
THALES: a Software Package for Plane Geometry Constructions with a
Natural Language Interface

K. FABRICZ
JATE University

Szeged, Egyetem u. 2., Hungary, H-6722

/ /

Z. ALEXIN, T. GYIMOTHY, T. HORVATH
Research Group on the Theory of Automata at the

Hungarian Academy of Sciences,
Szeged, Somogyi u. 7., Hungary, H-6720

e-mail: sztaki!ella!h42gyi

Abstract

THALES is a software package for plane
geometry constructions, supplied with a natural
language interlace. Using THALES requires no
knowledge of a programming language. The
interface is capable of processing practically all
kinds of instructions within the subset of plane
geometry English. The "static semantic" module
has been generated on the basis of a high-level
attribute specification. Transportability, modifia-
bility and generality -- the key issues of natural
language interface design -- are investigated in the
project note. The notion of specifiability is intro-
duced to replace the three features mentioned
above.

1. Introduction*

Natural language interfaces represent one of
the most common applications of natural language
processing. In the eighties, not only a considerable
increase in natural language interface refinement
has been achieved, but also methods for design and
evaluation have been worked out [Mart 83, Schr
881. One might think that a natural language inter-
face of the nineties would be properly described in
terms ol throe parameters, viz.,

(i) transportability
(ii) modifiability by the user
Off) generality

Our experience with THALES shows that none of
these features is attainable in the near future.
Rather, natural language interfaces based on well-
defined subsets of languages and supplemented
with possibly lull semantics appear to be real can-
didates for applications in the following years. Re-
quirements for transportability and generality run
counter to the need to supply the interface with as
full semantics as possible. Modifiability by the
user can be maintained at a price that is hardly
worth paying.

If one lets the user tailor the interface to his/her
needs, that natural language interlace should pro-
vide this possibility by relaxing syntax or seman-
tics. We do not consider this a real ahernative.
Neither does modifiability in the form of substitu-
tion of one expression by another on the basis of
their semantic identity seem to be a realization of
what the term "modifiability by the user" suggests
(Cf. [JAKE 88]).

However, there appear to be different parts of
natural language interlace design that may be
reused in other applications. We shrill refer to this
possibility by the term "specifiability" -- a feature
that merits thorough consideration.

2. An O v e r v i e w of THALES

THALES is a program package fbr plane ge-
ometry constructions. The constructions are carried
out as series of instructions lormulated in English.
Through a menu system, it is possible to save con-
structions and parts of constructions lot some later
application, the constructions may be inserted into
other applications. The instructions can be stored
and edited as normal ASCII files. A number of
examples covering the majority of tasks related to
plane geometry are supplied to help the teacher or
student in teaching or learning plane geometry.
Manipulating objects during constructions is also
supported without the risk of running into ambigu-
ities in the course of reference resolution.

3. The natural language interface of
THALES

The natural language interface of THALES is
briefly characterized as follows.

Linguistic processing is based on an attribute
grammar description. From this specification, the
PROF-LP language processor [Gyim 88] generates
the parser and the evaluator. The lexicon consists
of a fixed number of items covering the sublan-
guage of plane geometry. The parser contains a

44 l

lexical and a syntactic analyzer. The former does
morphological analysis as well in order to keep the
size of the vocabulary at a minimum. The syntactic
module represents a top-down, basically LL(1) al-
gorithm augmented by attributes for initiating se-
mantic processing. Semantic interpretation is based
on a recta-level object description that provides a
clue to the implementation of relations in the lorm
of different steps in producing geometrical
constructions [Ale 89].

Intersentential reference is resolved by build-
ing a symbol table. The range of syntactic and se-
mantic coverage can be illustrated by the examples
below.

Pick a point.

Label the point by ~A.

Draw a circle around point -A.

Pick a point ~B on the circle.

Draw radius ~A-B.

Pick a point -C outside the circle.

Construct triangle ~A~B~C.

Inscribe a circle ~q in the triangle.

Find a point ~P that is inside the

triangle and outside circle -q.

From point ~P, draw a circle with

radius ~A~B.

Label the intersections of the

circles by ~D and -E.

Connect the points of intersection.

Create the hexagon -A-B-C-P-D~E.

4. G e n e r a t i n g n a t u r a l l anguage in te r faces

The experience gained from designing and
implementing THALES has led to the following
conclusions.

4. I. Evaluation of natural language interfaces

A natural language interface cstablishes con-
nection between the user and some other language
or set of user-defined procedures. In constructing a
natural language interface, the primary aim is to
provide a means for the translation of natural lan-
guage sentences into sentences of that other lan-
guage or into procedure calls. The latter define the
semantics of execution lor the input sentence(s).

When the value of a natural language inter-
face is being assessed, transportability, modifiabil-
ity and generality seem to be false starting points.
These features would make a natural language in-
terface truly valuable, were it not tot the fact that
they cannot be taken prima facie. A transportable
natural language interface means some kind of
over-generalization. For a natural language
interface to be transportable, it is necessary that we

have a sublanguage with too wide a coverage to
carry specific infmrnation encoded in its seman-
tics. That is why transportability is achieved only
in highly identical domains (characteristically, in-
terfaces to databases). A natural language interface
can bc modified by the user according to his/her
specific purposes exceptionally in the lexicon.
Hence, the semantics is prewired, the syntax is
fixed, and what you gain is hardly more than a
rephtcement of one or two mnemonics with some
other character strings that you might prefer. The
notion of generality of a natural language interface
is too vague to deserve special attention. It might
refer to syntactic and/or semantic coverage, it
might imply the existence of a fairly large word
stock, but, we should think, it would hardly ever be
takcn to mean "general" in the sense that it could
be applied in different domains.

4.2. Specifiability of natural language interface
architecture

A basic question in designing natural lan-
guage interfaces of the THALES type is that of
assessing which parts can and which cannot be
generated. An answer to this question would throw
light on the problem of transportability, modifia-
bility and generality. We argue that those parts of a
natural language interlace which can be generated
from some high level specification appeal" to
closely satisfy the demand lor transportability,
modifiability and generality. It seems to be the
case that the lexical, syntactic and static semantic
analyzers are suitable for generation on the basis of
an attribute grammar description.

It should be noted that the lexical analyzer
also contains the morphological module. The syn-
tactic parser processes a CF grammar. Dynamic
semantics is also suitable lot analysis by an
attribute grammar description, but there are too
many application-specific elements whose genera-
tion does not seem to be a realistic goal for the
time being.

Of crucial importance is the notion of static
(compile time) semantics in the case of natural
language interfaces like TIJALES. In a conven-
tional programming language, we define its static
semantics as the set of context-sensitive properties
that can bc evaluated, checked or calculated during
compile time. The most important properties el'
this kind are
a) the dil]erentiation between defining and applied

occm'rences of variables
b) the assessment of the scope of defining

o c c u r r e n c e s

c) the problem of identification: finding the
defining occurrences that match the
applied occurrences

2 45

d) the question of type compatibility
Conventional compilers contain a symbol

table that will serve as a basis for the investigation
of the questions raised above. Elements of the
symbol table are built from objects of the types
recognized by the language, supplemented with
auxiliary information. During compilation the
symbol table undergoes continuous modification,
problems related to static semantics are solved on
the basis of the actual state of the symbol table.

If one compares static semantic analysis in the
case ot' natural language interfaces like THALES,
it appears that basic types correspond to objects
with a hierarchic structure. E.g. a triangle is repre-
sented as having vertices, bisectors, altitudes etc.
Again, e.g. altitudes have endpoints, a midpoint,
length etc. Endpoints, in turn, have coordinates
expressed as numbers. Such hierarchic structure
can be ascribed to other natural language interfaces
as well. A specification language [Ale 8911 is used
for type definition. In the course of specification,
other data can also be incorporated (adjectival,
prepositional co-occurrence restrictions etc). On
the basis of this specification it is possible to gen-
erate procedures for symbol table manipulation.
The symbol table can then serve as a tool for de-
ciding type compatibility. For example, one can re-
fcr to the midpoint of an altitude due to the fact
that an altitude is of segment type, and segments
do have a midpoint.

In the differentiation of defining and applied
occurrences, determiners play a crucial role. While
in conventional programming languages identifi-
cation is resolved by a relatively simple algorithm,
this problem in THALES-like natural language in-
terfaces is much more complicated. Below we give
a sample of the identification methodology used in
THALES. This methodology can be extended on
the specificational level or, vice versa, the applica-
tion of some of the methods can be prohibited. The
abbreviations ID, OBJ, and ADJ stand lot identi-
tier (a unique name of an object, denoted by '-' in
THALES), object (the name of an object, possibly
a part of another object), and adjective, resp.
OBJ 1D - an object with a unique name to be lbund
unambiguously, cf.

Draw the radius of circle ~C.
OBJ - search for the first occurrence of the object
with the given type by tracking the symbol table
backward, cf.

Pick a point in the circle.
ADJ OBJ - a search for the first occurrence of that
type of object specified by the adjective, cf.

Draw a circle inside the acute triangle.

4.3. Conclusions

From the experience with THALES we can
conclude that the notion of static semantics can be
successfully applied to the group of natural lan-
guage interfaces represented by THALES. The
static analyzer in THALES appears to satisfy the
requirement for transportability, modifiability and
generality, although in a modified and more realis-
tic sense. That is, we do not think that there is a
one-to-one correspondence between a generated
static analyzer and the requirements. Rather, the
static analyzer can be specified in a high-level lan-
guage, and that specification can meet the trans-
portability, modifiability and generality require-
ments.

The authors gratefully acknowledge the
financial support of Cogito Ltd., Philadelphia.

References

[Ale 891] Alcxin, Z., Ffibricz, K., Gyim6thy, T.,
Horv~ith, T. CONSTRUCTOR: A Natural Lan-
guage Interface Based on Attribute Grammar.
In: T. Gyim6thy (ed.) Proceedings of the First
Finnish-Hungarian Workshop on Programming
Languages and Software Tools, Szeged, 1989,
pp. 135-145.

[Cliff 88] Clifford, J. Natural Language Querying
of Historical Databases. Computational Lin-
guistics 14 (4), 10-34.

[Gyim 88] Gyim6thy, T., Horvfith, T., Kocsis, F.,
Toczki, J. Incremental Algorithms in PROF-LP.
Lecture Notes in Computer Science, 371. pp.
93-103.

[JAKE 8811 JAKE. The Application-Independent
Natural Language User Interface. English
Knowledge Systems, Inc., Scotts Valley, Cali-
lomia, 1988.

[Mart 83] Martin, P., Appelt, P., Pereira, F. Trans-
portability and Generality in a Natural Lan-
guage Interface System. Proceedings of HCAI-
83, 1, pp. 573-581.

[Schr 88] M. Schrtider. Evaluating User Utterances
in Natural Language Interfaces to Databases.
Computers and Artificial Intelligence, 7 (4), pp.
317-337.

46 3

