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Abstract 

This paper presents a method for generating 
multiple paraphrases from ambiguous logical 
forms. The method is based on a chart structure 
with edges indexed on semantic information 
and annotations that relate edges to the seman- 
tic facts they express. These annotations consist 
of logical expressions that identify particular 
realizations encoded in the chart. The method 
allows simultaneous generation from multiple 
interpretations, without hindering the genera- 
tion process or causing any work to be superflu- 
ously duplicated. 

1 Introduction 

This paper describes a new generation method that 
produces multiple paraphrases from a semantic input 
which may contain ambiguities. The method is an 
extension of the chart based generation algorithm 
described in Kay (1996). The focus in this presentation 
is on generating multiple paraphrases and the ability to 
operate on logical forms that contain more than one 
semantic analysis. The lnotivation for this is to enable 
a situation (particularly in machine translation) where 
the resolution of ambiguity is postponed to after the 
generation process. This may open the possibility for 
considering target language statistics (Knight and 
Hatzivassiloglou, 1995; Dagan et  al., 1991) or more 
generally for applying other criteria to select the "best" 
translation, which take into account properties of both 
languages - for example, prefering ambiguity preserv- 
ing translations. It may also enable different kinds of 
interactions between the translation system and the 
human expert who operates i t -  tbr instance, disambig- 
uation by a monolingual in the target language. 

The first demonstration of using charts for genera- 
tion appeared in Shieber (1988). In that paper the 
emphasis was to show that a uniform architecture can 
be used for both parsing and generation, however the 
conception of the chart was limited and the generation 
algorithm did not appear to be sufficiently attractive. 

Kay (1996) provides a mole general view of the chart 
structure which is designed to provide for generation 
advantages comparable to those it provides for pars- 
ing. Neumann (1994) proposes another version of a 
uniform chart architecture where the same data struc- 
tures are used for both generation and parsing. 

In this discussion of chart generation we will tbcus 
on one key advantage of the chart structure: the fact 
that equivalent phrases cml fit into larger structures 
once, regardless of the number of alternatives that they 
represent. This is achieved by collapsing different der- 
iwttions that cover the same subset of input (and have 
the same syntactic potential) under a single edge that 
represents an equivalence class. This propeity is the 
basis for the efficiency gained by using charts as it 
allows a compact representation in which a polyno- 
mial number of edges can potentially encode exponen- 
tially many derivations. Thus, the ability to recognize 
equivalence is an important aspect of chart processing 
and it is essential that it will be available to the gener- 
ation process. 

We will uot describe the underlying generation 
algorithm in detail but we assume that familiarity with 
chart parsing is sufficient for understanding the pro- 
posed method - the generator can be thought of as a 
parser that takes logical forms as input and produces 
strings as analyses. Like a packed parsing forest which 
represents nmltiple parsing results, the chart generator 
produces a "packed generation forest" to represent the 
various string realizations of the semantics. In the 
method we propose here, these forests are annotated 
with information that enables keeping track of the rela~ 
tion between pieces of the semantics and the various 
phrases that express them. We will concentrate on a 
detailed description of these annotations as they are a 
crucial component of our method and they are the 
major difference between the current proposal and the 
one described in Kay (1996). Belbre we do that we 
will sketch a version of Kay's algorithm, emphasizing 
data representations rather than algorithmic details. 
We will also follow Kay in adopting a "flat" represen- 
tation of event semantics to represent the logical forms 
(Davidson, 1980; Parsons, 1990). This style of seman- 

919 



tics fits the operation of the generation algorithm very 
well and it is attractive to translation since it allows for 
flexibility and simplicity with regard to syntactic real- 
ization and treatment of structural mismatches 
between syntax and semantics. The flat structure is 
also convenient for encoding unresolved ambiguities 
(Copestake et  al., 1996). 

2 Kay's Chart Generation Algorithm 

In his algorithm, Kay proposes to use two devices to 
establish which phrases interact and when phrases can 
be folded together under a disjunctive edge. One 
device involves indexing edges on semantic variables 
and another keeps track of which part of the semantics 
each derivation expresses. In the semantic representa- 
tion used in the algorithm, each fact is a predicate 
specifying a relation between events and entities. The 
events and entities are represented as variables that 
appear in the predicates and connect the various facts 
together. For example, the logical form 

[chase(e,d,c), dogs(d), young(d), cats(c), young(c)] 

denotes a chasing event (e) in which young dogs (d) 
chase young cats (c). Given this semantics as its input, 
the generator creates nominal edges with indices d and 
c as a realization of [dogs(d),young(d)] and 
[cats(c), young(c)], respectively, and verbal edges 
with index e as a realization of [chase(e,d,c)]. The 
packed generation forest encoding the four different 
realizations of the semantics (obtained by freely 
choosing between two ways of expressing each of the 
arguments: "young dogs"/"puppies" and "young 
cats"/"kittens") is given in figure 1.1 

Concentrating on the first argument, the constitu- 
ents which render facts about the "dog" (nodes 1 to 6) 
are indexed on variable d; nodes 3 and 5 are folded 
together under node 6 as they are syntactically and 
semantically equivalent. The semantic equivalence is 
established on the basis of the indexing variable and 
the coverage of facts from the logical form. 

In parsing, identifying the coverage of the input is 
straightforward since phrases consist of consecutive 
items and combine at common end-points; the cover- 
age of each edge is uniquely defined by its string posi- 

lNote that the traditional representation of charts (as transi- 
tion diagrams) is not suitable for generation charts, essen- 
tially because of the absence of fixed positions. In order to 
simplify the exposition, we choose to represent the packed 
generation forest as an AND-0R tree (in which OR-nodes rep- 
resent equivalent alternations and AND-nodes represent 
combination of daughters into larger constituents; OR-nodes 
are distinguished by the little arcs between their branches). 
Note that a forest representing multiple paraphrases can be 
reentrant, as later examples will demonstrate. 

<S,e> 15 
[ l l l l l l  

<NP, d> 6 
[01 lO0] 

/ / / z ~ < < N P ,  d> 5 
<NP, d> 3 [01100] 
[o 11 oo1 I 

< A d j , d > ~  1 <N,d> 4 [011001 
[OOloo] \ puppies 
young <N,d> 2 

[010001 
dogs 

<VP, e> 14 
[10011] 

[1oooo] \ 
chase \ 

<NP, c> 13 
[00011 ] 

~ ~  P,C> 12 
<NP, c> 10 [00011] 
[00011] <N, Ic> 11 

< A d i . c > ~  [ .OO011] 
[00~)~1~ 8 ~ kittens 

young <N,c> 9 
[00010] 
cats 

Figure 1 

tions. In generation this is not available since the 
semantics is unordered and the formation of subsets is 
relatively f r e e -  different lexical entries may cover dif- 
ferent parts of the input and different syntactic realiza- 
tions may choose to pack different facts together. 
Another source of complication comes from the fact 
that the generation chart encodes multiple paraphrases 
and we need to guarantee that a piece of semantics will 
not be expressed more than once. 

The mechanism used for keeping track of the 
semantic coverage of each edge consists of a bit array 
that represents the set of semantic facts. Each slot in 
the array corresponds to one fact and indicates whether 
the fact is expressed by that edge. When edges com- 
bine to form a larger constituent, their arrays anion 
together and checked to verify that no fact is dupli- 
cated. 

The new generation method we propose in this 
paper is different from Kay's mainly in the criteria for 
indexing phrases and the mechanism used for deter- 
mining the semantic coverage. The next sections 
describe these differences and demonstrate how they 
can be deployed to enable generation from undisam- 
biguated semantics. 

3 Generation with Annotated Charts 

We propose a coarser notion of equivalence in order to 
let more phrases to be folded together. We still use the 
semantic variables as indices but we do not let the bit 
arrays be part of the identification of edges. We com- 
pensate for this by using a more powerful (and admit- 
tedly more complicated) mechanism to relate each 
constituent to the subset of the semantics it realizes. 
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The mechanism consists of an array of boolean condi- 
tions, each corresponding to one semantics fact. A 
condition identifies a certain partial path in the packed 
generation forest; when this path is selected, the corre- 
sponding semantic fact is expressed. 

In the simple cases, when a constituent expresses 
the same semantic facts in all of its realizations, the 
condition can indeed be thought of as binary: if a slot 
contains 1 the corresponding fact is expressed by the 
edge and conversely if it is 0. In more complicated 
cases, when an edge has different realizations that 
cover different parts of the semantics, the indications 
in the arrays are given as boolean expressions com- 
posed of propositional variables. Each disjunctive 
edge in the chart is annotated with a set of such vari- 
ables, each of which mutually exclusively defines a 
particular alternative derivation of that edge. These 
propositional variables compose into larger boolean 
expressions that define derivations of larger structures. 
For a general explanation of the method for using 
boolean expressions to handle disjunctions, see Max- 
well and Kaplan (1989). 

The next example shows a chart with semantic 
arrays and exemplifies how the conditions appearing 
in their slots control realizations of the input. Consider 
the following logical form: 

[dog(d), plural(d), big(d), bark(e,d), loud(e)[ 

and the chart (forest) that would be constructed from it 
by the generation algorithm: 

<S,e> 11 

[1 lpl lq2] 

<S,e> 9 <S,e> lo 
[ l lp l l0 ]  [ l l p l l l l  

<NP'd> 4 ~ ~ < V P ,  e> 8 
[1 lpl00[ \ [00011] 

<NP, d> 3 / <VP, e> 6 <Adv,e> 7 
[111001 / [00010[ [O00011 

I loudly 
<Adj,d> 1 <N,d> 2 <V,e> 5 
[00100] [ll000] [00010] 
big dogs bark 

Figure 2 

In this drawing, the branches of the OR-nodes are 
labeled with propositional variables and below each 
edge is the array that indicates its coverage. For 
instance, node 2, which expresses "dogs," covers the 
first 2 facts, hence its array is [11000]; node 5 which 
expresses "bark" contributes the 4th fact [bark(e,d)] 

and accordingly, its array is [00010]. Nodes 4 and 11 
are disjunctive with choices represented by the propo- 
sition variables Pl,2 and ql,2 respectively. The NP of 

edge 4 can be realized as "dogs" if P2 is chosen or as 

"big dogs," if Pl is chosen. This is reflected in the third 

slot of the array. It indicates that the third semantic fact 
is expressible in condition Pl. Likewise, the top-most 

S (node 11) is disjunctive since there are two ways to 
form a sentence: either using the VP of node 6 or the 
one of node 8, which also expresses the fifth fact about 
the barking event being loud. This explains the reason 
that expression of the fact [loud(e)[ is conditioned on 
the choice q2 (the 5th slot of the array in node 11). The 

two conditions taken together mean that a complete 
expression of the semantic input is conditioned on 
both Pl and q2 being the choices in the relevant dis- 

junctions. 
This example begins to show how the various com- 

ponents of the representation control the generation 
process. Before we continue with examples of more 
complex boolean conditions, we explain how the bool- 
ean arrays are constructed and what exactly is their 
logical interpretation. 

3.1 Construction of the Boolean Arrays 

In addition to the syntactic composition, the boolean 
arrays of the daughter constituents union to form the 
semantic array of the resulting mother constituent. 
Usually one daughter will have an array like [...~0...], 

the other [...013j...] and their combination will yield 

[...oql~ j...]. However, if both daughters express a partic- 

ular semantic item the boolean expressions of the cor- 
responding slots need to be disjoined (from the point 
of view of the mother they are alternative renditions). 
However, to avoid expressing the same facts more 
than once, a further constraint is required to guarantee 
that only one of the disjuncts eventually get chosen. 
This constraint is the negation of the conjunction of the 
two conditions. So, if we combine [...¢q0...] with 

[...[3j~...] the result is [...(cql~j)~j...] and the negative 

condition ~(~i&l]j) is added as a filter to the mother 

node. Whenever this node is traversed, the constraint 
needs to be honored. Note that the negative constraints 
are not composed into the boolean expressions. For a 
more elaborate explanation of this device, see Shem- 
tov (1996). 

The meaning of combined conditions is the follow- 
ing. A disjunction indicates that there are multiple but 
mutually exclusive ways of expressing a certain 
semantic fact. In the array [...(oqll3j)...] the fact corre- 

sponding to the given slot can be rendered either by 
choosing the ith branch of the oc disjunction or thejth 
branch of the I~ disjunction. A conjunction defines a 
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part of a certain path in the forest. It means that at two 
(or more) different nodes, only certain combinations 
of branches can be selected. In the array [...(~&l~j)...] 

we get a situation where in one oR-node (the ct dis- 
junction) we need to select the ith branch and in 
another (the ]3 disjunction) we need to choose the jth 
branch. 

Another issue that is solved through the logical 
interpretation of the conditions is determining that the 
whole input is consumed. In parsing this is straightfor- 
ward: there has to be a top-node from string position 0 
to string position n. In the generation scheme devel- 
oped here, this is much more complicated. Facts can be 
expressed only under certain conditions and it needs to 
be verified that the conditions are honored in a mutu- 
ally consistent way. To determine whether all the 
semantic facts are expressed, the boolean conditions 
from all the slots in the array of the top node are con- 
joined and the result is checked for satisfiability. If the 
result is not satisfiable (no consistent assignment of 
truth values) or if it is not consistent with the negative 
constraints, then there is no path in the derivation 
graph that corresponds to an expression of all the facts. 
Admittedly, computing a satisfiable assignment to the 
various propositional variables can be hard (exponen- 
tial complexity in the general case), however certain 
computational properties which are likely to exist 
(independence between sets of variables) will tend to 
make the computation much more efficient. 

3.2 Paraphrases 

Just as a parsing chart excels in compact representa- 
tion of multiple interpretation of a single string, the 
generation chart is designed to represent multiple 
(string) realizations of the semantic interpretation and 
compute them at a minimal cost. As the following 
example demonstrates, the explicit encoding of condi- 
tions in which each fact is expressed provides a pow- 
erful way of controlling the realizations of the various 
paraphrases. It also provides a way for verifying that 
they do not overlap and express certain facts superflu- 
ously. Let us assume that the verbs "enter" and "rush" 
both decompose as movement verbs. The former 
would be represented as [move(e,agent), into(e,loc)] 
and the latter as [move(e,agent), quick(e)]. Also let us 
assume that the meaning of a PP headed by "into" is 
[into(e,loc)] and that [quick(e)] is also the semantics of 
the adverb "quickly." With that, consider the follow- 
ing logical form 

[John(j), move(e,j), into(e,r), room(r), quick(e)] 

and the packed generation forest representing its vari- 
ous derivations (figure 3). The interesting action is in 
the fifth slot. [quick(e)] can be expressed by satisfying 
the condition qt&Pl&r2 which means choosing the left 

<S,e> 16 

[111 l((ql&pl&r2)lq2)] 

<S,e> 15 <S,e> 14 
[111 l(pl&r2) ] [11111] [111 l(pl&r2)] [11111] 

VP',e> l 3 

01111] 
re) 

/ ~ <VP, e> I I <Adv,e>n 
/ / [011 l(pl&r2) ] [00001 l 

y ~ u i c k l y  

<NP, j> 4 
[10000] <VEe> 9 <VEe> 10 
John [011 lr2] [01110] 

< V p p ~  
[0100r2] <VU',e> 5 [00110] I 

r l ~ r  2 [011001 ~ I 
/ \ entered / "  "q  

<Vpp,e> 1 <Vpp,e> 2 <P,r> 6 <NP, r> 7 
[01000] [01001] [00100] [00010] 
moved rushed into the room 

Figure 3 

branches in nodes 16 and 11 and the right branch at 
node 3. This path corresponds to the sentence "John 
rushed into the room." Another expression can be 
obtained by choosing q2 at node 16; this leads to node 

13 on whose right branch the adverb "quickly" 
expresses [quick(e)]. Now, this situation is interesting 
because this fact is already contained in one of the 
branches of node I l, as we have already seen. To 
avoid expressing it twice, a further negative constraint 
is placed on node 13 which requires pl&r2 to be false. 

The constraint excludes the path that leads to a selec- 
tion of the verb "rush" but it allows a choice of P2, 

which means that "enter" can be used to yield "John 
entered the room quickly." It also allows a choice of 
the verb "move" since pl&rl represents a valid path. 

This way the sentence "John moved into the room 
quickly" is realized. 

This example demonstrates how multiple para- 
phrases are constructed out of a variety of lexical 
entries and syntactic constructions and how a record is 
kept relating the different phrases to the subsets of the 
semantic facts that they express, it shows that the gen- 
eration method is sensitive to the particular lexicaliza- 
tion patterns that languages use to encode divergent 
parts of the semantics. 
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4 Generation from Ambiguous Semantics 

The logical encoding of the boolean conditions may 
seem complex and indeed simpler solutions have been 
proposed to encode the semantic coverage (in Kay's 
algorithm for instance). However, the aim of the gen- 
eration method we advocate here goes beyond rendi- 
tion of fully specified semantics. 

One translation situatiou that the annotated chart 
approach can address very simply has to do with 
optional and defeasible specifications. In many situa- 
tions there may be certain specifications in the input 
(discourse consideration, indication of preferences, 
etc.) that may not be crucial to the adequacy of the 
resulting expressions. For instance, in translation one 
might prefer to maintain the source language subject 
as the target language subject but be willing to accept 
a translation which violates this if generation would 
otherwise fail. This can happen when the source 
expression is passive but the corresponding target lan- 
guage verb does not passivize. Similarly, certain psy- 
chological verbs come in pairs ("fear/frighten", "like/ 
please" etc.) but not in all languages, therefore a spec- 
ification to express a pro:titular argument as the dis- 
course topic might lead to a failure. For example, 
translating "John likes it" into Spanish most naturally 
comes out as "it pleases John." The idea is that in such 
cases the generator will attempt to find an expression 
that conveys (or honors) all the specifications, but if 
such an expression is not admitted by the grammm" it 
would still produce a grammatical result covering the 
crucial parts of the input. 

A more interesting problem that a chart with boor  
can conditions can address is how to use ambiguous 
semantics as an input to the generation process. Given 
that exhaustive disambiguation is not always possible, 
the idea is that the choice among the source language 
analyses will be delayed and the whole set of semantic 
interpretations will comprise the input to the genera- 
tion process. The motivation is to gain more informa- 
tion from the target language in order to improve the 
quality of the choice. The crucial advantage that the 
proposed generation method provides is that it enables 
considering all of the semantic interpretations "at 
once," avoiding the massive duplicated effort that 
would result from enumerating the logical forms and 
considering each one of them individually. 

The next two simplified examples demonstrate 
how logical forms which contain disjunctions can be 
processed by the generator and how the rich logical 
annotations relate the various paraphrases to the alter- 
nations in the semantics. The first example demon- 
strates a disjunction resulting from a structural 
ambiguity. The expression "hydraulic oil filter" lends 
itself to two different bracketings, corresponding to 

"filter for hydraulic oil" and "hydraulic filter for oil." 
These two interpretations are given in the following 
disjunctive logical form: 

[filter(f), oil(o), {hydraulic(o) I hydraulic(f)}] 

Figure 4 shows the packed generation forest that 
encodes the two (incidentally identical) strings that 
express this piece of semantics. 

<NP, f> 10 
[1 lplql ] 

<NRf> 8 <NP, f> 9 
[1 Ipl l ]  [lip10] 

<Adj,f> 7 <N',f> 6 
[0001] [1 lpl0] 
hydraulic 

<N',o> 4 <N,f> 5 
[01p~0] [10001 

< N , , o > P 3 ~  P2 filter 

<Adj,o> I <N,o> 2 
[0010] [01001 
hydraulic oil 

Figure 4 

The generation from a disjunctive input proceeds 
just as before, as if the disjunction is ignored and all 
the semantic facts are given equal status. Then, when 
the results of the generation are to be enmnerated, the 
logical structure of the input reappears and affects the 
interpretation of tile boolean array. In this example, we 
know that either tile third fact or the fourth l~lct (but not 
both) can be expressed. Accordingly, we allow either 
the third or the fourth boolean condition to be satisfied. 
If we choose to satisfy the former, we let Pl be true and 

ql be false. This forces a traversal of nodes 9 and 3 

which amounts to generating from [filter(f), oil(o), 
hydraulic(o)]. If oil the other we choose to express the 
other interpretation, we reverse the conditions. This 
requires a selection of the left branch in node 10 (ql) 

which means that [hydraulic(f)] gets expressed in node 
7. At node 4 we refrain from expressing [hydranlic(o)] 
since we set Pl (the condition in the third slot) to false. 

This way we reconstruct the logical structure of the 
disjunctive logical form and select one interpretation 
at a time from the set of possible paraphrases. 

The next example shows how an NP is generated 
from a specification that results from a lexical ambigu- 
ity. Let us consider the following logical form that 
could be produced from analyzing "little dog" in a lm~- 
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guage that interprets "little" as an ambiguous adjective 
denoting either smallness in size or youngness in age. 

[dog(d), {small(d) I young(d) } 

We assume that this semantics licenses "small dog," 
"young dog" and "puppy" (but not "young puppy" or 
"small puppy"). Figure 5 shows the generation forest 
that encodes these renditions of the input. 

<NEd> 8 

[1 (rl&p!)((rl&P2)lq2)] 

<He, d> 7 X 
[lpl(p21q2)], o , ~  

<Adj,d> 3 <N,d> 6 
[0plp2] [10q2] 

<Adj,d> ! <Adj,d> 2 <N,d> 4 <N,d> 5 
[010] [0011 [100] [101] 
small young dog puppy 

Figure 5 

Node 3 merges two different adjectives which are 
indexed on the same variable but express two different 
facts; Node 6 merges two nominal phrases with com- 
patible but not completely overlapping meanings. 
Now, if our goal is to enumerate the paraphrases cor- 
responding to the first interpretation, we satisfy the 
condition in the second slot [small(d)] and dissatisfy 
the condition in the third slot [young(d)]. As a result, 
we select the left branches of nodes 8 and 3 so as to sat- 
isfy h&pl.  Note that at node 6 we can only choose the 

left branch because otherwise the condition of the third 
slot would also be satisfied, contrary to the mutually 
exclusive nature of the semantic alternation. When the 
goal is to generate the second interpretation, we 
reverse the conditions and try to satisfy (rl&Pa)lq2. If 

rl  and p2 are set to true we get "young dog" If q2 is 

selected we choose the right branches of nodes 8 and 6 
and get "puppy." 

These two examples demonstrate how we manipu- 
late the boolean conditions of the semantic coverage 
arrays to allow generation from a disjunctive input and 
still gain the benefits of the chart generation algorithm. 

5 Future Work 

The method we propose in this paper can be deployed 
as an infrastructure for solving certain other problems 
in generation and translation. In future work (Shem- 
toy, 1996) we intend to use the ideas developed here to 
tackle the problem of ambiguity preserving transla- 

tion. Our approach is to take a parsing chart as an 
input, read from it an ambiguous logical form encod- 
ing multiple source language interpretations and then 
use it to create a generation chart encoding multiple 
target language strings. A separate process will then 
search for strings that express more than one interpre- 
tation; If such strings are found, we say that the ambi- 
guity of the source language is preserved by the target 
language. We hope that by using this approach it will 
be possible to avoid certain types of disambiguations 
altogether. 
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