REPRESENTATION TREES AND
STRING-TREE CORRESPONDENCES
presented for COLING-88
Budapest, 22-27 August 1988

by

Ch.BOITET \& Y.ZAHARIN
GETA, BP 68
Université de Grenoble ex CNRS
38402 Sa int-Mart in-d'Héres, FRANCE
PTMK, Universiti Sarns Malaysia
11800 Penang, MALAYSIA

ABSTRAC:

The correspondence between a string of a language and its abstract representation, usualiy a (decorated) tree, is not straightforward. However, it is desirable to maintain it, for example to build structured ecitors for texts written in natural language. As such correspondences must be compositional, we call them "Structured String-Tree Correspondences" (SSTC)

We argue that a SSTC is in fact composed of two interrelated correspondences, one between nodes and substrings, and the other between subtrees and substrings, the substrings being possibly discontinucus in both cases. We then proceed to show how to def ine a SSTC with a Structura! Correspondence Static Gramar (SCSG), and which constraints to put on the rules of the SCSG to get a "natural" SSTC.

Keywarde: linguistic descriptors, discontinuous constituents, discontinuous phrase structure grammars, structured string-tree correspondences, structural correspondence static gramars

ADPeviacigns: DPSG, MI, NL, SSTC, STCG.

INTRODUELON

Ordered trees, annotated with simple labels or complex "cecoracions" (property lists), are widely used for representing natural language (NL) utterances. This corresponas to a hierarchical view: the utterance is decomposed into groups and subgroups. When the depth of linguisicic analysis is such that a representation in terms of graphs, networks or scts of formulas would be more direct, one often still prefers to use tree structures, at the price of encoding the desired informa:ion in the decorations (e. 9. , by "coindexing" two or mor: nodes). This is because trees are conceptually and algorithmically easier to manipulate, and also because all usual interpretations based on the linguistic structure are more or less "compositional" in nature.

If ia language is described by a classical Phrase Structure Grammar, or by a (projective) Dependency Grammar, the tree structure "contains" the assoctated string in some easily def ined sense. In particular, the surface order of the string is derived from some ordered traversal of the tree (left-to-right order of the leaves of a constituent tree. or infix order for a dependency tree).

However, if one wants to assoclate "natural" structures to strings, for example abstract trees for program:s or predicate-argument structures for NL utterances, this is no longer true. Elements of the string may have boen erased, or duplicated, some "discontinuous" groups may have been put together, and the surface order may not be refiected in the tree (e.g., for a homalized representation). Such correspondences must bie compositional: the complete tree corresponds to the complete string, then subtrees correspond to substrings, etc. Herice, we call them "Structured String-Iree Correspondences" (SSTC).

For some applications, like classical (batch) Machine Translation (MT), it is not necessary to keep the correspondence explicit: for revising a translation, it is enough to show the correspondence between two sentences or two paragraphs. However, if one wants to build structured editors for texts written in natural
language, thereby using at the same time a string (the text) and a tree (its representation), it seems necessary to represent explicitly the associated SSTC.

In the first part, we briefly review the types of string-tree correspondences which are implied by the most usual types of tree representations of NL. utterances. We argue that a SSTC should in fact be composed of two interrelated correspondences, one between nodes and substrings, and the other between subtrees and substrings, the substrings being possibly discontimous in both cases. This is presented in more detail in the second part. In the last part, we show how to def ine a SSTC with a Structural Correspondence Static Graminar (SCSG), and which constraints to put on the rules of the SCSG to get a "natural" SSTC.

1. WHAT IS A CORRESPQNDENCE BETWEEN A STRING ANO A TREE?
2. PHRASE STRUCTURE TREES (C-STRUCTURFS)

Classical Phrase Structure trees give rise to a very simple kind of SSTC. To each string $w=a 1 \ldots$ an, let us associate the set of intervals i.j. $0 \leq i \leq j \leq m$. wi_jl denotes the substring ai...aj of w if i<j, Є otherwise.

The root, or equivalently the whole tree, corresponds to $w=w(0, n)$ Each leaf corresponds to some substring wi i_j), of iength 0 or 1 (we may extend this to any length if terminals are allowed to be themseives strings. Then, the correspondence is such that any internal node of the tree, or equivalently each tree "complete" in breadth and depth, corresponds to w(i..jl, iff its m: daughters (or its m immediate subtrees), in order, correspond to a sequence w(il.jil,...w(im_jm). such that $i l=i, j \|=j$, and $j k=i k+i$ for $0<k<m$.

This type of correspondence is "projective". It has however been argued that classical phrase structure trees are madequate for characterising syntactic representations in general, especially in the case of so-called "discont inuous"constltuents. Here are some examples.
.- (1) Johr talked, of course, gbout politics.

- (2) He picked the ball up.
- (3) Je ne le lui ai pas donné
(I did not give it to him)
According to (MoCawley 82), sentence (1) contains a verb phrase "talked about politics", which is divided by the adverbial phrase "of course", which modifies the whole sentence, and not only the verbal kernel (or the verbal phrase, in Chomsky's terminology). Sentence (2) contains the particle "up", which is separated from its verb "ploked" by "the bail". In sentence (3), the discontinuous negation "ne...pas" overlaps with the composed form of the verb "ai...chonne". Moreover, if a sentence in active voice is to be represented in a standard order (subject verb object complement), this sentence contains two displaced elements, namely the object "le" and the complement "lui".
(McCawley 82) and later (Bunt \& al 87) have argued that "meaningful" representations of sentences (2) and (3) shouid be the following phrase structure trees, (4) and (5), respectively.

Figure 1: Examples of discontinuous phrase structure trees

Along the same line, and taking into consideration the displaced elements, a "meaningful" representation for sentence (3) would be tree (6)

Figure 2: Example of discontinuity and displacement
Here, the correspondence is established between a node (or equivalently the complete subtree rooted at a node) and a sequence of intervals. If a displacement arises, as in (3), the left-to-right order of nodes in the tree may be incompatible with the order of the corresponding sequences of intervals in the string (the considered ordering is the natural lexicographic extension).

Rather than to introduce the awkward notion of "discontinuous" tree, as above, with intersecting branches, we suggest to keep the tree diagrams in their usual form and to show the string separately. For sentence (3), then, we get the following diagram

Figure 3: Separation of a string and its "discont inous" PS tree

Now, as before, the root of the tree still corresponds to $w=w\left(0 _n\right)$, and a leaf corresponds to an interval of length 0 or 1 (or more, see above). But an internal node with m daughters corresponds to a sequence of intervals, which" is the "union" of the m sequences corresponding to its daughters.

More precisely, a "sequence" of intervals is a list of the form $S=w\left(i I_{-} j 1\right), \ldots, w\left(i p_{-} . j p\right)$, in order ($i k<i k+1$ for $0<k<p$) and without over lapping ($j k<i k+1$ for $0<k<p$). Its union (denoted by "+") with an interval $1=w(i-j)$ is the smallest list containing all elements of S and of 1 . For example, $\mathrm{S}+\mathrm{I}$ is:

- Sitself, if there is a k such that $i k \leq i$ and $j \leq j k$;
- S , augmented with wiliml inserted in the proper place. if $j<i l$ or $j p<i$ or there is a $k<p$ such that $j k<i$ and j<ik+1;
- w(il_ji),....w(iq_jq).w(i_jr),....w(ip_jp); if there are q and r such that jq<isiq+1 and $r \leq j \leq j r$ (other cases are analogous)

2. DEPENDENCY IREES (E-SIEUCTURES)

In classical dependency trees, elements of the represented string appear on the nodes of the tree, with no auxiliary symbols, except a "dummy node", of ten Indicated by "*". which serves to separate the left daughters from the right daughters.

There are two aspects in the correspondence. First, a node corresponds to an element of the string, usually an interval of length 1 . Second, the complete subtree rooted at a node corresponds to the interval unton of the intervals corresponding to the node and to its subtree. These intervals may not overlap.

The string can be produced from the tree by an inorder traversal (one starts from the root, and, at any node, one traverses first the trees rooted at the left daughters, then the node, then the trees rooted at the right daughters, recursively).

Sentences (1) and (2) might be represented by trees (8) and (9) below.

Figure 4: Examples of classical dependency trees
In those trees, the elscontinuities shown in the PS trees (4) and (5) have disappeared. We have shown on some nodes the syntactic functions usually attached to the edges.

There may be some discussion on the structures produced. For example, same linguists would rather see "politics" dominating "about". This is not our topic here, but we will use this other possibility in a later diagram. For the moment, note that discontinulty does not always disappear in dependency trees. Here is an example corresponding to sentence (3).

Figure 5: Example of a "discont incus" dependency tree
Let us now take a simple example from the area of programming languages, which shows an abstract tree associated to an assignment, where some elements of the string are "missing" in the tree, and where a node corresponds to a "dtscontinuous" substring (a sequence of intervals).

Figure 6: Example of "abstract" tree for a formal language expression

Here, we have showt the correspondence between nodes and sequences. The parentheses are missing in the tree, which means that the sequence corresponding to the subtres rooted at node " + " is more than the union of the sequences corresponding to its subtrees. However, there is no overlapping between sequences corresponding to independent nodes or subtrees.

Anocher remark is that the elements appearing on the nodes are not always identical with elements of the represented string. For example, we have replaced ":=" by " $=$:" and the (discontinuous) substring "if then else" by "if_then_else", in a usual fashion.

3. PREDICAIE-ARGUMENT TREES (P-STRUCTURES)

In "predicate-argument structures", it is usual to construct a unique node for a compound predicate, in the same spirit as the "if then_else" operator above. With sentences (1) and (2), for example, we could get trees (12) and (13) below. Beside the logical relation (argument place) or the semantic relation, the nodes must also contain some other information, like tense, person, etc., which is not shown here.

Figure 7: Examples of predicate-argument trees
We now come to situations where over lapping occurs, and winare it is natural to consider "incomplete" subtrees corresponding to "dtscont inous" groups.

This occurs frequently in cases of coordination with elision, as in:
"Jolm and Mary give Paul and Ann trousers and dresses."

In order to simplify the trees, we abstract this by the formal language tan v bn on 1 n>0t, and propose the two trees (14) and (15) below for the string "a a vbbcc" (also written a. 1 a. 2 vb. 1 b. 2 c. 1 c. 2 to shisw the positions) as more "natural" representations than the syntactic tree derived from a context-sensitive grammar in normal form for this language (all rules are of the form "1 Ar $\quad \rightarrow 1 \cup r$ ", l and r being the left and right sontext, respectively).

Figure 8: Examples of p-structures for a1 a2 $\vee \mathrm{b} 1 \mathrm{~b} 2 \mathrm{c} 1$ c 2

On certain nodes, we have represented the sequence corresponding to the complete subtree rooted at the node, followed by the sequence corresponding to the node itself. For nodes A, B, C in tree (14), this "local" sequence is empty.

In both trees, it is clear that the sequence al $\vee \mathrm{b} 1$ c1 corresponds to an "incomplete" subtree, namely $V(A(a 1), B(b 1), C(c 1))$ in (14) and $V(a 1, b 1, c 1)$ in (15).

In tree (14), the coordination is shown directly on the graph, and the verb (V) is not shown as elided. It is a matter of further analysis to accept or not the distributive interpratation ("respectively" may nold between the three groups, the last two ones, or nones).

On the contrary, tree (15), in a sense, is a more "abstract" representation. It shows directly the interpretation as a coordination of two sentences, and "restores" the elided V.

4. MLLILEVEL TREES (M-STRUCTURES)

Multilevel tree structures, or m-structures for short, have been introduced by B.VAuquols in 1974 (see iVauquo is 781) for the purposes of Machine Iranslation. On the same graph, three "levels of interpretation" are described (constituents, syntactio dependencies, logical and semantic relations). As seen in other examples above, the nodes which refer directly to the string do not contain elements of the string, but rather representatives of (sequences of) elements of the string, called "lexical units" (LU), like "repair" for "reparation", plus some informat ion about the derivation used.

The graph is deduced by simple rules from a dependency tree: each internal node is "lowered" in the "*"position and its syntactic funct ion becomes "GOV" (for "governor". or head in some other terminology), discont thuous lexical elements (like "ne...pas" or "ai...donne" are represented by one node, coordination is represented by "vertical lists" as in tree (14), lexical untts of referred elements are put in the nodes corresponding to the pronouns, an approximation of coindexing, etc..

From the point of view of the associated correspondence between representation trees and represented strings, nothing new has to be mentioned.

11. A PROPOSAL: STRUCTURED SIRING-TREE CORRESPONDENCES

our proposal is now almost complete.

1. DEFINITIONS

a) The correspondence between a string and its representation tree is made of two interrelated correspondences:

- between nodes and (possibly discontinuous) substrings;
- between (possibly incomplete) subtrees and (possibly discont inous) substrings.
b) It can pe encoded on the tree by attaching to each node N two sequences of intervals, called SNODE(N) and STREE (N), such that:

1. $\operatorname{SNODE}(N) \leqslant \operatorname{STREE}(N)$, which means that $\operatorname{SNDDE}(N)$ is "contained" in STREE (N) with respect to its basic elements (the wii.jJ). that is, that $\operatorname{STREE}(N)=\operatorname{STREE}(N) \cup \operatorname{SNODE}(N)$. Note that equality can not be required, even on the leaves, because the string " (b) " may well have a representation tree with the unique node b
2. If N has in daughters NI...Nm, then
$\operatorname{STREE}(N) \geqslant \operatorname{STREE}(N 1)+\ldots+\operatorname{STREE}(N m)+\operatorname{SNODE}(N)$. In case of strict contaiment, the difference correspond to the elements of the string wtich are represented by the subtree but which are not explicitly represented, like "(" and ")" in "(b)".
c) The sequence $\operatorname{SSUBT}(X, N)$ corresponding to a given incomplete subtree X rooted at node N of the whole tree T is defined recursively by
$\operatorname{SSUBT}(X, N)=\operatorname{STREE}(X)$ if $X=N$, that is, if X is reduced to one node, not necessarily a leaf of r;
$\operatorname{SSUBT}(X, N)=\operatorname{SSUBT}\left(X_{1}\right) * \ldots+\operatorname{SSUE} T(X D) \cup \operatorname{SNODE}(N)$, if N, the root of X, nas p subtrees $X 1 \ldots X p$ in Y.

In other words, one takes the smallest sequence containing the biggest sequence corresponding to the leaves of X (STREE on the leaves) and compatible with the monotony rules above

2. PROPERTIES

Here are some interesting properties of SSTCs which may help to classify them.

A SSTC is non-over laoping if

- STREE(Ni) and STREE(N2) have an empty intersection if N1 and N2 are indeperdent;
- SNODE(N1) and STREE(N2) have an empty intersection if N 2 is a daughter of N 1 .

A SSTC is projective if

- it is non-over lapping;
- for any two sister nodes NI and N2, NI to the left of N2, STREE(N1) is completely to the left of STREE(N2). This means that
if $\operatorname{STREE}(N i)=w\left(i 1_{-} 11\right) \ldots w\left(i p_{-j p}\right)$ or \emptyset
 then jpsk:

A SSTC is direct if, for each elementary interval $w\left(i_{-i-1)}\right.$ there is a node N such that $\operatorname{SNODE}(N)=w\left(i L^{i+1}\right)$.

A SSTC is complete if each elementary interval is contained in SNODE (N) for some node N.

A SSTC is of the constituent tupe if $\operatorname{SNODE}(N)$ is empty for each non terminal mode N.

3. QUESTIONS OF PEPRESENTATION

Iri the examples above, we have encoded the correspondence in the tree. However, this is in practice not always necessary, or even practical.

In the case of explicit and projective SSTCs, for instance, the string can be obtained directly from the tree, and there is no need to show the intervals.

Note that, in the process of generating a string from a tree, one naturally starts from the top, not knowing the final length of the string, and goes down recursively, dividing this interval into sinaller intervals. Rather than to introduce variables representing the extremities of the created intervals, it may be more practical to start from a fixed interval, say 0.1 or $0 _100$. Then, the positions between the elements of 62
the string will be denoted by an increasing sequence of rational numbers ($0,1 / 3,1 / 2,5 / 7$), etc.

In the case of "local" non-projectivity, we have tried some devices using two relative integers (POS, LEV) associated with each node N. POS (N) shows the felative order in the subtree rooted at mother $(N),\{f(E E V(N)=0$, or more generally at its $L E V(N+1)$ ancestor, lif $L E V(N)>0$. Unfortunately, all these scheness seem to work only for particular situations.

Also, if the SSTC is over lapping, or not complete, it may be computationally costly fo find the (smiallest) subtree assoctated with a given (possibly discontinuous) substring. But this operation would be essential in a "structural" editor of NL texts. A posslbility is then to encode the correspondence both in the tree and in the string.

Finally, take the example of tree (15) above. Suppose that the user of a NL editor wants to change b1 (Paul, in the corresponding NL example) in a way which may contradict some agreement constraint between al, v, bl and ol. One should be able to find the smallest 5 sic containing al and other elements, that is, the subtree $\mathrm{V}(\mathrm{a}, \mathrm{b} 1, \mathrm{c} 1)$ and the discontinuous substring al V bl cl (the notation a...v.b...c.... might be suitable, if one wants to avoid indices)

For these reasons, it may be wor thwh to to consider the possibility of representing the SSTC independently of both the tree and the string. This is actually the idea behind the formalism of STCG (String-Tree Correspondence Grammar).
111. EXTENDING THE STCG FORMALISM YO DEFINE A SSIC

1. BASIC NOTIQNS ABOLISTCG

The stat to grammars of (Vauquots \& Chappuy 85) are devices to def ine string-tree correspondences. They have been formalized by the STCGs of (Zaharin 86).

Here, a context-free like apparatus of rules (also called "boards", for "planches" in French, because they are usually written with two dimens ional tree diagrams) ts used to construct the set of "legal" Ssics.

The axloms are all pairs $(X, Y(S F))$, where X is an unbounded string variable, Y a starting node (standing for SENTENCE, or TITLE, for example), and $\$ F$ is an unbounded forest variable.

The terminals ara all pairs $\left(x, x^{\prime}\right)$, where x is an eletient of atring and x^{\prime} a one-node tree which represents it.

The rules show how a SSTC is made up of smaller ones. The generated language is the set of all vartable-free (sstring>, <tree>) pairs derivable from an axtom by the grammar rules.

In order to avold undue formalism, let us give an example for the formal language \tan bn on 1 n>0).

IRule R1:	(abc, $S(a, b, c)$)	
!		
1	(a, a) (b, b) ($\mathrm{c}, \mathrm{c})$	
1Rule R2:	(a f) Y ¢ \& , S.1(a, b, c, S.2(\$F))	
$!$		
!	$(a, a)(b, b)(c, 0)(x \vee Z, S, 2(b F))$	$!$

Figure 9: A simple SCSG for an bo on
X, Y and Z are string var tables, $\$ F$ a forest variable, and the indices are just there to disi inguish elements with the saine label.

Actually, the formalisin is a bit nore preetse and powerful, because it is possible to express that a correspondence in the r.h.s. (right hand side) is obtained only by certain rules, and to restriot the possible unifications (rather, a spectal kthe called
"identif icat ions" in (Zaharin 861). To illustrate this, we may rewrite the last element of the r.h.s. as:

Figure 10 Example of with.ref part in a r.h.s.
R2: $X / a X, \ldots$ means that the subcorrespondence (XYZ,S.2(\$F)) may be generated by rule R2, thereby identifying X in $X Y Z$ with aX in axbycz (in the 1.h.s.).

In the vers ion of (zahar in 86), the correspondence is always of constituent type, because the only applications considerad had been to in-structures used for MT, where non-terminal nodes do not airectly correspond to substrings.

But this is by no means necessary, as the next example illustrates, with the language (an v bn $\mathrm{cn} 1 \mathrm{n}>0$).

```
!Rule R1: (a b c,V(a,b,o))
|
IRulerR: (aXVGYeZ,V.1<a,b,a,V.2($F))
```



```
| with_ref
    (R1: X/a, Y/b, Z/c, V.2/V, $F//(a,b,c)
    !R2: X/aX, Y/bY, Z/cZ,V.2/V.1, SF/(a,b,c,v.2($F))) !
```

Figure 11: STCG for an v bn on giving tree (15)
This STCG generates correspondences such as (aavbbcc, tree (15)). But something has to be added to distinguish the STREE and SNODE parts.
2. AN EXEENSION

We simply associate to each constant or variable appearinus in a STCG rule one or two expressions representing the STREE and SNODE sequences, separated by a "/" if necessary, with basic elements of the form "p_q", where p and q are constant or variable indices.

In arly given (<strings, stree>) pair, we associate one such expression to each element of <string>, and two to each notle of <tree>, the first for STREE and the second for SNODE. The second may be onitted: by default, SNDOE is taker to be empty on internal nodes and equal to STREE on leaves.

Our last example may now be rewritten as follows.

Figure 12: Extended STCG for an v bn on

3. CONSIRAINIS ON STCG

We will now give examples of STCGs which give rise to unnatural correspondences and try to derive some constraints on the rules. Let us first siightly modify our first STCG for an bn cn.

Figure 13: Example of "unordered" STCG
In the first element of R2, XYZ has been replaced by ZYX. The following representation tree (16) would have been naturally associated with the string a1.a2.a3.b1.b2.b3.c1.c2.c3 by our first STCG. With this modification, it becones associated with a1.c2.a3.b1.b2.b3.c1.a2.c3, as showt in the next diagran.

Figure 14: Example of STCG "unordered" w.r.t. the strings

The problem here is that the subtree rooted at S.2, considered as a whole tree, should correspond to the string a2.c3.b2.b3.c2.a3, and that it corresponds to c2.a3.b2.b3.a2.c3 when embedded in the whole tree rooted at $S .1$.

The STREE correspondences are not proper ly defined, because one should be able to distinguish between different permutations of the intervals, which is clearly
impossible with our previcus definitions and
representations of SSTCs. representations of SSTCs.

This is because the order of the elements of the strings is not compatible in the l.h.s. and in the r.h.s.: our first constraint will be to forbid this in stcg rules.

Our second constraint will be to forbid the use of aux iliary var iables which do not correspond to substrings (subtrees) of the terminal (variable-free) pairs produced by the STCG.

Let us illustrate this with the following STCG, which constructs the representation tree $S(A(u), B(v))$ for each word w on (a, b, c) of even length such that $w=u v$ and $\mathrm{mu}=\mathrm{Hv}$.

```
\Rule RI: (xP, S(A(x),P))
```

Figure 15: Example of STCG with auxiliary variables
There is a natural SSTC between the representation tree and the string. For example, we get $S(A(a, b, c), B(b, a, c))$ for $w=a b c b a c$. But the construction of this final correspondence involves the construction of pairs such as (abcPPP, $S(A(a, b, c), P, P, P)$), which are just used for counting.

If we try to put sequence expressions on the P nodes and string elements, we notice that it would be necessary to extend the intervals of w, rather than to divide them, Otherwise, we would make the first P of abcPPP correspond to the second b of $w=a b c b a c$, which is quite natural, but what would we associate to the first P of bacPPP?

If we represent explicitly (and separately) the structure of a given (<string>, <trees) element of the SSTC by its derivation tree in the STCG, the second constraint will allow us to instantiate all variables by substrings or subtrees of <string> and <tree>, without having to construct other auxiliary strings and trees. This, of course, would permit a more economical implementation, in terms of space.

Finally, note that the interesting properties of SSTCs mentioned in 111.1 above have simple expressions as constraints on the rules of our extended STCG formalism.

CONCLUDING REMARKS

Trees have been widely used for the representation of natural language utterances. However, there have been arguments saying that they are not adequate for representing the so-called 'discontinuous' structures. This has led to various solutions, relying, for tnstance, on encoding the desired information in the nodes (e.g. 'coindexing'), or on defining trees with "discont inuous" constituents.

We have presented here a proposal for representing discontinuous constituents, and, more generally, non-projective and uncomplete SSTCs with over lapping.

The proposal uses the ordinary definttion of ordered trees. This is made possible by separating the representation tree from the surface utterance (which the tree is a representation of). The correspondence between the two may be represented explicitly by means of sequences of intervals attached to the nodes.

This opens up a discussion on (and definitions of) structured string-tree correspondences in general. This representation might also be used in syntactic editors for programs or in syntactico-semantic editors for NL. texts.

Finally, the formalism of the String-Tree Correspondence Grammar has been extended to give the means of representing the said structured correspondences.

An analogous problem is to define structured correspondences between representation trees, for instance between source and target interface structures in transfer-based MT systems. We do not yet know of any satisfactory proposal.

A solution to this problem would give two very interesting results:

- first, a way to specify structural transfers in a reasoned manner, Just as STCGs are used to specify structural analysers or generators,
- second, a way to put a text and its translation in a very fine-grained correspondence. This is quite easy with word-for-word approaches, of course, and also for approaches using classical (projective) PS trees or dependency trees, but has become quite difficult with more sophisticated approaches using p-structures or m-structures.

EEFERENCES

(Bunt \& al 87) H.BUNT, J.THESINGH \& K. VAN DER SLOOT (1987)

Discontinuous constituents in trees. rules and
parsing 3 Proc. Conf. ACl European Chapter, Copenhagen. April 1987.
(McCawley 82) J.D. MCCAWLEY (1982) Parenthetical and discontinuous constituent $\frac{\text { structure }}{\text { Linguistic }}$ Inquiry 13 (1), 91-106, 1982.
(Vauquois 78) B. VAUQUOIS (1978)
Descrintion de la structure intermédiaire
Communication présentée au colloque de Luxembourg. April 1978, GETA document, Grenoble.
(Vauquois \& Boltet 85I B. VAUQUDIS \& CH.BOITET (1985) Automated translation at GEIA (Grenoble University) Computational Linguistics, 11:1, 28-36, January 1985.
(Vauquois \& Chappuy 85) B.VAUQUOIS 8 S.CHAPPUY (1985) Static Crammars
Proc. Conf. on theoretical \& methodological issues in MT, Colgate Univ., Hamilton, N. Y., August 1985.
(Zanar in 86) Y.ZAHARIN (1986)
Strategies and heuristics in the analvsis of natural language in Machine Translation
Ph.D. Thesis, Universiti Sains Malaysia, March 1986 (Research conducted under GETA-USM cooperation GEYA document, grenoble.
(Zanarin 87a) Y.ZAHARIN (1987)
String-Iree Correspondence Grammar: a declarative
formalism for defining the corresoondence between strings of terms and tree structures"
Proc. 3rd Conf. ACL European Chapter, Copenhagen, Apri) 1987.
(Zahar in 87b) Y.ZAHARIN (1987)
The linguistic aporoach at GEIA: a synopsis
the journal TECHNOLOGOS (L.ISH-CNRS), printemps 1987, Paris
(Zajac 86) R. ZAJAC (1986)
SCSLi a linguistic soccification language for MI Proc. of COL ING-86, IKS, 393-398, Bonn, August 25-29, 1986.

