Computing First and Follow Functions for Fenture-Theoreitic Grammars

Arturo Trujillo
Computer Laboratory
University of Cambridge
Cambridge Cl32 3QG, England
iat@cl.cam.ac.uk

Abstract

This paper describes an algorithm for the computation of FIRSS and FOLLOW sets for use with foature-theoretic grammars, in which the value of the sets consists of pairs of featuretheoretic categories. The algorithm preserves as much information from the grammars as possible, using negative restriction to define equivalence classes. Acldition of a simple data structure leads to an order of magnitude improvement in execution time over a naive implementation.

1 Introduction

The need for eflicient parsing is a constant, one in Natural Language Processing. With the advent of feature-theoretic grammars, many of the optimization techniques that were applicable to Context Free (Cl) grammars have required modification. For instance, a number of algorithms used to extrach parsing tabless from (T grammars have involved discarding information which otherwise would have constrained the parsing process, (Briscoe and Carroll, 1993). This paper deseribes an extension to an algorithm that operatos over CF grammar to make it applicable to feature-theoretio, ones. One advantage of the extended algorithm is that it preserves as much of the information in the granmar as possible.

1.1 FIRST ANI FOLLOW

In order to make more efficient parsers, it is sometimes necessary to preprocess (compile) a grammar to extract from it top-down information to guide the search during analysis. The: first step in the preprocessing stage of soveral compilation algorithms requires the solntion of two functions normally called FIRST' and lOOLOW. Intuitively, FIRST (X) gives ws the terminal symbols that may appear in initial position in substrings derived from category X. $\operatorname{HOLLOW}(X)$ gives us the terminals which may immediately follow a substring of category X. For example, in the grammar: S \rightarrow NI' VP; NP $\rightarrow \rightarrow$ det noun; VP \rightarrow vtra NP, we get:
$\operatorname{F}^{\prime} \operatorname{TRST}(S)=I^{\prime} \operatorname{lRST}(N P)=:\{d e t\}$,
$\operatorname{FTRST}(V P)=\{v \operatorname{tra}\}$,
$L^{\prime}(O L L O W(N P)=\{v L a, \$\}$,
$\operatorname{HOLLOW}(S)=F O L L O W\left(V l^{\prime}\right)=\{\$\}(\$$ marks end of input)

These two functions are important in a large range of algorithms used for constructing of licient parsers. For example the I IR-parser construction algorithm given in (Aho et al., 1986):232 uses FIRSI to compute item (closure values. Another example is the computation of the $/ *$ relation which is used in the construction of generalized left-comer parsers, (Nederhof, 1993); this relation is effectively an extension of the function FIRST.

2 Computing FIRST And FOLLOW

We propose an algorithm for the computation of FIRST values which handles featuretheoretic grammars without having to extract a CF backbone from them; the approach is easily adapted to compute FOLLOW values too. An improvement to the algorithm is presented towards the end of the paper. Before describing the algorithm, we give a well known procedure for computing FIRST for CF grammars (taken from (Aho et al., 1986):189, where ϵ is the empty string):
"To compute $\operatorname{FIRST}(X)$ for all grammar symbols X, apply the following rules until no more terminals or ε can be added to any PIRST set.

1. If X is terminal, then $\operatorname{FIRST}(X)$ is X.
2. If $X \rightarrow \epsilon$ is a production, then add ϵ to $F I R S T(X)$.
3. If X is nonterminal and $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$ is a production, then place a in $\operatorname{FIRST}(X)$ if for some i, a is in $\operatorname{FIRST}\left(Y_{i}\right)$, and ϵ is in all of $\operatorname{FIRST}\left(Y_{1}\right)$... FIRST $\left(Y_{i-1}\right)$; that is, $Y_{1} \ldots Y_{i-1} \stackrel{*}{\Rightarrow} \epsilon$. If ϵ is in $\operatorname{FIRST}\left(Y_{j}\right)$ for all $j=1,2, \ldots, k$, then add ϵ to $\operatorname{FIRST}(X)$.

Now, we can compute FIRST for any string X_{1} $X_{2} \ldots X_{n}$ as follows. Add to $\operatorname{FIRST}\left(X_{1} X_{2} \ldots X_{n}\right)$ all of the non- ϵ symbols of $\operatorname{PIRST}\left(X_{1}\right)$. Also add the non- ϵ symbols of $\operatorname{FIRST}\left(X_{2}\right)$ if ϵ is in $\operatorname{FIRST}\left(X_{1}\right)$, the non- ϵ symbols of $F^{\prime} I R S T^{\prime}\left(X_{3}\right)$ if ϵ is in both $\operatorname{FIRST}\left(X_{1}\right)$ and $\operatorname{FIRST}\left(X_{2}\right)$, and so on. Finally, add ϵ to $\operatorname{FIRST}\left(X_{1} X_{2} \ldots X_{n}\right)$ if, for all $i, \operatorname{FIRST}\left(X_{i}\right)$ contains ϵ."
This algorithm will form the basis of our proposal.

3 Compiling FeatureTheoretic Grammars

3.1 Equivalence Classes

The main reason why the above algorithm cannot be used with feature-theoretic grammars is that in general the number of possible nonterminals allowed by the grammar is infinite. One
of the simplest ways of showing this is where a grammar accumulates the orthographic representation of its terminals as one of its feature values. It is not difficult to see how one can have an infinite number of NPs in such a grammar:
NP[orth: the dog]
NP[orth: the fat dog]
NI [orth: the big fat dog], etc.
This means that $F^{\prime} I R S T$ ($N P$ [orth: the dog]) would have a different value to $\operatorname{FIRST}(N P$ [orth: the fat dogl) even though they share the same leftmost terminal. That is, the foature structure for the substring "det adj noun" will be different to that for "det noun" even though they have the same starting symbol. This point is important since similar situations arise with the subcatcgorization frame of verbs and the semantic value of categories in contemporary theories of grammar, (Pollard and Sag, 1992). Without modification, the algorithm above would not terminate.

The solution to this problem is to define a finite number of equivalence classes into which the infinite number of nonterminals may be sorted. These classes may be established in a number of ways; the one we have adopted is that presented by (Harrison and Ellison, 1992) which builds on the work of (Shieber, 1985): it introduces the notion of a negative restrictor to define equivalence classes. In this solution a predefined portion of a category (a specific set of paths) is discarded when determining whether a category belongs to an equivalence class or not. For instance, in the above example we could define the negative restrictor to be $\{$ orth $\}$. Applying this negative restrictor to each of the three NP's above would discard the information in the 'orth' feature to give us three equivalent nonterminals. It is clear that the restrictor must be such that it discards features which in one way or another give rise to an infinite number of nonterminals. Unfortunately, termination is not guaranteed for all restrictors, and furthermore, the best restrictor cannot be chosen automatically since it depends on the amount of grammatical information that is to be preserved. Thus, selection
of an appropriate restrictor will depend on the particular grammar or system used.

3.2 Vaide: Sharing

Another problem with the algorithm above is that reentrancies between a category and its F'IRST' and FOLIU()W values are not preserved in the solution to these functions; this is because the algorithm assumes atomice symbols and these camot encode explicitly shared infommation between categorios. For example, consider the following naive grammar:

$$
\begin{array}{ll}
\mathrm{S} \Rightarrow & \text { NP }[\text { agr: X] VP[agr: X] } \\
\text { VP[agr: X] } \Rightarrow & \text { Vint[agr: X] } \\
\text { NP }[\text { agr: } X] \Rightarrow & \text { Det N[agr: X] }
\end{array}
$$

We would like the solution of bo OLOW (N) to include the binding of the 'agr' feature such that the value of E()$\| \mathrm{d}$ (OW resembled: FOLLOW $\left(N\left[a g^{\gamma}: X\right]\right):=V \operatorname{int}[t a r: X]$. But the algorithm above, even with a restrictor, would not preserve such a binding since the addition of a now catogory to lo $\begin{aligned} & \text { a } L O O W(N)\end{aligned}$ is done independently of the bindings between the new category and N.

4 Thie Basic Algorithm

We propose an algorithm which, rather than construet a set of categories as the value of l'RRST and HOLLOW , constructs a set of pairs each of which represents a category and its FIRS'L' or FOLLOW category, with all the correct bindings explicitly ancoded. l'or instance, for the above example, the pair (VP [agr: X], Vint[agr: X]) would be in the set representing the value of the function FIRSTh. In the next section the algorithm for computing FIRS' is described; computation of FO OL, (OW proceeds in a similar fashion.

4.1 Solving First

When modifying the algorithm of Section 2 we note that each ocemrence of a category in the grammar is potentially distinct from evey other category. In additiou, for cach calegory we need to remember all the reentrancios
between it and the danghters within the rule in which it occurs. Pinally, wo assume that any category in a rule which can mify with a lexical category is marked in some way, say by using the feature-value: pair 'ter: + ', and that non-terminal categories must unify with the mother of some rule in the grammar; the latter condition is necessary because the algorithm only computes the solution of lilles S for lexical categories or for categorics that oceur as mothers.

In computing liLRS'l wo therate over all the rules in the grammar, treating the mother of each rule as the category for which we are trying to lind a FIRST value. 'Throughout each iteration, mification of a claughter with the lhs of an element of RIRS' results in a modified rule and a modified pair in which bindings between the mother eategory and the rhs of the pair are established. The modified mother and rhs are then used to construct the pair which is adeded to FIRST. For instance, given rule $X \rightarrow Y$ and pair (L, R), we unify Y and L to give $X^{\prime} \rightarrow Y^{\prime}$ and $\left(L^{\prime}, R^{\prime}\right)$; from these the pair (X^{\prime}, l^{\prime}) is constructed and added to l'IRST.

The algorithm assumes an opetation $t<$ which constructs a set $S^{\prime}=S+\leq p$ in the following way: if pair p subsumes an element a of S then $S^{\prime}=S-a+p$; if p is subsumed by an element, of S then $S^{\prime}=S$; dse $S^{\prime}=S$ + p. It should be noted that the pairs constituting the value of FTRSI' can themselves be compared using the subsumption relation in which reentrant values are subsumed by nonreentrant ones, and combined using the unification operation. Thas in the principal step of the algorithm, a new pair is constructed as described above, a restrictor is applied to it, and the resulting, restricted pair is $t \leq$-added (o) FIRST. The algorithm is as follows:

1. Initialise First $:=\{ \}$.
2. Run through all the daughters in the grammar. If X is pre-terminal, then Firsh : First $-t^{\leq}(X, X)$! Φ (where (X, X) ! Φ moans apply the negative restrictor Φ to the pair $(X, X))$.
3. For each rule in the grammar with mother

\mathbf{S}	\Rightarrow NP[agr: X, slash: NULL] VP[agr: X, slash: NULL]
S	\Rightarrow NP[slash: NULL] NP[agr: X, slash: NULL] VP[agr: X, slash: NP]
VP[agr: X, slash: Y]	\Rightarrow Vtra[agr: X, ter: +$]$ NP[slash: Y]
NP[agr: X, slash: NULL]	\Rightarrow Det[ter: +] N[agr: X, ter: +$]$
NP[slash: NP]	$\Rightarrow \epsilon$

Figure 1: Example grammar with value sharing.
X, apply steps 4 and 5 until no more changes are made to First.
4. If the rule is $X \rightarrow \epsilon$, then First $=$ First $+\leq(X, \epsilon)!\Phi$.
5. If the rule is $X \rightarrow Y_{1} . . Y_{i} . . Y_{k}$, then First $=$ First $+\leq\left(X^{\prime}, a\right)!\Phi$ if $\left(Y_{i}^{\prime}, a\right)$ has successfully unified with an element of First, and $\left(Y_{1}^{\prime}, \epsilon_{1}\right) \ldots\left(Y_{i-1}^{\prime}, \epsilon_{i-1}\right)$ have all successfully and simultaneously unified with members of First. Also, First $=$ First $+\leq\left(X^{\prime}, \epsilon\right)!\Phi$ if $\left(Y_{1}^{\prime}, \epsilon_{1}\right) \ldots\left(Y_{k}^{\prime}, \epsilon_{k}\right)$ have all successfully and simultaneously unified with elements of First.
6. Now, for any string of categories X_{1} $. . X_{i} . . X_{n}$, First $=$ First $+\leq\left(X_{1}^{\prime} \ldots X_{n}^{\prime}, a\right)!\Phi$ if (X_{1}^{\prime}, a) has successfully unified with an cloment of l^{\prime} irst, and $a \not \leq \epsilon$. Also, for $i=2 \ldots n$, First $=$ First $^{\prime}+\leq\left(X_{1}^{\prime} \ldots X_{n}^{\prime}, a\right)!\Phi$ if $\left(X_{i}^{\prime}, a\right)$ has successfully unified with aus element of F'irst, $a \notin \in$, and $\left(X_{1}^{\prime}, \epsilon_{1}\right) \ldots\left(X_{i-1}^{\prime}, \epsilon_{i-1}\right)$ have all successfully and simultaneously unified with members of First. Finally, First $=$ First $+\leq$ $\left(X_{1}^{\prime} \ldots X_{n}^{\prime}, \epsilon\right)!\Phi$ if $\left(X_{1}^{\prime}, \epsilon_{1}\right) \ldots\left(X_{n}^{\prime}, \epsilon_{n}\right)$ have all successfully and simultaneously unified with members of First. (This step may be computed on demand).
One observation on this algorithm is in order. The last action of steps 5 and 6 adds ϵ as a possible value of FIRST for a mother category or a string of categories; such a value results when all daughters or catcgorics have ϵ as their FIRST value. Since most grammatical descriptions assign a catcgory to ϵ (e.g. to bind onto it information necessary for correct gap throading), the pairs $\left(X^{\prime}, \epsilon\right)$ or ($X_{1}^{\prime} \ldots X_{n}^{\prime}, \epsilon$) should have bindings between their two elements; this creates the problem of deciding which of the es in the FIlRST pairs to use, since it is possible in principle that each of these will have
a different value for ϵ. In our implementation, the pair added to First in these situations consists of the mother category or the string of categories and the most general category for ϵ as defined by the grammar, thus effectively ignoring any bindings that ϵ may have within the constructed pair. A more accurate solution would have been to compute multiple pairs with ϵ, construct their least upper bound, and then add this to First. However, in our implementation this solution has not proven necessary.

4.2 EXAMPILE

Assuming the grammar in Fig. 1 and the negative restrictor $\Phi=\{$ slash $\}$, the following is a simplified run through the algorithm:

- First $=\{ \}$
- After processing all pro-terminal categories

First $=\{($ Det, Det $),(N, N),($ Vtra, Vtra $)\}$
(obvious bindings not shown).

- After the first iteration First $=\{($ Det, Det $)$, $(N, N),(V \operatorname{tra}, V \operatorname{tra}),(V P[a g r: X], V \operatorname{tra}[a g r \quad:$ $X]),(N P, D e t),(N P, \epsilon)\}$
- Since 'slash' is in Φ, any of the NPs in the grammar will unify with the lhs of ($N P, \epsilon$) and hence S will have Vtra as part of its FIRST value. First $=\{\ldots,(V P[a g r: X], V \operatorname{tra}[a g r: X])$, (NP, Det $),(N P, \epsilon),(S$, Det $),(S, V t r a)\}$
- The next iteration adds nothing and the first stage of the algorithm terminates.

The second stage (step 6) is done on demand, for example to compute state transitions for a parsing table, in order to avoid the expense of computing FIRST for all possible substrings of categories. For instance, to compute FIRST for the string [NP NP VP] the algorithm works as follows:

- Prirst $=\{. .,(V P[a g r: X], V \operatorname{tra}[a g r: X])$, $\left.\left(N I, D_{e t}\right),(N I,, \epsilon) \ldots\right\}$
- After considering the first Nl': first $=$: $\{.,([N I, N P V P], D c t)\}$.
- Consideration of the second ND in the input string results in no changes to $I^{\prime} i r s l$, given the semantics of $+\leq$, since the pair that, it would have added, ($\left[N I^{\prime} N I^{\prime} V I I^{\prime}, c\right.$), is already in $I^{\prime} i y, s t$.
- Since NPs can rewrite ass e (i.e. $\left(N l^{\prime}\right.$, e)
 ([NI'NPVI],Vtra)\}.
- Finally, ([NP NI $\left.V l^{\prime}\right], \epsilon$) may not be added since ($V P^{\prime}, t$) does not unify with any element of first.

5 Improving the Search Througil First

If the algorithm is run as presented, each itaration through the grammar rules beoomes slower and slower. The reason is that, in step 5 , when soarching first to create a new pair (X^{\prime}, a), every pair in Pirst is considered and unification of its lhs with the relevant daughter of X attempted. Since each iteration nomally adds pairs to Fiorst each iteration involves a search through a larger aud larger set; furthermore, this search imvolves unification, and in the case of a successful match, the subsequent construction and addition to l'best also requires subsumption cheeks. All of these operations combine to make each additional element in D'irst have a stroug effect on the performance of the algorithm. Wo thorefore need to minimize the number of paiss searehed.

Considering the depenclencies that exist between pairs in first one notices that once a pair has beon considered in relation with all the rules in the grammar, the effect of that pair has been completely determined. That is, after a pair is added to Firse it need only be considered up to and including the rule from which it was derived, after which time it may be excluded from further searches. For example, take the previons grammar, and in particular the value of fiarst after the first iteration through the algorithm. 'The pair (NI, Det), added because of the rule NP[agr: X, slash:

NULD $] \Rightarrow$ Det[ter: +] N[agr: X, ter: +], has to be considered only once by every rule in the grammar; after that, this pair cannot be involved in the construction of new values.

A simple data structure which keeps track of those pairs that need to be searched at any one tirne was arded to the algorithm; the data structure took the form of a list of pointers to active pairs in l'itst, where an active pair is one which has not been considered by the mole from which it was constructed. For example, the pair ($N P, I$ et $)$ would be active for a complete itcration from the moment that the corresponding rule introduced it until that rule is visited again during the second iteration. The effect of this policy is to allow each pair in Fibst to be tested against each mole exactly once and then be excluded firom subsecuent searches; this greaty rednces the mumber of pairs considered for each iteration.

Using the ' 'yper Feature Structure system (the LKKB) of (Briscoe at al., 1993), we wrote two grammars and tested the algorithm on them. 'Table 1 shows the average number of pairs considered for each iteration compared to the average number of pairs in first.

	-13-uble Grammar		$2 \overline{1}$ Rulo Grammar	
	Consircured	Total	Comsidered	Lotal
Iter. 1	3.5	3.5	8.4	8.1
Her. 2	7.5	10.7	9.7	18.7
Iter. 3	1.2	12.0	1.0	19.0

Table 1: Average number of pairs per iteration.
As we can see, after the first iteration the number of pairs that needs to be considered is less (mucdı less for the final iteration) than the total number of pairs in fiost. Similar improvements in performance were obtaned for the computation of FOL L ()W.

6 Related Research

The extension to the I IR ahgorithm presented by (Nakazawa, 1991) uses a similar approach to that deseribed here; the functions involved however are those necossary for the construction of an liR parsing table (i.e. the GOTO and $A\left({ }^{\prime \prime} I O N\right.$ functions $)$. One technical dif-
ference between the two approaches is that he uses positive restrictors, (Shieber, 1985), instead of negative ones. In addition, both of his algorithms also differ in another way from the algorithm described here. The difference is that they add items to a set using simple set addition whereas in the algorithm of Section 4.1 we add elements using the operator $+\leq$. Furthermore, when computing the closure of a set of items, both of the algorithms there ignore the effect that unification has on the categories in the rules.

For example, the states of an LR parser are computed using the closure operation on a set I of dotted rules or items. In Nakazawa's algorithms computation of this closure proceeds as follows: if dotted rule $<A \rightarrow w \cdot B x>$ is in I, then add a dotted rule $<C \rightarrow . y>$ to the closure of I, where C and B unify. This ignores the fact that both dotted rules may be modified after unification, and therefore, his algorithm leads to less restricted I values than those implicit in the grammar. To adapt our algorithm to the computation of the closure of I for a feature-theoretic grammar would involve using a set of pairs of dotted rules as the value of I.

7 Conclusion

We have extended an algorithm that manipulates CF grammars to allow it to handle feature-theoretic ones. It was shown how most of the information contained in the grammar rules may be preserved by using a set of pairs as the value of a function and by using the notion of subsumption to update this set. Although the algorithm has in fact been used to adapt the constraint propagation algorithm of (Brew, 1992) to phrase structure grammars, the basic idea should be applicable to the rest of the functions needed for constructing LR tables. However, such adaptations are left as a topic for future research.

Finally, improvements in speed obtained with the active pairs mechanism of Section 5 are of an order of magnitude in an implementation using Common Lisp.

Acknowledgements

This work was funded by the UK SERC. I am very grateful to Ted Briscoe, John Carroll, Mark-Jan Nederhof, Ann Copestake and two anonymous reviewers. All romaining errors are mine.

References

Aho, A. V., R. Scthi, and J. D. Ullman, (1986). Compilers - Principles, Techniques, and Tools. Addison-Wesley Publishing Company, Reading, MA.

Brew, C., (1992). Letting the cat out of the bag: Generation for Shake-and-Bake MT. In COLING-92, pages 610-616, Nantes, France.

Briscoe, E. and J. Carroll, (1993). Generalised Probabilistic LR Parsing of Natural Language (Corpora) with Unification-Based Grammars. Computational Linguistics, 19(1):25-60.

Briscoc, E., A. Copestake and V. de Paiva (eds). (1993). Inheritance, Defaults and the Lexicon. Cambridge University Press, Cambridge, UK.

Harrison, S. P. and T. M. Ellison, (1992). Restriction and Termination in Parsing with Feature-Theoretic Grammars. Computational Linguistics, 18(4):519-530.

Nakazawa, T., (1991). An Extended LR Parsing Algorithm for Grammars using Fcature-Based Syntactic Categories. In Proceedings European $A C L$ 91, pages 69 74, Berlin, Germany.

Nederhof, M., (1993). Generalized Left-Corner Parsing. In Proceedings European ACL 93, pages 305-314, Utrecht, The Netherlands.

Pollard, C. and I. Sag, (1992). Head Driven Phrase Structure Grammar. Chicago University Press, IL.

Shieber, S. M., (1985). Using Restriction to Extend Parsing Algorithms for Complex-FeatureBased Formalisms. In Proceedings ACL 85, pages 145-152, Chicago, IL.

