
L I S T . A U T O M A T A W I T H SYNTAC'][" I C A L L Y S T R U C T U R E D O U ~ P U ~ ~

karel 0L~VA and Martin PLATEK

Faculty of Mathematics and Physics
Charles University

Nalostransk~ n~m~stl 25
CS-118 00 Praha I -Mal& Strana

Czechoslovakia

Abstract:
A new type of abstract automaton

is introduced, and both formal and linguistic
implications are discussed, most importantly
a new possibility of proving certain formal
properties of (natural) languages and their
grammars (such as context-freeness) and of
refinement of the Chomsky hierarchy.

I . Introduction
In this article we want to propose a new

type of (abstract) nondeterministic automa-
ton; its most distinguishing feature is that
its input data is a l_!inear doubly, linked list
and its output is a s~ntac!ic strncture , on
condition that the computation was success-
ful, i.e. the word represented by the input
list was in the language defined by the auto-
maton, all nondeterministic decisions of the
automaton were correct (the automaton "gues-
sed" what to do) and, hence, the computation
finished in an accepting configuration.

Apart from other features, this automa-
ton gives a uniform formal environment for
the formulation of formal syntax of natural
language(s), regardless of the intuitions
standing behind the linguistic theory in
Question; here, we have in mind first of all
the dependency or immediate constituent ap-
proach to language description.

The intuition standing behind the de___ep_~D_T
dencl approach is based on erasin~ words from
the sentence and studying whether the result-
ing string is grammatical: by means of this,
the relative mutual importance of words
(i.e., d_~ependency, as the relation between
the syntactically "more important" word,
governor, and the "less important",
den__~%, word) can be stepwise determined and
then expressed e.g. in a dependency tree of
the sentence. Clearly, in more complex cases,
it is impossible to subsume all these relat-
ions in a sentence purely by means of depen-
dency, since there are also other relations
to be found between words (such as coordinat-
ion or apposition), as well as it is impossi-
ble to express all possible relations of de-
pendency in the form of a tree, because in
certain cases a single dependent word might
have more than one governor (e.g., in cases
of words depending on coordination of govern-
Ors).

On the other hand, the intuitions stand-
ing behind the imediate constituent approach
is that of replacing certain groups of words
by others, and, again, studying the grammati-
oality of the result By means of this pro-
cess, the sentences can be stepwise splitted
t 9 smaller and smaller parts from which they
are built of, and the structure thus obtained
cln be then expressed in an IC-tree.

,498

In fact, we believe that both these intui-~
tions are extremely insightful and that it is
a regretful misunderstanding that they are
still felt as oppositions rather than comple-
mentations by many linguists; though there
have been several attempts to merge them into
a single theory (T-syntax is surely the most
notable case), we are still convinced that
the results do not suffice fully. The type of
automaton ("accepter") we propose is in fact
able to simulate elegantly any of the two
approaches during the process of computation
and to reflect them also in the structure of
its output. Thus, it makes no distinction
between these two linguistic approaches and
allows for formulations of theories based on
one or the other approach or even on any
their mixture.

2. Descri t~n of the Automaton
The list automaton consists of a fi-

nite control unl% attached to a (finite) li-
near list by a head. The head is always able
t0 read or write symbols to the item of the
list on which it stands (the current item)
and, in addition, it is able to read (but not
%o write) the symbol On the item immediatelly
to the left in the llst. Every item of the
list (and, generally, any node in the result-
ing syntactic structure) consists of a set of
pointers L ,R ,C ,CH ,0 ,H ,ZL and CP and informat-
ion parts Cat and Lex (see fig I.).

The pointers serve the following purposes:
C...serves for "simple" coordination (such as

"Peter and Paul")
CH..serves for embedded coordination (such as

"Paul and Mary and John and Eve played
tennis. ")

L...at the beginning, this pointer (together
with R) serves for connecting the items
of the list (see fig 2. for olarifica-
tlon); after the computation is success-
fully finished, L points to the item on
the left edge of the interval of items on
which the current item depends (as in
"John and Paul who...", see fig. 3)

R...is a pointer analogical to L; serves for
connecting the items of the list initial-
ly, and after the computation,R paints
to the item on the right edge of the
interval on which the current item de-
pends (see fig. 3)

O. ~.at the beginning, the value of this poin-
ter equals %o L; however, it does not
change during the whole computation and ,
hence, keeps the information about the in--
put order of the items in the input list

N.° .during and after the computatio n, the
value of this pointer is the "head" (in
the sense used in X-syntax) of the phrase
re.Presented by the daughter nodes of the
current node (current item) in the syn-
tactic (sub)tree

ZI,,CP~ose:rve as auxiliary pointers in proces-
sing complicated syntactic constructions
(coordinations, non-projective construc-
tions)

Fig. 2

Fig. 3

Fur%her , let P be set of pointers
~C,CH,L,R,O,H,ZL,ZP} ,and, in addition, let
THIS be a special pointer the value of which
:is always the current item. Let NIL be a
special "empty" value of a pointer. Then, we
define the following basic operations of the
automaton :

DEL(x,y)o.ofor x~P,y~P u [THIS}; this opera-
tlon takes the item which is the value of
y and sets the value of its pointer x to
NIL

CON(x,y,z)oo.for xgP,. y,zmp u{THIS}; perfor-
ming this operation means setting the
pointcr,x of the item y to the value z

G0(x)o.ofor x~P; the head of the automaton
moves from the current item to the item
which is the value of x. If x=THIS or
x=NIL the state of the centre} unlt be-
comes undefined (i.e., an error occurs)

NEW(x) for x6P; a new item is created and
• the value of x is set to this new item.
All pointer values of the new item are set
to NIL, the information part of the item
is copied from the current item

WRITE(1)...i is a symbol fro~ the alphabet of
the automaton; the value of Cat of the
current Item Is set to i

All oper~tlons are performed relatively to
the current item (i.eo, "x" in their descrip-
tlon means "x of the current item"). Their
intuitive sense is reshaping the input lls%
to a more complex structure by means of
setting and changing the values of pointers.

Further, these basic operations can be
combined to complex operations. For the pur-
poses of description of Czech syntax, we de-
fined complex operations of the following
types (again, the pointers are those of the
current item):

Z. GO(R)

II. WRITE(a)

III. CON(R,L,R)
CON(L ,R ,L)
DEL(R ,THIS)
GO(L)

iv. GO(L)
CON(R ,L ,R)
CON(L ,R ,L)
DEL(L ,THIS)
Go(~)

v. NEW(H)
CON(R ,L ,H)
CON(~ ,H ,R)
CON(L ,H ,L)
CON(L,R ,H)
DEL(R ,THIS)
DEL(H ,THIS)
GO(L)

and other e i gh t complex opera t ions serv ing
for processing coordination, non-projective
constructions etc. The automaton performs
each of these operations in one step of the
computation; the next operation to be perfor-
med is chosen according to the current inter-
nal state of the control unit and the infor-
mation read by the head (i.e., information
contained in the current item and its left
neighbour in the llst). Performing one step
of the computation means performing one of
the complex operations and, possibly, chan-
ging the internal state of the control unit,
both according to the transition function of
the automaton.

The set of complex operations intro-
duced has two important features: first, with
the help of this set, we are convinced, it is
possible to describe sufficiently complete
surface syntax of Czech. Second, the set of
complex operations of the automaton we use
for the description of Czech syntax guaran-
tees that any language accepted by the auto-
maton with these operations is context-free.
This point probably deserves further discus-
sion: the matter is that by changing the set
!of basic operations (i.e., by adding some new
basic operations and/or by removing the cur-
rent ones) and/or by limiting the choice and
ordering of basic operations in an appro-
.priate Way and/or by limiting the number of
"visits" of the head on an item of the llst,
it is possible to characterize the explica-
tive power of different subtypes of the auto-
maton and, hence, to characterize different
types of grammars strongly equivalent with
the automaton in question. Thus, e.g., cate-
gorial grammars can be shown to be strongly
equivalent with automata with operations I-IV
and with the number of "visits" limited by
Jconstant; context-free grammars are strongly

499

equivalent with automata with complex opera-
%ions. I-III and V and c6nstant number of vi-
sits, generalized dependency grammars (this
term suspiciously resembles the title of
(Gazdar,Klein Pullum and Sag,85), but was in
fact introduced as early as in (G}adkij,73))
are strongly equivalent with the automaton
with operations I-IV etc. For automata using
complex operations different from I-V we have
not find any strongly equivalent type of
grammars in literature. But probably the most
important point concerns weak equivalence:
any automaton using the complex operations
defined is weakly equivalent to some ~ context-
free grammar. (And extending this ' weak gene-
rative capacity will be possible only on con-
dition of adding some new complex opera-
tion(s).)

3. Conslusions
The type of automaton introduced is, in

our opinion, important for several reasons.
First, it allows for stepwise refinemen~

of the set of its complex operations: first,
only an acceotor might be constructed, and
only later its operations can be augmented to
a real parser. Of course, the augmentation of
the primary acceptor and turning it into the
parser might be performed in most different
ways, which allows for incarnating various
linguistic theories over the initial accept-
or. Cenerally, we can start the process of
creating the automaton by cor~structing the
csmplex operations from basic operations DEL
and GO only, applying these two basic operat-
ions ,to the pointers L,R and THIS solely
(i.e., only pointers from the input list).
D'ring its computation, such an accept or will
simulate the derivation of the input string
(string represented by the'input list). In
the second step, i.e. in building the parser,
we augment these primitive complex operations
by adding other basic operations and/or using
other pointers, to get, eventually, the in-
tended parser.

Second, from the linguistic viewpoint,
it enables to construct a recognizing automa-
ton - a full syntactic parser (i.e., an auto-
maton which gives a syntacticstructure as
its output) - which, in addition, allows to
prove the context-freeness of the processed
languages, but on grounds profoundly diffe-
rent than those of (Gazdar,Klein,Pullum and
Sag,85).

Third, from the formal viewpoint, it
allows to describe the whole Chomsky hierar-
chy of languages by a sln__i_nnf~ abstract automa-
ton with differently limited set of operat-
ions rather than with a whole set of relati-
vely unrelated types of machines (Turing ma-
chine, linearly bounded automaton, pushdown
automaton, finite automaton): this is because
the operations of the proposed automaton are
in fact Just refined operations of the llst
automaton proposed in (Chytil, Pl&tek and
Vogel,86).

R e f e r e n c e s :
Chytil M.P., Pl&tek M. and Vogel J.:

A note on the Chomsky hierarchy,
Bulletin of EATCS 28, 1986

Gazdar G., Klein E., Pullum G. and Sag I.:
Generalized Phrase Structure Grammar,
Basil Blackwell, Oxford, 1985

GladkiJ A.V.: FormalmyJe grammatiki i Jazyki,
Mir, Moscow, 1973

Pl&tek M. and Vogel J.: Deterministic list
automata and erasing graphs, in The Prague
Bulletin of Mathematical Linguistics ~5,
Prague, 1986

500

