory (Pierrehumbert, 1980). Our study 
aims at identifying the relations between the 
semantic/syntactic information produced by 
FUF/SURGE and four intonational features of 
Pierrehumbert: pitch accent, phrase accent, 
boundary tone and intermediate/intonational 
phrase boundaries. 
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The F U F / S U R G E  grammar is primarily 
based on systemic grammar  (Halliday, 1985). 
In systemic grammar,  the process (ultimately 
realized as the verb) is the core of a clause's 
semantic structure. Obligatory semantic roles, 
called participants, are associated with each 
process. Usually, participants convey who/what  
is involved in the process. The process also 
has non-obligatory peripheral semantic roles 
called circumstances. Circumstances answer 
questions such as when/where/how/why.  In 
FUF/SURGE,  this semantic description is uni- 
fled with a syntactic grammar to generate a syn- 
tactic description. All semantic, syntactic and 
lexical information, which are produced during 
the generation process, are kept in a final Func- 
tional Description (FD), before linearizing the 
syntactic structure into a linear string. The fea- 
tures used in our intonation model are mainly 
extracted from this final FD. 

The intonation theory proposed in (Pierre- 
humbert ,  1980) is used to describe the intona- 
tion structure. Based on her intonation gram- 
mar, the F0 pitch contour is described by a set 
of intonational features. The tune of a sen- 
tence is formed by one or more intonational 
phrases. Each intonational phrase consists of 
one or more intermediate phrases followed by 
a boundary tone. A well-formed intermediate 
phrase has one or more pitch accents followed 
by a phrase accent. Based on this theory, there 
are four features which are critical in deciding 
the F0 contour: the placement of intonational or 
intermediate phrase boundaries (break index 4 
and 3 in ToBI annotation convention (Beckman 
and Hirschberg, 1994)), the tonal type at these 
boundaries (the phrase accent and the bound- 
ary tone), and the F0 local maximum or mini- 
mum (the pitch accent). 

3 R e l a t e d  W o r k  

Previous work on intonation modeling primar- 
ily focused on TTS applications. For exam- 
ple, in (Bachenko and Fitzpatrick, 1990), a 
set of hand-crafted rules are used to determine 
discourse neutral prosodic phrasing, achieving 
an accuracy of approximately 85%. Recently, 
researchers improved on manual development 
of rules by acquiring prosodic phrasing rules 
with machine learning tools. In (Wang and 
Hirschberg, 1992), Classification And Regres- 
sion Tree (CART) (Brieman et al., 1984) was 
used to produce a decision tree to predict the 

location of prosodic phrase boundaries, yielding 
a high accuracy, around 90%. Similar methods 
were also employed in predicting pitch accent 
for TTS in (Hirschberg, 1993). Hirschberg ex- 
ploited various features derived from text analy- 
sis, such as part of speech tags, information sta- 
tus (i.g. given/new, contrast), and cue phrases; 
both hand-crafted and automatically learned 
rules achieved 80-98% success depending on the 
type of speech corpus. Until recently, there has 
been only limited effort on modeling intonation 
for CTS (Davis and Hirschberg, 1988; Young 
and Fallside, 1979; Prevost, 1995). Many CTS 
systems were simplified as text generation fol- 
lowed by TTS. Others that  do integrate genera- 
tion make use of the structural information pro- 
vided by the NLG component  (Prevost, 1995). 
However, most previous CTS systems are not 
based on large scale general NLG systems. 

4 M o d e l i n g  I n t o n a t i o n  

While previous research provides some correla- 
tion between linguistic features and intonation, 
more knowledge is needed. The NLG compo- 
nent provides very rich syntactic and semantic 
information which has not been explored before 
for intonation modeling. This includes, for ex- 
ample, the semantic role played by each seman- 
tic constituent. In developing a CTS, it is worth 
taking advantage of these features. 

Previous TTS research results cannot be im- 
plemented directly in our intonation generation 
component.  Many features studied in TTS are 
not provided by FUF/SURGE.  For example, 
the part-of-speech (POS) tags in F U F / S U R G E  
are different from those used in TTS.  Further- 
more, it make little sense to apply part  of speech 
tagging to generated text instead of using the 
accurate POS provided in a NLG system. Fi- 
nally, NLG provides information that  is difficult 
to accurately obtain from full text (e.g., com- 
plete syntactic parses). 

These motivating factors led us to carry out a 
s tudy consisting of a series of three experiments 
designed to answer the following questions: 

• How do the different features produced 
by F U F / S U R G E  contribute to determin- 
ing intonation? 

• What  is the minimal number of features 
needed to achieve the best accuracy for 
each of the four intonation features? 

• Does intra-sentential context improve ac- 
curacy? 
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((cat clause) 
(process ((type ascriptive) 

(mode equative))) 
(participant 

((identified ((lex "John") 
(cat proper))) 

(identifier ((lex "teacher") 
(cat common)))))) 

Figure 1: Semantic description 

4.1 Too l s  a n d  D a t a  

In order to model intonational features au- 
tomatically, features from FUF/SURGE and 
a speech corpus are provided as input to a 
machine learning tool called RIPPER (Co- 
hen, 1995), which produces a set of classifi- 
cation rules based on the training examples. 
The performance of RIPPER is comparable to 
benchmark decision tree induction systems such 
as CART and C4.5. We also employ a sta- 
tistical method based on a gencralized linear 
model (Chambers and Hastie, 1992) provided 
in the S package to select salient predictors for 
input to RIPPER. 

Figure 1 shows the input Functional Descrip- 
tion(FD) for the sentence "John is the teacher". 
After this FD is unified with the syntactic gram- 
mar, SURGE, the resulting FD includes hun- 
dreds of semantic, syntactic and lexical features. 
We extract 13 features shown in Table 1 which 
are more closely related to intonation as indi- 
cated by previous research. We have chosen 
features which are applicable to most words to 
avoid unspecified values in the training data. 
I%r example, "tense" is not extracted simply 
because it can be only applied to verbs. Table 1 
includes descriptions for each of the features 
used. These are dividcd into semantic, syntac- 
tic, and semi-syntactic/semantic features which 
describe the syntactic properties of semantic 
constituents. Finally, word position (NO.) and 
the actual word (LEX) are extracted directly 
from the linearized string. 

About 400 isolated sentences with wide cov- 
erage of various linguistic phenomena were cre-. 
ated as test cases for FUF/SURGE when it was 
developed. We asked two male native speakers 
to read 258 sentences, each sentence may be re- 
peated several times. The speech was recorded 
on a DAT in an office. The most fluent version 
of each sentence was kept. The resulting speech 
was transcribed by one author based on ToBI 
with break index, pitch accent, phrase accent 

and boundary tone labeled, using the XWAVE 
speech analysis tool. The 13 features described 
in Table 1 as well as one intonation feature are 
used as predictors for the response intonation 
feature. The final corpus contains 258 sentences 
for each speaker, including 119 noun phrases, 37 
of which have embeded sentences, and 139 sen- 
tences. The average sentence/phrase length is 
5.43 words. The baseline performance achieved 
by always guessing the majority class is 67.09% 
for break index, 54.10% for pitch accent, 66.23% 
for phrase accent and 79.37% for boundary tone 
t)ased on the speech corpus from one speaker. 
The relatively high baseline for boundary tone 
is because for most of the cases, there is only 
one L% boundary tone at the end of each sen- 
tence in our training data. Speaker effect on in- 
tonation is briefly studied in experiment 2. All 
other experiments used data from one speaker 
with the above baselines. 

4.2 E x p e r i m e n t s  
4.2.1 I n t e r e s t i n g  C o m b i n a t i o n s  
Our first set of experiments was designed 
as an initial test of how the features from 
FUF/SURGE contribute to intonation. We fo- 
cused on how the newly available semantic fea- 
tures affect intonation. We were also interested 
in finding out whether the 13 selected features 
are redundant in making intonation decisions. 

We started from a simple model which in- 
cludes only 3 factors, the type of semantic con- 
stituent boundary before (BB) and after (BA) 
the word, and part of speech (POS). The seman- 
tic constituent boundary can take o11 6 different 
values; for example, it can be a clause boundary, 
a boundary associated with a primary semantic 
role (e.g., a participant), with a secondary se- 
mantic role (e.g., a type of modifier), among 
others. Our purpose in this experiment was 
to test how well the model can do with a lim- 
ited number of parameters. Applying RIPPER 
to the simple model yielded rules that signifi- 
cantly improved performance over the baseline 
models. For example, the accuracy of the rules 
learned for break index increases to 87.37% from 
67.09%; the average improvement on all 4 into- 
national features is 19.33%. 

Next, we ran two additional tests, one with 
additional syntactic features and another with 
additional semantic features. The results show 
that the two new models behave similarly on all 
intonational features; they both achieve some 
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Category Label 
BB 

Semantic 

Syntactic 

Semi- 

semanticgz 

syntactic 

Misc. 

B A  

SEMFUN 

SP 

GSP 

POS 
GPOS 

SYNFUN 

SPPOS 

'SPGPOS 

SPSYNFUN 

NO. 
LEX 

Description 
The  semantic consti tuent boundary before the 
word. 
The semantic consti tuent boundary after the 
word. 
The semantic feature of the word. 

The semantic role played by the immediate 
parental  semantic consti tuent of the word. 
The generic semantic role played by the imme- 
diate parental  semantic consti tuent of the word. 
The par t  of speech of the word 
The generic par t  of speech of the word 

The syntactic function of the word 

The part  of speech of the immediate parental  
semantic consti tuent of the word. 
The generic par t  of speech of the immediate 
parental  semantic consti tuent of the word. 
The syntactic function of the immediate parental  
semantic consti tuent of the word. 
The position of the word in a sentence 

• The lexical form of the word 

Examples 
part icipant  boundaries or circumstance 
boundaries etc. 
part icipant  boundaries or circumstance 
boundaries etc. 
The semantic feature of "did" in "I did 
know him." is "insistence". 
The SP of "teacher" in "John is the 
teacher" is "identifier". 
The GSP of "teacher" in "John is the 
teacher" is "participant" 
common noun, proper noun etc. 
noun is the corresponding GPOS of both 
common noun and proper noun. 
The SYNFUN of "teacher" in "the teacher" 
is "head". 
The SPPOS of "teacher"" {s "common 
noun". 
The SPGPOS of "teacher" in "the teacher" 
is "noun phrase". 
The SPSYNFUN of "te~cher" ill "John is 
the teacher" is "subject complement. 
1, 2, 3, 4 etc. 
"John", "is", "the", "teacher"etc. 

Table 1: Features extracted from FUF and SURGE 

improvements over the simple model, and the 
new semantic model (containing the features 
SEMFUN, SP and GSP in addition to BB, BA 
and POS) also achieves some improvements over 
the syntactic model (containing GPOS, SYN- 
FUN, SPPOS, SPGPOS and SPSYNFUN in ad- 
dition to BB, BA and POS), but none of these 
improvements are statistically significant using 
binomial test. 

Finally, we ran an experiment using all 13 
features, plus one intonational feature. The per- 
formance achieved by using all predictors was a 
little worse than the semantic model but a little 
better than the simple model. Again none of 
these changes are statistically significant. 

This experiment suggests that there is some 
redundancy among features. All the more com- 
plicated models failed to achieve significant im- 
provements over the simple model which only 
has three features. Thus, overall, we can con- 
clude from this first set of experiments that 
FUF/SURGE features do improve performance 
over the baseline, but they do not indicate con- 
clusively which features are best for each of the 
4 intonation models. 

4.2.2 Sal ient  P r e d i c t o r s  

Although RIPPER has the ability to select pre- 
dictors for its rules which increase accuracy, it's 
not clear whether all the features in the RIP- 
PER rules are necessary. Our first experiment 

seems to suggest that irrelevant features could 
damage the performance of RIPPER because 
the model with all features generally performs 
worse than the semantic model. Therefore, the 
purpose of the second experiment is to find the 
salient predictors and eliminate redundant and 
irrelevant ones. The result of this study also 
helps us gain a better understanding of the re- 
lations between FUF/SURGE features and in- 
tonation. 

Since the response variables, such as break 
index and pitch accent, are categorical values, 
a generalized linear model is appropriate. We 
mapped all intonation features into binary val- 
ues as required in this framework (e.g., pitch 
accent is mapped to either "accent" or "de- 
accent"). The resulting data are analyzed by 
the generalized linear model in a step-wise fash- 
ion. At each step, a predictor is selected and 
dropped based on how well the new model can 
fit the data. For example, in the break index 
model, after GSP is dropped, the new model 
achieves the same performance as the initial 
model. This suggests that GSP is redundant 
for break index. 

Since the mapping process removes distinc- 
tions within the original categories, it is possi- 
ble that the simplified model will not perform 
as well as the original model. To confirm that 
the simplified model still performs reasonably 
well, the new simplified models are tested by 
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Model 

-B-fe-gk--- 
Index 

~iteh 
ccent 

Phrase 
Aceefi~ 

-Boundary 
~ibne 

Selected Features Dropped features 

BB BA G P 0 S  SPGPOS SP- NO LEX POS SPPOS SP 
SYNFUN GSP SEMFUN SYNFUN 

ACCENT 
N O  B'B BA POS GPOS LEX SP 

l I 

SYNFUN SEMFUN GSP 
SPPOS SPGPOS SPSYN- 
FUN INDEX 
NO i31B BA POS GPOS LEX'sP GSP sEMFuN" 
SYNFUN SPPOS SPGPOS 
SPSYNFUN ACCENT 
NO BB BA aSP '  LEX POS GPOS sYN- 

FUN SEMFUN SP SPPOS 
SPGPOS SPSYNFUN AC- 
CENT 

Table 2: The New model 

letting RIPPER learn new rules based only on 
the selected predictors. 

Table 2 shows the performance of the new 
models versus the original models. As shown 
in the "selected features" and "dropped fea- 
tures" column, almost half of the predictors are 
dropped (average number of factors dropped is 
44.64%), and the new model achieves similar 
performance. 

For boundary tone, the accuracy of the rules 
learned from the new model is higher than the 
original model. For all other three models, the 
accuracy is slightly less but very close to the old 
models. Another interesting observation is that 
the pitch accent model appears to be more com- 
plicated than the other models. Twelve features 
are kept in this model, which include syntactic, 
semantic and intonational features. The other 
three models are associated with fewer features. 
The boundary tone model appears to be the 
simplest with only 4 features selected. 

A similar experiment was done for data com- 
bined from the two speakers. An additional 
variable called "speaker" is added into the 
model. Again, the data is analyzed by the gen- 
eralized linear model. The results show that 
"speaker" is consistently selected by the sys- 
tem as an important factor in all 4 models. 
This means that different speakers will result 
in different intonational models. As a result, we 
based our experiments on a single speaker in- 
stead of combining the data from both speakers 
into a single model. At this point, we carried 
out no other experiments to study speaker dif- 
ference. 

4.2.3 Sequent ia l  Rules  
The simplified model acquired from Experiment 
2 was quite helpful in reducing the complexity 
of the remaining experiments which were de- 
signed to take the intra-sentential context into 
consideration. Much of intonation is not only 

Model Accuracy 
New In i t ia l  
87.94% 88.29% 

73.87% 73:95~ 

86.72% 88.08% 

97.36% 96.79% 

Rule NO. Conditions 
New Initial New Initial 
7 9 18 16 

11 11 20 21 

5 9 15 25 

2 5 4 8 

v.s. the original model 

affected by features fi-om isolated words, but 
also by words in context. For example, usually 
there are no adjacent intonational or intermedi- 
ate phrase boundaries. Therefore, assigning one 
boundary affects when the next boundary can 
be assigned. In order to account for this type of 
interaction, we extract features of words within 
a window of size 2i+1 for i=0,1,2,3; thus, for 
each experiment, the features of the i previous 
adjacent words, the i following adjacent words 
and the current word are extracted. Only the 
salient predictors selected by experiment 2 are 
explored here. 

The results in Table 3 show that intra- 
sentential context appears to be important in 
improving the performance of the intonation 
models. The accuracies of break index, phrase 
accent and boundary tone model, shown in the 
"Accuracy" colunms, are around 90% after the 
window size is increased from 1 to 7. Tile accu- 
racy of pitch accent model is around 80%. Ex- 
cept the boundary tone model, tile best perfor- 
mance for all other three models improve sig- 
nificantly over the simple model with p=0.0017 
for break index model, p=0 for both pitch ac- 
cent and phrase accent model. Similarly, they 
are also significantly improved over the model 
without context information with p=0.0135 for 
break index, p=0 for both phrase accent and 
pitch accent. 

4.3 T h e  Rules  Learned 

In this section we describe some typical rules 
learned with relatively high accuracy. The fol- 
lowing is a 5-word window pitch accent rule. 

IF ACCENTI=NA and POS--adv 
THEN ACCENT=H* (].2/0) 

This states that if the following word is de- 
accented and the current word's part of speech 
is "adv',  then the current word should be ac- 
cented. It covers 12 positive examples and no 
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Size Break Index Pitch Accent Phrase Accent Boundary tone 
Accuracy rule l eondl- Accuracy rule condl- Accuracy rule condl- Accuracy rule condl- 

# t i o n #  # t l o n #  # t i o n #  # t i o n #  

1 87.94% 7 18 73.87% 11 20 86.72% 5 15 97[36% 2 4 
3 89.87% 5 11 78.87% 11 25 88.22% 7 15 97.36% 2 4 
5 89.86% 8 26 80.30% 12 29 90.29% 8 23 97.15% 2 4 
7 88.44% 8 20 77.73% 11 20 89.58% 9 26 97.07% 3 5 

Table 3: System performance with different window size 

negative examples in the training data. 
A break index rule with a 5-word window is: 

IF BBI=CB and SPPOSl=relative-pronoun 
THEN INDEX=3 (23/0) 

This rule tells us if the boundary  before the 
next word is a clause boundary  and the next 
word's semantic parent 's  part  of speech is rel- 
ative pronoun, then there is an intermediate 
phrase boundary  after the current  word. This 
rule is suppor ted  by 23 examples in the training 
da ta  and contradicted by none. 

Although the above 5-word window rules only 
involve words within a 3-word window, none 
of these rules reappears in the 3-word window 
rules. They  are partially covered by other rules. 
For example, there is a similar pitch accent rule 
in the 3-word window model: 

IF POS=adv THEN ACCENT=H* (22/5) 
This indicates a strong interaction between 
rules learned before and after. Since R I P P E R  
uses a local optimization strategy, the final re- 
sults depend on the order of selecting classifiers. 
If the da ta  set is large enough, this problem can 
be alleviated. 

5 G e n e r a t i o n  A r c h i t e c t u r e  

The final rules learned in Experiment  3 include 
intonation features as predictors. In order to 
make use of these rules, the  following procedure 
is applied twice in our generation component.  
First, intonation is modeled with F U F / S U R G E  
features only. Although this model is not as 
good as the final model, it still accounts for 
the major i ty  of the success with more than  73% 
accuracy for all 4 intonation features. Then,  
after all words have been assigned an initial 
value, the final rules learned in Exper iment  3 
are applied and the refined results are used 
to generate an abstract  intonation description 
represented in the Speech Integrating Markup 
Language(SIML) format (Pan and McKeown, 
1997). This abstract  description is then trans- 
formed into specific TTS  control parameters.  

Our current  corpus is very small. Expand- 
ing the corpus with new sentences is necessary. 

~ -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Generation 

Machine Learning ~ 

Figure 2: Generat ion System Architecture 

Discourse, pragmatic  and other semantic fea- 
tures will be added into our future intonation 
model. Therefore, the rules implemented in the 
generation component  must  be continuously up- 
graded. Implementing a fixed set of rules is un- 
desirable. As a result, our current  generation 
component  shown in Figure 2 focuses on facil- 
i tating the updat ing of the intonation model. 
Two separate rule sets (with or without  intona- 
tion features as predictors) are learned as before 
and stored in rulebasel  and rulebase2 respec- 
tively. A rule interpreter is designed to parse 
the rules in the rule bases. The  interpreter  ex- 
tracts  features and values encoded in the rules 
and passes them to the intonation generator.  
The features extracted from the F U F / S U R G E  
are compared with the features from the rules. 
If all conditions of a rule match the  features 
from F U F / S U R G E ,  a word is assigned the clas- 
sifted value (the RHS of the rule). Otherwise, 
other rules are tried until it is assigned a value. 
The rules are tried one by one based on the or- 
der in which they are learned. After every word 
is tagged with all 4 intonation features, a con- 
verter transforms the abstract  description into 
specific TTS control parameters.  

6 C o n c l u s i o n  a n d  F u t u r e  W o r k  

In this paper, we describe an effective way to 
automatical ly learn intonation rules. This work 
is unique and original in its use of linguistic lea- 
tures provided in a general purpose NLG tool to 
build intonation models. The  machine-learned 
rules consistently performed well over all into- 
nation features with accuracies around 90% for 
break index, phrase accent and boundary  tone. 
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l~br pitch accent, the model accuracy is around 
80%. This yields a significant improvement over 
the baseline models and compares well with 
other TTS evaluations. Since we used differ- 
ent data set than those used in previous TTS 
experiments, we cannot accurately quantify the 
difference in results, we plan to carry out experi- 
ments to evaluate CTS versus TTS performance 
using the same data set in the future. We also 
designed an intonation generation architecture 
fi)r our spoken language generation component 
where the intonation generation module dynam- 
ically applies newly learned rules to facilitate 
the updating of the intonation model. 

In the future, discourse and pragmatic infor- 
mation will be investigated based on the same 
methodology. We will collect a larger speech 
corpus to improve accuracy of the rules. Fi- 
nally, an integrated spoken language generation 
system based on FUF/SURGE will be devel- 
oped based on the results of this research. 
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