Uladimir PERICLIEU
Sujatosiav BRA．JNOU
Irima NENOUA

Department of Mathematical Linguistics
Institute af Mathematics with Computing Centre，bl．θ
Bulgaxian Acadamy of Sciences
3.113 Sofia，Bulgaria

Abstract

frevidous twork has emphasizad the need For parajhrases ne maans of ensuring a Fegrbers with a system．In this paper，we discuss in ow an haphrase mey be useal as a heuristis device，viz．as a hint，we deseribe an exparimental instruction systam in mathematics incorporating this． Eeature．The system amcepts a restricted class br algebraic story problems： Formulatatu in monmestixath Bulgarian language，aral is capable of solving tham and providing ome or more＂himting＂ paraphrases，that is，paraphrases alleviating their Eurmalisation （antranslation inta equations？．

4．INTHEDDUCTIDN

Previous work has emphasized the need Eor paraphrases as means of ensuring a E日edback with the system．For axample， questiom－ansuering systems，hefore respondimg，paraphrase the requests Formulator in natural CKaplan 1979， Mokeroun 19833 or a formal language Cda Roeck，luwden 1986）in arder that the user ascertaim that his／her question has really been tarreactiy understaod．This step is mecessary ta avaid（passibly）costily searohes in tha data base for requests that have never bean marde．An adrlitional reason is that sometimes the format of the retrievend information alsa cammat clane up a potemitial misundarstanding CThomas， tuuld 19759．

Houllove，thera ara ather applicat：Lans，tifferent Fram Fearback，ta which a paraphrastic Equility may protitahly cantributa．In thes papar，wa disctuss haw a paraphrase may be usad as a hestistias devie：viz．as providimg a hirt，in art instruction sustem in mathematites．

Thes papar is organizer in the Fallouirli wey ．Sact．ᄅ is a brier avarviqu aif tio instruction systam incorporating this feature．Sects． 3 and 4 describa respactivaly some ganaral requirements to a hinting paraphrasa and the measures แe häve taken tar satisfy them in the systrm．Sact． 5 discusses an exampla，amd Sact．E，some implementation details．

2．SYSTEM DVERVIEW

We have designed an experimental instruction systam in mathematics．The system operates in a limited domain：it is capable of solving a restricted class of stary problems in algebra For Seconcary Schools in Hulgaria 6 the sa called＂number prablems＂）．The systam accept：s norm stylizad stary problams in Bulgariari as they tan be Found in mathematical textboaks of are spontaneausly formulated by the user．It solves the problem，and is capable of providing either of the following 3 aptians：
（a）Result（resultant number（s）are displayed）．
（b）Equations（the Equation（s）to which prohlams translate are displayed）．
（c）Paraphrases Come or more
＂hinting＂paraphrases are displayen，
together with the text of the original prablem ．

All．the three aptions serve as （different degrees of）hinting needed in case the users（Secondary Schoal pupils） have problams with finding a solution． Furtheron，we focus or prablams comeerned with the hinting paraphrastic facility of the system．

3．GENERAL REGUIREMENTG TO A HINTING PARAPHRASE

The profit of using a paraphrase，ar a＂reformulation＂，aF a problam as a． heuristic toal has basm amphesizad by researchars in heuristics，pedagagy arad psychalagy af erducation．Neverthaless， such a possibilitu is usually beypond the scope af instruction systams ©Sleman， Brawr 19日e，Waischadal at al 197日，Pulman 19843．

The question stilil remains as to what can count as a hinting paraxhrase （HP）（ohviously ，not anu paraphrase can serve this purpase equally well）．Basing courselves on research in mathematical pedagogy and psychalinguistics csimea conceptual and linguistic structures in this early age are known to be strongly
interdependant．，we derived the following General requirements to a HP：

1．The $H P$ shauld simplifu the original problam（op）as regards the users of the sustam $(C$ by this we mean simplification of op in both conceptual and linguistio aspects with respect to the task assigned，viz．to Fomalise （wanslate into equations）the $O P$ ．

2．The HP should be different from the $D P$（this requirement is self－evident）．
3．The HP should keep close to the op
From a conceptual and linguistic
viewpoints cthis is to ensure that the
users conceive the＂sameness＂of HP and口P）．

Since the most important task of the HP is to simplify the translation of verbally farmulated problems into equations Csolving these equations being as a rule unprablematio for childrenj，we took the following general solution regarding an＂appropriata＂HP：An ＂appropriate＂HP to a problem is the one that can be，someuhat metaphorically expressed，literally translated into the respective equations of this problem． Obviously，this would，to the greatest extent possible，simplify the $O P$（in the sense in which in the translation from one NL to another，the easiest to perform is the literal translations．This decision is further supported by the fact that pupils usually translate to themselvas the op into intarmadiary language which is most clase to the equations derivable from this problem．

4．CONSTRAINTS ON ＂APPROPRIATE＂HPs

From what is stated above，a number of specific constraints on the content and form of the HP can be derived，We briefly mention them belou in connection with two of the major decisions that have to be made in a gemeration process：first， making a decisions as to the discourse strugture of the HP（i．ee．determining what and when to say，or an ordered message to be conveyed），and，secandly，making a decision as to the verbal formulation of the discourse structure of the HP（i．a． cleterminirg how to express this infarmation in Bulgarian，what syntactic strwoturas to use，what laxemes，日tc．）．

At the first stage，we should gain in conceptwal，and，at the second stage，in linguistic simplification，thus approximating the requirament as to the literalness we have imposed．

4．1．Discourse structure

In the light of our aims，it is clear that the discourse structure of the HPs shauld be standardized，or canonized．This means that we need not be concerned（like most， scholars working an discourse arganization，e．g．Mann 19日4，Mckewan

19053 with describing tupes of discourse structures of actual texts in the domain of interast，but rathar with acescribung a discourse pattern that satisfies the discourse gaal．

Each of the texts in our domain，story problems in algebra for Secontary Schools， is known to be characterized by unknown（s） （i．e．what is lanked far in the problam）， and condition（s）（i．e．the equation（s）， relating the unknown（s），or variables，to the given（s），or constants，in the problam．Some problems also irivolve auxiliary unknown（s）（i．e．Further unknoun（s），aften mentioned in the problam formulation samewhat misleadingly （e．g．＂．．．Another number iss given．＂＂）， which have to be manipulated，but are not themselves part of the sulutions．

The discaurse structure af the HPs， therefore，will have ta reflect the basic conceptual constituents of the problems：

1．the unknoun（s）

2．the auxiliary unknown（s） （aptianally＞

3．the condition（s），

in that particular arder．
It may be noted that a lot of problems，as they are formulated in mathematics textbooks，io not actually satisfy this discourse schema：the unknowns are interspersed in the text，the unknown（s）and auxiliary umkrown（s）are not explicitly discriminated，the conditions precede（auxiliary）urknown（s）， etc．

For instance，a typical problem to be Found in a textbook may begin as Follows： ＂The sum of two numbers is 日．．．＂Clearly， starting the problem formulation by a condition，instead of with daclaring first the unknown（s），is misleading．Thus， notice that this problem may have quite different continuations，among which

```
．．．The first number is 2 ．
Which is the second？
```

in which we have just one unknown，of
．．Their product 1512.
What are these numbers？
a version in which there are two unknowns．
The resolution of this local． ambiguity requires additional intollectual effort on the part of the pupil，rew reading，etc．，circumstances which our HPs should avade．

In addition to describing the major conceptual constituents of the problems， in the canonical aiscaurse structure of the HPs，the conditions of problems themselves，usually compound propositioncy shauld be braken doun into parts．The ordering of these propositions should

 ces EMT．

3．

The verbet Gormedation of the Hew

 monsexthedoms thet apposk in actual kextas ors．otbey sebti bet the sum and

 asybinest．

The Dessember In the AP should dibectag，capilaiciy rame aperations，
 ghande by atmisseiban in the HPs，ule．the sebecion＂Equal＂，But not the ramflesimg

In buin syntactic and Iexitel

 HIE：

Websus we give an example，wrokesd bu thad sustam，whicin illustratess sane of then
 Ho EGO GOMvemience，the fip and the HB awe teanslatan into Englishy．

The 018 is：
（1）re the sum of anes rumbere uith anciblem
（e）thath is with 4 shandiex them tit
（a）is muledplitat bu E 。
（5）you wist find the maduri uf thes semeored manheat with thes rumber．s．
（5）firud the kirst：numbay．。
 8．matrivery 1ikes：
（1）月 blmbere xg Inakeri Equ．

（2）fatd the tura ramberes．
 Githe
（cy you wily pind the perduct af ches
gecend rumben with the rumbers 5．

（\％）you will obtain the skcoma rembese，

In Boblperiscon with the UF，the fo rapplicetices the tur rumbers af the peroblan chat will be kuxthesr manipulated：Eifet， thes unknowy，and，then，the euxiliary unkrimen．In clause（1）of the by the operation sf adrition is inplicitly given Ey ite ressult（＂the sum＂），whereas in Glause（3）ne thes HP the same aporation iss Elaboreted by an explicit．mentioning of the particular ar ithmetical operation of geddtian ．The imbedded relative clausa （e）ot the ur is expressed separately Erom the wedn sentance in the HP（（G）and（7） at the HP）．This provides a patsininitith， reseding the condition of the problem fiom left to iobht，to writa down，sequentially arnt indeperndently．the different Equations．In the paraphrase of the relative clause（2）of the of the welation＂is smallar than＂，known ta be contusing fur small children，is replaced but its cocrasponding operation ＂subtraction＂，and the promominal referance（expressed in the English tast． with＂i．t＂）iss avoidad Notice also that （4）From the UP and（5）from the HP are phrased in the same way（thus preserving partial sameness of the $D P$ and the HP）．

The rearganisen text of the hP wan he sean ta significantly simplify the $0 p$ （which will be particularly true for Secondary Schoni childran）．

E．MPPLEMENTATKGN

Helom we brietiy destribe sume aspectes of the implamantation design．

The system eamprises 3 madules：
（i）Analysac．
（id）Snlver
（iii）Paraphraser．
The Analyser is a＂traditianal＂ stmantic grammar，using hiararchioally crogarised templater The Salver solves the equations abtainer as a result of the parsing phase cif the systam is in a ＂Ressult＂maded．

The generation prooess goes theough the major phases．The paraphrastic： CaEility of the system has two componerits， EGsponsible for the tasks at these phassas： the fanonizers and the Gabreatar．

In the first phase，the Canonizer： constructs the discourse structure，ox the canchical form，of the MP．The process includes the representation of thes discourse structure inta a sequence né glementary propositions，instantiatar by
the ressult darived by the Amalysis morisla. This seaqumoe bagins with the propasition describing the unknown(s), and, optionallu, propositions foc auxiliary unknewn(s). In the sequance foilou the propositions deseribing conditions (moquations).

For example, as a result or the aralusis of the OP, mentiomad in sumet. §s the following sequence is obtained:
gqual $(*(+(X, Y), 2), *(Y, 5))$
equal $(-(X, 4), Y)$
unknown (X)
The Canonizer shifte the last proposition unknoum(X) at the begining of the sequence of propositions and adds yet another proposition auxiliery unknown (Y). As a result
unknoun (X)
auxliary unkrown(Y)
equal $\left({ }^{*}(+(X, Y), 2),(Y, 5)\right)$
日qual $(-(X, 4), Y)$
is ohtaimed.
Each compound proposition of the lattar type is substituted with an aquivalant propositional expression. In order to achieve this, all constituent mopositions are substituted by variables. after which the simple proposition obtained is unified with the compound proposition.
In the above case, from the
unification of the two compound
propositions "equal" with the simple
proposition equal (α, β), we obtain:
equal $(*+(X, Y), 2), *(Y, 5))=$

- equal $(\alpha, \beta),\lceil(\Gamma, 2) / \alpha, *(Y, 5) / \beta\} .\{+(X, Y) / \Gamma\}$
equal $(-(X, 4), Y)$ - $e q u a l(\alpha, \beta),[-(X, 4) / \alpha, Y / \beta)$,
where the expressions in braces are
substitutions.
Ihe propositional expression thus describes the proceess of obtaining the compound proposition in question from simple propositians.

After the substitution of anch compound propasition oE the gquivalent propositional expression, the Following canonical rapresentation obtains:
unknown (X)
auxiliary unknoun(Y)
equal $(\alpha, \beta) .[*(\Gamma, 2) / \alpha, *(Y, 5) / \beta 3 .[+(X, Y$
3/53
equal $(-(X, 4), Y)=$ equal $(\alpha, \beta), C-$
$(X, 4) / \alpha, Y / B\}$
The canomical repressentation used 18 easily seen to have certain advantages. Dn the ones hand, it explicates all computations necessary Eor construction of the system of equations, and, on the other hand, it defines a plan for varbaldzation, to be used by the Genarator, in which, First of ali, the simple propositions are verbalized, ther their verbalizatians are
usend in the varbalizatian af tha eampuand propositions at the next higher leval of hierarchy, and so on. The text to be obtained followimg such a plan of varbalization can bu litarally translatat into a system of equations bud virtue of the fact that the text itself is generated in lnvarse order: - From simple ta compound propositions.

In the second phase of the process of ganaration of the KPs, the canconcal form of the MPs is translated into Bulgarian text but the Generatar. The Genaratar itself is3 a mificatinn oranmar off
tomplates cthe templates used For generations.

Each template describes a syntactic construction by means of particulax wordforms, lexical classes and variables. Some of the templates are used to propagate anaphorical ralations Cdefinite NPs, or pranominal referencess).

As already mentianed, the Generator follows the plan far verbalization definerf by the canonical representatior. A set of selection Fhles gaverns the choles of particular templatas, hefore unification begins. In case of alternatives as to the choice of a template, the Generator consultes tha derivatiansl histary of the analysis, which is kept in a special register, and selacts the template, and the concrete verbal formulation: used in the OP Cthis minuring partial "sameneas" of MPs arrd OPs).

The sysicem is implemented in PROL.OG-an and runs an IBM ATs and compatibles.

7. COLCNCL.USTON

In the papar, we tried to show how a paraphrase can be used as a finting tool in an instruction system in mathematics, and daseribad a sustam incorporating this faatura. In the current implamentation, the system may give reasonably good paraphrases of the original problem, but still there is a lot to be desired, even abstracting from any real application for aducational purposes. It is a rathar difficult thing to make the "right" compromise between the simplification needed in such tasks and a nice verbal phrasing of the problems. We shall continue the work on the refinement of the system and on developing an explanation racilitg.

REFERENCES

Kaglan S., Cooperative Kasponsess Fromin Partable Natural Language Data Base Query, Ph. D. Dissertation, Univarsitu of Pernsylvania, 1979.

Mann w., "Giscourses structures for text ganaration", COLYNGE4, Stanford, 1984.

McKaown K. : "Paraphrasing quastions using given and new information", AJCL, 9, 1, 9583 .

```
HoKaqury K., Taxt Ganaretion: Using
    Discourse Strategies and Focus
    Constraints to Ganerate Natural
    Language Text, Cambridge Univarsitu
```

 Fresss, 1965.
 Pulman S., "Limited domain sustems Eor language taaching", In: CDLINEE4, StanEord, 1984.
de Roack A., B. Louden, "Ganerating English paraphrases from Formal ralational calculus axpressions", Ir1: COLINGBG, Bonm, 1986.

Sleaman D. . J. Brawn (eds), Intalligent Tutacing Systems, N.Y., Academic Press, 1982.

Thomas J., J. Gauld, "A psuchalopical study of quary by axampla", In: Procepadings of NCC, $44,1975$.

Weischadel R, et al, "An AI approach to language instruction", Artificial Intalifgence, 10, 3, 197日.

