
F o r m a l ~ o r p h o l o g ¥

Jan HAJIC
Re~earch Institute of Hathematical Machines

LoretAnsk~ n~m. 3
~18 55 Praha I, Czechoslovakia

& b ~ r a o t

A formalism for the description of a
system of formal morphology for flexive and
agglutinative languages (such as C3ech) is
presented, borrowing some notions and the
style from the theory of formal languages.
Some examples (for Czech adjectives) are
presented at the end of the paper. In these
examples, the formalism's rules are used for
the phonology-based changes as well, but
nothing prevents the use of a separate
phonology level (e.g. of the Koskenniemi's
two-level model) as a front- (and back-) end
for the analysis (and synthesis).

1. Th~ N o t i v a ¢ i o n

Using a computer, the morphological
level is a basis for building the syntaotlco-
semantic part of any NL analysis. The CL
world pays more attention to morphology only
after the work /Koskenniemi 1983/ was
published. However, as Kay remarked (e . g .
in /Kay 1987/), phonology was actually what
was done in /Koskenniemi 1983/. Moreover,
the strategy used there is best suited for
agglutinative languages with almost one-to-
one mapping between morpheme and grammatical
meaning, but slavonic languages are different
in this respect.

One of the praotigal reasons for
formalizing morphology is that although there
are some computer implementations using a
Czech morphology subsystem (/Haji~,Oliva
1986/, IKirschner 1983/, /Kirschner 1987/),
based on the same sources (/EBSAT VI 198~/,
/EBSAT VII 1982/), no unifying formalism for
a complete description of formal morphology
exists.

2. The Po~mal imm

The terms alphabet, string, concatenat-
ion, • ~., symbol N (positive integers),
indexes and are used here in the same way
as in the formal grammar theory; the symbol
exp(A) denotes t h e set of all subsets o f A, e
denotes an empty string. Uppercase letters

.are used mainly for denotin~ sets and newly
defined structures, lowercase letters are
used for mappings, for elements of an
alphabet and for strings.

I~finition i. A finite set K of symbols is
called a set of grammatical meanings (or
simply meanings for short); values from K
represent values of morphological categories
(e . g , s g may represent singular number, p3
may represent dative ("3rd case") for nouns,
e t c .) .

D e f i n i t i o n 2- A finite set D = ((w,i) E A* x
(N , {0))], where A is an alphabet, is called
a dictionary. A pair (w,i) ~ D is called a
dictionary entry, w is a lexical unit and i
is called pattern number. In the linguistic
interpretation, a lexical unit represents the

notion "systemic word", but it need not be
represented by a traditional dictionary form.

Defini~i,n 3 . Let A be a finite alphabet, K
a finite set of meanings, V a finite alphabet
of variables such that A a V = £). The
quintuple (A,V,K,t,R) where t is a mapping
t: V ~> exp(A*) assigni,~g types to
variables, R is a finite 'set of rules
(I,H,u,v,C), where I ~ N is is a finite set
(of labels), C ~ (N u {0}7 is a finite set
(of continuations), H n K is a set of
meanings belongin~ to a particular rule from
R, u,v E (A u V)-, is called a controlled
rewriting system (ORS)| all variables from
the left-hand side (u) must be present on the
right-hand side (v) and vice versa (rule
symmetry according to variables).

D e f i n i t i o n 4. Let T = (A,V,K,t,R) be a CRS.
A (simple) substitution on T will be any
mapping q: V -> A*| q(v) s t(v).

I)efini~ion 5- Let T = (A,V,K,t0R) be a ORS
and q a simple substitution on T. Happin~ d:
CA , V) z -> A ~ such that d(e) = e| d(a) = a
for a ~ A| d(v) = q{v) for v ~ V; d(bu) =
d(b)d(u) for b E CA v V), u s CA , V) ~ will
be called (generalized) substitution derived

from q .
Comment. The (generalized) s u b s t i t u t i o n
substitutes tin a given s t r i n g) all
variables by some string. The ~ame s t r i n g is
substituted for all oucu~ences of this
variable (follows from the definition).

Definition 6. Let T = (A,V,K,~,R) b e a CRS
and F ~ K. Let then G, G' ~ K, w,z ~ (A ,
V) ~, i E N, i' E (N u {0}). Me say that w
~an be directly rewritten in the state (i0G)
to z with a continuation (i',G') according to
meanings F (written as w(i,G) =>[T,F]
~(i',G')), if t h e r e exist such rule
(l,H,u,v,C) E R and such simple substitution
q on T, that i ~ I, i' s C, H n F, G = G' ,
H, d(u) = w and d(v) = z, where d is the
substitution derived from q.
Relation =>~[T,F] is defined as the reflexive
and transitive closure of =>iT,F].
Comment. The CRS is controlled through
continuations and labels. After a dlreot
rewriting operation, the only rules that
could be applied next must have in their
label at least one number from the rewritln K
operation continuation. Please notice that:
- this operation always rewrite~ whole words|
- the restriction on the left-hand and right-
hand side of a rule that it should be only
string (of letters and/or variables) is not
so strong as it may seem, because no
restrictions are imposed on the substitution
q. However, to be able to implement the rules
in a particular implementation as finite
state machines, we shall require q to be
defined usin~ regular expressions onlyo

~fi~i~ion 7. Let T = (A,V,K,~,R) be a CRS
and let n be the maximal numbe~ from all

222

labels from all rules from R; n-tuple P =
(pl, ..., pn) will be called a list of
patterna; on T (the elements of P are called
patterna;) if for every i a mapping pi: exp(K)
x A* -> t)xp(A ~) is defined as z E pi(F,w) <=>
wCi,F) =:>~[T,F] zOO,{)).
Comment. The "strange" sets G and G' from
the definition 6 acquire a real meaning only
in connection with the definition of
patterns; they have a controlling task during
pi cons%)ruction, namely, they check whether
all meanings from F are used during the
derivation. "To use a meaning k" means here
that t h , : ~ r e is some rule (l,H,u,v,C) applied
in the ~ourse of derivation from w(i,F) to
z(O,()) such that k E H. Such meaning can
then be removed from G when constructing G'
(see Def~ 7); meanings not from H cannot.
Thus, to get the empty set in z(O,()) when
startin~ from w(i,F), all meanings from F
must be "used" in this sense.
A patte>?n describes how to construct to a
given wo>zd w all possible forms according to
meaning~ F . . In this sense, the notion of
pattern does not differ substantially from
the traditional notion of pattern in formal
morphology, although traditionally, not the
constructive description, but just some
represent;afire of such a description is

called a pattern.

Deflnlt|x;n 8. Let D be a dictionary over an
alphabet A, T = (A,V,K,t,R) a CRS and P a
l i s t of patterns on T. A quadruple H =
(A,D,K,P) is called a morphology description
on T (H['C]-description).

Def|ni~|.t)n 9. Let T = (A,V,K,t,R) be a CRS
and H = (A,D,K,F) an H[T]-description. Set L
= (z ~ A:'~; there ex- w E A~ i E N, H ~ K; z

pi(H,w)} will be called a language
generated by H[T]-description H. The
element~ of L will be called word forms.
Comment. The term morphology description
introduced above is a counterpart to a
description of a system of' formal morphology,
as u s e d in traditional literature on

morpholo~y.
Definition 9 i s introduced here just for the
purpose of formalization of the notion of
word form, i.e. any form derived from any
word from the dictionary using all possible
meanings according to H[T].

D e f i n i t i ~) n 10- Let T = (A,V,K,t,R) be a ORS
and M == (A,D,K,P) be HET]-description. The
term syn.i;hesis on M is used for a mapping s:
exp(K) x A ~ -> exp(A*); s(H,w) = (z; ex. i
N, i <~= n; z ~ pi(H,w) & (w,i) E D}. The
term ant~lysis is used then for a mapping a:
A ~ -> exp(exp(K) x A~); a(z) = ((H,w); z

s{H,w)).
Comment. According to definition I0,
synthesi~ means to use patterns for words
from the dictionary only. The definition of
analysis; i s based on the syhthesis
definition, so it clearly and surely follows
the intuition what an analysis is. In this
sense, these definitions don't differ
substantially from the traditional view on
formal morphology, as opposed to Koskenniemi;
however, the so~called oomplex word forms
("have been called") are not covered, and
their an~Iysis is shifted to syntax.

The definition of analysis is quite clear,
but there is no procedure contained, capable
of actually carrying out this process.
However, thanks t o rule symmetry i t i s
possible to reverse the rewriting process:

D e f i n i t i o n t l . Let T = (A,V,K,t,R) be a ORS.
Further, let G G = a K, i ~ N, i ' ~ (N v
(0)), z,w E A ~. He say that under ~he
condition (i',G') it is possible to directly
analyse a string z to w with a continuation
(i,G) (we write z(i',G') =<[T] w(i,G)), if
there exists a rule (I,H,u,v,C) E R and a
simple substitution q on T such that i E I,
i ' E C, G = G' u H, d (u) = w a d (v) = z ,
where d is the generalized substitution
derived from q. A relation " i t is possible
to analyze" (=<~[T]) is defined as a
reflexive and transitive closure of =<[T].

D e f i n i t i o n 1 2 . Let T = (A V,K,t,R) be a ORS
and z e A . Every strln~ w s A , i e N and F

}< such that z(O,£}) =< "[T] w(i,F) is called
a predecessor of z with a continuation (i,F).
Lemma. Let T = (A,V,K,t,R) be a ORS and w E
A* a predecessor of string z g A * with a
continuation (i,P). Then z E pi(F,w), where
p i is a pattern by T (see Def. 7). Proof
(idea). The only "asymmetry" in the
definition of => as opposed to =<, i.e. the
condition H n F, can be solved putting (see
Def. 11) P = (} v HI u H~ u • .. ~, Hn (for n
analysis steps). Then surely Hi a F for
every i.
Theorem. Let T = (A,V,K,t,R) be a CRS, H =
(A,D,K,P) an H[T]-desoription, a an analysis
by H and w s A* a predecessor of z e A ~ with
a continuation (i,F). Moreover, let (w,i) E
D. Then (F,w) ~ a(z).
Proof follows from the precedin~ lemma and
from the definition of analysis.
Comment. This theorem helps us to manage an
analysis of a word form: we begin with the
form being analysed (z) and a "continuation ''
(0,(3), using then "reversed" rules for back
rewriting. In any state w(i,F) during this
process, a correct analysis is obtained
whenever (w,i) is found in the dictionary.
At the same time we have in F the appropriate
meanings. Passin~ along all possible paths
of back rewriting, we obtain the whole set
a(z).

3. An Example

To i l l u s t r a t e t h e m o s t i m p o r t a n t
f e a t u r e s o f the f c rma l i sm d e s c r i b e d above,
we have chosen a s i m p l i f i e d example o f Czech
a d j e c t i v e s (r e g u l a r d e c l i n a t i o n a c c c r d i n g t o
two t r a d i t i o n a l " p a t t e r n s " - mlad~ (young)
and jarn~ (spring), with n e g a t i o n , full
comparative and superlative, sg and pl, but
only masc. anim. nominative and genitive).

The d i c t i o n a r y :
D = { (n o v , , l) , new

(p o d l ~ , 2) } v i l e (i t has no neg. forms)

The CRS:
CRS T = (A , V , K , t , R) :
A = { a , ~ , b , c , ~ , . . . , z , ~ , # }

(# means word s e p a r a t o r)
K = { s g , p l , c o m p , s u p , n e g , m a s c , n o m , a c c }
V = { - , L I M }
t (-) = A~| t (L) = { 1 , z } ; t (M) = { m , n , v }
R = { (s e e fig. 1) }

223

({ 1 } , { } , - , - , { 2 }) , ({3},{masc,sg,nom}, -~, - ~ # , { 0 }) ,
({ l) , { n e g } , - , n e - , { 2 }) , ((3},{mssc,sg~acc}, - ~ -~ho# , {O }) ,
({ 2 } , { } , - , - , { 3 }) , ({ 3) , { m a s c , p l , n o m } , - ~ , - ~ # , { 0 }) ,
({ 2 } , { c o m p } , - L ~ , - L e j ~ , { 3 }) , ({ 3 } , { m a s c , p l , a c c } , - ~ , - ~ @ , { 0 }) ,
({2) , {sup } , - L ~ , n e j - L e j ~ , { 3)) , ({3),{easc,sg,n~m}, - { , -~#~{O})t
((2},{c~mp},-M~, - M ~ j ~ , { 3 }) , ({3} , {masc,sg,acc}, -~,-~h¢~.,{O}),
({ 2 } , { s u p) , - M ~ , n e ~ - M ~ , { 3 }) , ({3} , {~asc,p l ,nom}, - , , - * # , { 0 }) ,

({3 } , {masc,p l ,acc} , -~, -~#, {0})
P i ~ . 1

.

using p2:
podl~(2,{sup,masc,pl ,acc}) => two possib.

ne3podle3~(3,{masc,p l ,acc}) => 1st a l t .
ne~podle~W(O,{}) 8" empty, O.K.

podl~(3,{sup,masc,pl ,acc}) => 2nd a l t .
podl~#(O,{sup}) S" not empty, so

t h i s i s not a so lu t ion
P o s s i b i l i t i e s without removinK "used" meanings are not shown;
a l l lead to non-empty G' in the resu l t i n~ z(O,G').

F i g . 2
. .

• v . I

nejnovej~,#(O,{}) =< not in D (4 alter.)
nejnov~j~(3,{masc,pl,acc}) =< not in D (3 alter.)

n o v # (2 , { s u p , m a s c , p l , a c c }) =< n o t i n D
n o v # (l , (s u p , m a s c , p l , a c c)) E D; SOLUTION

ne3nov~(2,{comp,masc,pl,acc}) =< not in D (2 a l t a r .)
jnov#(1,{neg,comp,masc,pl,acc}), not in D
nejnov~(1,{comp,masc,pl,acc}), not in D

v . v~
nejnovejs1(2,{masc,pl ,acc}) =< . . . n o t in D (2 a l t e r .)

• v . v p

3noveJsz(1,(negtmasc,pl,acc}). not in D
nejnov~J~{(1,{masc,pl lacc}) not in D

nejnov~j~(3, {masc,p l ,nom}) =< not in
nov~(2,{sup,masc,pl,nom}) =< not in D

nov~(1,{sup,masc,pl,nom}) s D; SOLUTION
. . . same as 1st a l t e r . , but nom instead of ace . . .
• v . v ~

nejnoveJsz(3,{masc,sg,nom}) =< not in D
nov~(2,{sup,masc,sg~nom}) =< not in D

nov~(1,{sup,masc,sg,nom}) s D; SOLUTION
. . . same as 1st a l t a r . , but sg,ncm instead of p l ,acc

nejnov~j~(3,{masc,p l ,nom}) =< not in D
nejnov~j~(2,{masc,p l ,nom)) =< . . . n o t in D (2 a l t e r .)

nejnovSjg#(1,{masc,pl,nom}) not in D
• v . v s

jnove3sy(1,{neg,masc,pl,nom)), n o t in D
F i g . 3

.

An example of synthesis: we want to obtain
s({sup,masc,pl,acc}~pod1~) -> (p o d i a , 2) ~ D;
see fig. 2

An example of analysis: we want to obtain
a n • w • v . (eJnovejsz#); see f i g . 3

Comment• Better written rules in CRS would
not allow for the 4th alternative in the

. v. vs.
first step ("ne3nove3sy), because "~" could
not be followed by "9" in any Czech word
form; however, constructing the other
unsuccessful alternatives could not be a
priori cancelled only the dictionary can
decide, whether e . ~ . "jnov~" is or is not a
Czech adjective.
Comment on comment. No o,~ange in the rules
would be necessary if a separate phonology
and/or orthography level is used; then, t h e
"~" possibility, bein K orthographically im-
possible, is excluded there, of course.

4 . C o n c l u s i o n

This formalism w i l l be probably
s u f f i c i e n t for Czech (no counter-example to
t h i s thes is has been discovered so far) • Per
inflected words one or two "levels" (i.e.,
successive rule applications) will suffice,

224

agg lu t i na t i ve elements (e .~ . , ad jec t i ve
comparison) w i l l probably need three to f i v e
ru les.

R e f e r e n c e s
EBSAT V I I (1 9 8 2) : Pk~ rphe i i c ~ n a l y s i s o f Czech

P r a g u e 1982
EBSAT VI (19811 = L e x i c a l I n p u t Data f o r

EKperim4wnts N i t h Czech~ P rahs 1981
Koskennlemi, K. (1983), T~o-level morphology,

Univ. of He ls ink i , Dept. of Sen. Lingu-
i s t i c s , Publ icat ions No. 11

Haj i~, J . , O l i ve , K. (1986)= Pro jekt ~esko-
ruske~ho s t r o j o v L i h o p r~ek ladu , (A P r o j e c t
of Czech t o Russian MT System), in=
Proceedings of SOFSEM'86, Liptovsk~ JAn

Kirschner, Z. (1983)= IIGSRII= (A Nethod of
Automatic Ex t rac t ion of S i gn i f i can t
Terms f r o m T e x t s) , EIM~T X

K i r s c h n e r , Z. (1987)= K i r s c h n e r t Z.= APd%C3-2:
An English,to-Czech Machine Translat ion
Sys tem, EBSAT X I I X

Kay , M. (1987) = Non-Cones,erie, i r e F i n i t e ~.
State Morphology, In= Proceedings of the
3rd European ACL meeting, ~.openhagen,
Denmark, Apr i l 1987

EBSAT = E x p l i z i t e B e s c h r e i b u n g d e r S p r a c h e
und a u t o l k m t i s c h e T e x t b e a r b e i t u n g , LK P raha

