
USING T H E SAME SYSTEM F O R A N A L Y Z I N G AND S Y N T H E S I Z I N G SENTENCES

P h i l l i p e R i n c e l * a n d P a u l S a b a t i e r **

• Bull S.A., CE1)IAG, 68 Route de Versailles, 78430 Louveciennes, France.
• * CNRS, Groupe Intelligence Artificielle, Facult6 des Sciences de Luminy, 13288 Marseille, Cedex 9, France.

ABSTRACT
We specify the advantages of guided composition of sentences
and illustrate them with examples from Leader, a natural
language interface we have developped. Guided composition
is achieved by using the same grammar for analysis and for
synthesis. We detail the problems we have encountered and
we provide solutions for partial synthesis. We give the
principles of the analysis-synthesis algorithm.

KEYWORDS

Natural Language Interface, Guided Composition, Analysis,

Syn~esis, lh'olog.

1. INTRODUCTION
The quality of a natural language interface must be estimated
not only in terms of linguistic coverage but also in terms of
procedures dealing with unexpected expressions (incorrect
formulations or correct ones, not provided by the interface).
Knowi_ng that error recovery is a complex task in the

"restricted" framework of prograrruning languages (limited

syntax and rlgourously defined semantics), one can appreciate
the difficulty of endowing natural language interfaces with
such capabilities. One can resort to flexible parsing for
analysing "deviant" expressions typed by users [Carbonell and
Hayes 1983], but this method can mislead them about the

interface's real capabilities [Mathieu and Sabatier 1986;

S abatier 1987].
Our approach is quite different. We have

developped a generator of natural language (French and
English) interfaces to relational databases, Leader [Benoit et
al. 1988]. An interesting characteristic is that our system can
lead the user towards provided fommlations in a user-friendly
way. The user can compose step by step questions by means
of information dynamically synthesized by Leader. The same
system with the same grammar is used both in analysis and

synthesis. We specify in this paper the advantages of guided
composition. We detail the problems we have encountered and

we provide solutions for partial synthesis. We give the
principles of the analysis-synthesis algorithm.

2, ADVANTAGES OF GUIDED COMPOSITION
We may distinguish two kinds of conununication with natural
language interfaces :

- a "free" mode : the user types sentences without
knowing the limits of the interface but he hopes it
will understand him. Trivial reality : user's freedom
will always be the freedom the system will grant
him.
- a guided mode : the system guides the user while
he composes sentences (guided composition).

Unlike the "free" mode, with guided composition users
quickly perceive the limits of the interface. The designer
doesn't have to program all the expressions or structures

having the same meaning. Unique forms and structures are
sufficient. He may forget the others. A user-friendly interface
with a guided composition mode must lead users towards non
ambiguous formulations, as in Leader. So, it is not necessary
to produce paraphrases for want of clarification from the user.

We give now an example of a session with Leader.

In this application, the system interfaces a database that
contains information regarding Nobel Prizes. (The original
session is in French).

The user types :
Give the ...

By a mere cursor return, the user asks to be guided. And
Leader synthesizes expected expressions following the word
the :

age

average o f

coutLtry

m a n

natiotuality

person

w o m a P 1

Using a mouse, the user selects and clicks the word person.

His sentence becomes :

Give the person ...

By a cursor return, he asks for assistance. And Leader
synthesizes :

that

who

The user selects who. And so on.
Give the person who ...

did rugt

refused

recehJed

440 1

Next step : the user selects received and decides to continue

without may assistance until the conjonction and :

Give the person who received the Nobel prize of

Physics in 1921 and ...
At tiffs point, Leader synthesizes :

his~her age
his/her nationality
in

Aad the user completes his question :

Give the person who received the Nobel prize o f
Physics in 1921 and his~her nationality ?

3. PROBLEMS BOUND TO P A R T I A L SYNTHESIS
After the last word of an fimompleted sentence composed by

the user, Leader's grammar runs in synlhesis and produces a

list of possible following words or expressions. The main

problem of this kind of synthesis (we call it partial aynthesis)
is that a word (or an expression) that has been synthesized by

the system (and selected by the user to compose his sentence)

must not lead to a fim~re dead end. For exmnple, ,after a noun

phrase tile system may synthesize the relative pronoun who if

and only if, in the application domain, there is a verb that can

take this noun phrase as subject. If there is no such a verb, the

relative pronoun who must not be synthesized.

One can avoid dead ends by developping a

semantical grm~unar with symbols reflecting the semantics of

the application domain like in Tennant's menu-based system

[Tennant 1984]. This is not the case with Leader. Leader is a

generator of nalural lmlguage interfaces. Leader's grammar is

portable to different domains. Symbols reflect linguistical

properties. Associated to particular symtx~ls, general

conditions access to the sem~mtic model of the application

domain. Because of the partial synthesis problem, calls to
these conditions must be placed in tim granmaar before

concerned symbols. Their evaluation is done before the

rewriting of symbols.

The following simplified rules (in a DCG style)

ilh~slrate the principle involved in the synthesis (or not) of a

relative pronoun. The general condition possible_case takes

the concept associated to the noun ~md verifies if it can be a

case (agent, object, etc.) of a verb. Only the different values of

poss ib lecase are dependant of the application domain.

np --> det,
noun(Concept),
relative(Concept).

relative(Concept) -- >
{ possible_case(Concept,Case, Verb) },
relative_pronoun(Case),
incomplete sentence(Ccas'e,Verb).

relative(Concept) --> [1.

Another problem of partial synthesis is the problem of

variable symbols. By variable symbols, we mean words or

expressions that are not defined in the lexicon of the system

because they are too numerous or infinite, llke integers, dates,

or proprer norms for exmnple. If these expressions txzlong to

those following a given word, one can't synttmsize them. In

this case, Leader produces a message expliciting the type

associated to the expected expressions. For example, after the

incomplete question :

Give the persons who received the Nobel

prize of Physics before...
Leader will synthesize :

<enter a year, example ." 1945>
<enter a person, example : Einstein>

Concerning variable symlmls, Leader displays messages when

running in synflmsis, but collects and parses expressions when

running in analysis.

The right placement of calls to conditions in the

granunar (not to lead to a dead end), and the management of

variable symbols were the two major problems we

encountered and solved with partial synthesis.

4. PRINCIPLES OF ANALYSIS-SYNTHI,~SIS

The potential reversibility of certain programs written in

Prolog is well known. So, in order to facilitate the

implementation of a granm~ar rmming tx~th in m~alysis and in

synthesis, we have decided to program Leader in this

language. The core of the system is a Metamo~hosis

Grmnmar [Colmerauer 1975] using immediate Prok;g strategy

: top-down, left-to-right, depth- first, non-detemfinistic.

In order to synthesize all the possible expressions

following a given word, the granm'tar must contain no cuts

(and no negation by failure). For example, the two following
grmnmar rules :

pp(object) --> !, np.

pp(Case) -- > prep(C~s'e), np

must be replaced by the following ones :

pp(object) --> np.

pp(Case)--> [difiCase,objeet) },
prep(Case),

t~D.
diflX, Y) is the coroutine built-in predicate thai controls at all

times the validity of the inequalion between X and Y. It fails as

soon as X and Y become equal, and tile prognun backtracks.

We give now file principles of our analysis-synthesis

algorithm. To each word typed by the user (or selected by him

in the synthesized list), one associates an integer

corresponding to its position in the sentence. For example, for

the question :

2. 441

Give the persons wtuo received the Nobel prize of
Physics ?

we will have the following association :

Give (1) the (2) persons (3) who (4) received (5) the
(6) Nobel (7) prize (8) of(9) Physics (10) ? (11)

The algorithm needs an integer, called rightmost, whose value

is the integer associated to the righmmst word accepted by the

granunar in the user's sentence. At the beginning of the

analysis-synthesis, the value of rigthmost is 0. rigthmost
increases according to the words accepted, but rightmost never

decreases : backtracking in the application of grammar rules

has no effect on rightmost. The algorithm needs another

integer, called current, whose value is the integer associated to

the current word to be analysed in the sentence. At the

beginning of the analysis-synthesis, the value of current is 0.

current increases according to the words accepted, but also

can decrease when backtracking occurs in the application of

grammar rules. For a given complete or incomplete user's

sentence, rules of grammar are applied until terminal symbols.

When a terminal symbol must be applied, the following

(meration is done. If the terminal symbol expected by the

grammar rule matches with ~ e current word of the sentence,

we have the following sit,ration :

If current > righttru'zgt, then, we do :

ri@gmos: := currem"
Clt/ 'ren[~:: c lgrre tg "+" i

else, we do:
current := current + 1

I f the terminal symbol 1" expected by the grmmnar rule doesn't

match with the current word of the gr~mm'Lar, the situation is :

If current < righztm-)st then we do nothing,

else, we record T as ~m expected word instead of tire

cmTent word in the sentence.

At the end, if the analysis succeexts, the users's sentence is

accepted. If it fails, we display the user's sentence until the

word W whose associated integer has the value of rightmost,
and we display all the terminal symbols T recorded as possible

words fol!owing W. Then, the user selects an expected word

and comp!etes or not his sentence. And the sentence is

analysed from tim beginning.

As we mention it above, calls to conditions may

occur in a grammar rule. Their evaluation can produce several

solutions, i t is in fact the nature of the words encountered that

limik~ the nunlber of solutions. The partial synthesis imposes

to place may condition in a grammar rule before the concerned

symbol in order to evaluate the condition before the rewriting

of the symbol. This method is not efficient when the rewriting

of the concerned symbol leads to a part of the sentence yet

accepted. The evaluation of the condition could be done after.

So, for each call to a condition that may occur in a

giammar rule, we place it before and after the concerned

symbol. The condition will be evaluated before if :

current = rightmz~st
and after if :

current < rightmost
Cohnerauer first, within tire natural language interface to a

database on planets, Orbis [Colmerauer and Kittredge 1982],

used the same grammar for analyzing sentences and

synthesizing expected words after an erroneous ont. Our

algoritlun differs from Orbis'one on the following points. We
introduce and manage variable symbols. We don't re-analyze

the incomplete (or erronexms) sentence for synthesizing

expected words : we do it in one pass. Efficiency in time is

better by evaluating conditions before or after the concerned

symbols according to the values of current and righlmost.

5. CONCLUSION

Partial synthesis is an interesting challenge when one decides

to use the same system for analysing and synthesizing

sentences. If Prolog seems u) be a fairly technical solution,

fundamental problems must be solved like writing sizable non

ambiguous grannnar with natural phenomena like trroforms

(pronouns, ellipsis, etc.), or mastering the control of partial

synthesis for avoiding arty future dead end. [mader illustrates a

path we have decid~i to follow and investigate.

6, A C K N O W L E D G M E N T S

[xzader has been developped at Bull CEDIAG (Artificial

Intelligence Development Center), 78430 L*mveciennes,

France. We thank Pascale Benoit and Domh-&lue Vienne for
their contributions.

7. R E F E R E N C E S

Benoit P., Rincel Ph., Sabatier P., Vienne D., A User-Friendly
Natural Language Intoface to Oracle, European

Oracle Users'Group Conference, Paris, 1988.

Carbonell J., ttayes P., Recovery Strategies For Parsing
Extragrarrgnatical Language, American Journal of

Computational Linguistics, 9, 3-4, 1983.

Colmerauer A., Metamorphosis Grarmnarx, in Natural

Language Conummication With Computers, Bole L.

Ed., Springer Verlag, 1978; First appeared as Les
Grammaires de Mdtamorphose, GIA Report,

Luminy, Universit6. Aix-M~seil le 2, 1975.

Cohnerauer A., Kittredge R., ORBIS, 9th Intematkmai

Conference on Computational Linguistics,

COLING, 1982.

Mathieu Y., Sabatier P., lnterfacile : Linguistic Coverage and
Query Reformulation, 11 th International Conference

on Computational Linguistics, COLING, 1986

Sabatier P., Contribution au ddveloppement d'interfaces en

langage natmel, Th~se d'Etat, Universitd Paris 7,

1987.

H., Menu-Based Natural Language Understanding,
National Computer Conference, 1984.

Tennant

442 3

