
VOCNETS - A TOOL FOR HANDLING FINITE VOCABULARIES

Hans KARLGREN
KVAL Institute for Information Science

SSdermalms torg 8
S-ll6 45 Stockholm

Sweden

J~rgen KUNZE
Academy of Sciences of the GDR
Prenzlauer Promenade 149-152

Berlin, DDR - 1100
German Democratic Republic

Abstract
A method is proposed for storing a

finite vocabulary in a manner which makes it
convenient to recognize words and substrings
of words. The representation, which can be
generated automatically from a list of words
or from given representations of other sets
by means of which the vocabulary has been
defined through set or string operations, has
the form of a modified finite-state grammar,
a form eliminating the multiplicative effects
of conjunction, complementation, etc., on the
node sets of conventional finite-state
representations.

0. Background
Traditionally, linguists describe sent-

ences, and inflected and derived word forms
by means of rules, whereas vocabularies are
accounted for by enumeration. But even for
the purpose of specifying a given lexicon or
the vocabulary of a given piece of text we
find mere enumerations inconvenient to access
and not very illuminating. We want answers
to be readily given to questions like whether
a given string is a member (or a prefix, a
suffix, some other substring or sequence of
substrings of a member), ~or which elements of
some set of strings have such properties.
That is, we want to arrange the lexical data
so that it is easy to perform Boolean and
string operations on sets of words.

We therefore introduce a grammar-like
representation for a finite vocabulary,
specifying it as is, i.e. , without
exaggeration or omission, with no claim on
the linguistic status of the set described or
the rules constructed to specify it. No
prediction about potential strings outside
the given set is suggested. The
representation can be algorithmically derived
from a list of the words in the vocabulary.

The proposed too] appears to have
theoretical as we]] as computational merits.

1. Task
We thus require a method for repre-

senting a v o c a b u 1 a r y V of strings
over on a 1 p h a b e t A (of letters,
phonemes, morphemes or other atoms), where
* A is small compared to the vocabulary V
(say, 30 against 30 000 or 300 000),

* the vocabulary V, though large, is finite,
* V has a "structure" in the sense that,
typically, a string in V contains substrings
included in other strings in V.

We want the representation to
* permit convenient r e t r i e v a 1 of
strings and substrings of strings in V,
* be algorithmically constructed on s u c-
c e s s i v e i n p u t of strings in V,
or, if V is defined through B o o 1 e a n or
s t r i n g o p e r a t i o n s on other
sets, be derivable from operations on repre-
sentations of these more elementary sets,

* be reasonably c o m p a c t for practical
computational applications.

2. Modified Finite-State Representation
We have chosen to represent vocabularies

as modified finite-state gra~aars, which we
shall call vocnets.

A vocnet will include a finite directed
graph with edges, a r r o w s, labelled with
elements of the alphabet A. Such a graph
will specify a vocabulary over the alphabet A
if we mark a subset S of the nodes as source
nodes and define as an accepted word the
concatenation of the labels of such paths
through the graph from nodes in S as arrive
under certain side conditions at a set of
nodes which fulfills given target conditions.

We do not assume a vocnet to be
deterministic in the sense that for any node
i and string ~ there exist only one node j
such that ~ is a path from i to j. Should
we introduce such a restraint, it can be
proven that it is lost already under regular
operations on the vocabularies, ioe., that
this attractive feature will be absent from a
vocnet derived in the manner we propose for
the union, concatenation set or closure of
the vocabularies, for which deterministic
vocnets had been introduced.

Precautions had to be taken to keep the
mechanically generated representations
compact. In particular, it was essential to
eliminate the well-known multiplicative
effect on the number of states arising when
standard finite-state grammars are combined
by intersection and complementation.

3. Definition of vocnet graphs
A vocnet graph U = <A, N, C', C">

quadruple, where
is a

A is an alphabet of a t o m s a, b; c, ...

N is a set of n o d e s h, i, j, k, .o.

C' and C" are mappings of A into N ~N.
We define C(x) = C'(x) u C"(x) as the

set of c a t e g o r i e s of "the atom x.
We define tile product C 4 o C~ of two

category sets C~ and C~ as
C~ o C~ ={(i, j)IBk (i, k)e C~^(k~ j) ¢ C~I

and the category set for a string ~ : x ~ as

c(~) = C(x) o c(~)

We shall say that the atom x C o n-
n e c t s the set M1 to the set M2 in U iff

either M2 is the set of all j for which there
is a node i in MI such that (i, j)~ C'(x)r

or M2 is the set of all j for which there is
a node i in M1 such that (i, j)~ C"(x).

306

We shall a]so say that a string & = x
connects Ml to M2 if there is some set M3
such that x connects M1 to M3 and ~ connects
M3 to M2°

By :introducing two kinds of arrows, one
can so to speak synchronize parallel paths:
the restraint that in every path the arrow
associated with one position in a string
will haw! to be of the same kind can be
utilized to partition the graph into zones
which correspond to segments of the strings,
if one kind of arrows, i n t r a z o n e
arrows (tliose in C') join nodes within the
same zone and another kind, i n t e r-
z o n e arrows (those in C")~ join nodes in
one zone with nodes in another zone. A
string can then be seen as consisting of
segments separated by junctures, where each
segment J s associated with parallel intrazone
arrow sequences and each juncture with
parallel interzone arrows.

4° Definition of Vocnets
A vocnet G is a triple <U, S, P>~ where

S ~N is a non-empty set of s o u r c e
nodes
P(M) is ~t t a r g e t c o n d i t i o n on
node sets M, P(M) being a proposition over
elementary conditions of the form that M
overlaps with some subset E of N, say

(M~E] ~: ~)A ~(MoE~>2 • ~).

The sets E1 and E2 here form the
t a r g e t a r e a s of G.

The union of all minimal sets M for
which P(M) is true in the vocnet G will be
called the t a r g e t s e t T of G.

A vocnet G defines the language L(G):

[(* I ~M ~N and ~ connects S to the
non-empty node set M and P(M) is true]

Whereas for a string to be accepted by a
conventional finite-state grammar it is
enough ~hat it is associated with one
permitted path through the graph, a string
will be accepted by a vocnet if it is
associated with a set of simultaneous paths,
each leading from a source node to a target
node, these target nodes forming a permitted
combination M (i.e., M is not empty and P(M)
i.S true).

The vocnet may contain special e x i t
c h e c k e r s. An exit checker is a dummy
zone, consisting of exactly one node
connected to itself by an arrow in C' for
each atom in A. By using exit checkers,
local conditions for zones can be accounted
for in the target conditions for the whole
vocnet° The exit checkers, in a way, will
then fre~,ze the zone exit conditions so that
they remain accessible for verification when
the whole graph has been passed through.

5. Genexation of Vecnets from List of Words

A vocnet for a given vocabulary can be
generateo algorithmically in the following
manner°

Words are entered one by one. For each
new word unique new nodes are introduced: if
the new word is x^xz.., x~ , each letter x~
is given the new category (kT ,k~+A), where
no k~. existed before.

Clearly, this procedure will create a
vocnet which will account for all and only
the words given° The set of nodes, however,

will typically be much larger than necessary,
but it can be reduced - after one word has
been entered or after the insertion of
several words - by appropriate fusion of
nodes; cf. section 8 infra.

6. Set Operations on Vocabularies
In the :following, it will be assumed

that the vocabularies considered are strings
over the same alphabet A, that none of them
includes the empty string, and that the
vocnet graphs which we combine have disjunct
sets of nodes.

6.1 Complement Formation
Given a vocnet G1 for a language LI, the

vocnet G for the complement L is given
immediately by replacing P1 by its negation

G = < UI, SI, ~ PI>,
Jf G1 is complete in the sense that for any
string there exists some path beginning in an
element of SI. If G1 is not complete in this
sense, it can be made complete at the expense
of adding one more node.

6.2 Union
In a vocnet G = <U, S, P> for the union

of L(GI) and L(G2) the vocnet graph U is
formed directly through union of the elements
of U1 and U2, and P is formed through
disjunction:

U = <A, N1 uN2, CI'~ C2', Cl"u C2">
S = SI u $2
P(M) <:> PI(M) v P2(M) for M ~ N.

6.3 Intersection
In a vocnet G for L(GI) ~ L(G2), U and S

are formed as in the case of union and

P(M) <=> Pl(M) A P2(M) for S ~ N.

Thus, one and the same vocnet graph will
serve as a component in vocnets defining
different languages.

7. String Operations on Vocabularies

7.1 Concatenation
The concatenation set V of V1 and V2,

i.e., the set V of strings consisting of a
string in Vl, specified by the vocnet GI,
concatenated with one in V2, specified by the
vocnet G2, is defined by a vocnet G

G = <U, SI, P>
where

U = <A, NI+uN2, CI'u C2', Cl"+u C2"u C12">
P(M) <=> QI(M) A P2(M)

Here
NI+ is N1 with the addition of exit checkers:
if G1 has the target areas El, £'2,..., NI+
will contain the exit checkers fl, f2, ...,

CI"+ is CI" with the addition of arrows for

each atom from each node in Ep to the exit
checker fp,

CI2"(x) is tile set of all arrows (i, j) with
i ~ T1 and j 6 N2 for which (h, j) ~ Cl'(x) for
some h & $2.

QI(M) is the frozen version of PI(M), with
fl, f2, ..., substituting El, E2, ...

The vocnet graphs U1 and U2 have thus
been integrated as zones into the new vocnet
graph. A few exit checkers have been added

307

to permit expressing the restraints on the
pass@ge through the zone U1 as target
conditions on the totality of G. Thanks to
the use of exit checkers the complexity of
the target condition P of G in terms of the
number of target areas is not the product of
the complexities of Pl and P2 but less than
their sum.

7.2. Restricted Iteration and Involution

The languages L(GI) u L(GI)Zu... u L(GI) q

and L(GI)q (q = ~ 2) may be represented as
vocnets that are constructed in a similar way
as for concatenation, with GI in the role of
G2, but the exit checkers have to be
stratified so that we may count the depth d
of the concatenation. Therefore C"(x)
contains besides the categories explained in
7.1 all pairs (dfp, d*~fp) for l~d ~q-l.

The target condition for restricted
iteration is

P(M) <:> PI(M) A (Mn[qfl,qf2] = ~) A

(q-A PI(M) => ... => 4PI(M))
and for the p-th power of L(GI)

P(M) <=> PI(M) A (Mr [qf],qf2] = ~) A

~'API(M) A ... A ~PI(M).

Here, ~ PI(M) are the frozen stratified
target conditions of GI.

7.3. Decatenation
Given one vocnet G1 (say for words

beginning with a prefix) and another vocnet
G2 (say for prefixes and prefix sequences),
we search a vocnet G (say for words stripped
of their prefixes) such that ~& L(G] iff

~4a~A2 (~ & L(GI) A 0~2C-L(G2)A

The following vocnet G will satsify our
requirement :

G = <UI, S, PI>
where S is the union of all sets M ~NI for
which S1 is connected to M in G1 by some

string contained in L(G2).

8. Equatability and Node Fusion
Vocnets generated with the incremental

algorithm described in section 5 above
typically contain more nodes than a minimal
vocnet for the same language. Similarly,
vocnets derived from other vocnets tend to be
highly redundant.

Compacting of a given vocnet can be
algorithmically performed as follows.

We shall say that nodes in a vocnet G
are e q u a t a b 1 e if they can be
identified without affecting the language
defined by G.

The following definitions permit us to
find pairs of equatable nodes.

We first define some equivalence
relations between nodes.

The nodes i and j are p r e c e-
d e n c e e q u i v a 1 e n t in a vocnet
graph U iff for all k and x

(k, i)~ C'(x) <=> (k,
and

(k, i) G C"(x) <=> (k,

j) ~ C'(x)

j) 6 C-(x)

The nodes J and j are
s i o n e q u i v a 1 e n t
graph U iff for all k and x

s U C C e s-
in a vocnet

(i, k) e C' (x) <=> (j~ k) 6 C' (x)
and

(i, k) ~C"(x) <=> (j, k)eC'(x)

The nodes i and j are s o u r c e
e q u i v a 1 e n t in a vocnet G iff

i&S <=> j&S

The nodes i and j are t a r g e t
e q u i v a 1 e n t in a vocnet G iff for
any subset M of N

P(M u {i}) <:> P(M u [j}).

Now tile nodes i and j are 1 e f t
e q u i v a 1 e n t in a vocnet G iff they
are precedence and source equivalent, rPhey
are r i g h t e q u i v a 1 e n t in a
vocnet G iff they are succession and target
equivalent. They are e q u a t a b I e if -
but not necessarily only if - they are left
or right equivalent.

By successive fusion of pairwise
equatable nodes vocnets can be - not rarely
drastically - compacted. It should be noted v
however, that equatability is not an
equivalence relation and that reduction of a
given vocnet graph does not yield a unique
result but depends on the choice of node
pairs to identify in each step of the
procedure.

9. Parasites
By p a r a s i t e s of a language L

we shall mean strings which are not members
of L nor substrings of members of L.

Clearly, if with the vocnet G tile set
C(~) is empty, ~ is a parasite of L(G)~ 4,
is not a member nor will it become a member
whatever is appended at either end.

We shall say a node i in a vocnet G is
g e n u i n e if there is some string o<
associated with a path from a source node in
G via i to a node in some M, such that
connects S to M and P(M) is true.

If all nodes in a notvec are genuine r a
string 4. is a parasite iff C(o<) is empty.
The vocnet will then offer us an associative
calculus for recognizing parasites (and
strings which constitute the beginning of a
word or the end of a word).

A node i is ingenuine if no path leads
from nodes in S to i or from i to nodes of To
If P(M) has the simple form that M must
overlap with some given target set, a node i
is ingenuine only if the preceding condition
is fullfilled.

i0. Node Elimination
Ingenuine nodes can be removed from the

graph U without affecting the language

accepted by G = <U, S, P>.
Successive elimination of ingenuine

nodes and fusion of equatable node may lead
to considerable compression and simpli-
fication of a given vocnet. It should be
observed that the final, irreducible result
of such compression is not independent of the
choice at each stage of what reduction
operation to perform.

308

