# Tom Wachtel <br> Scicon Ltd, London <br> and <br> Research Unit for Information Science \& AI, Hamburg University 

## 1. Introduction

The work reported here is being conducted as part of the LokI project (ESPRIT Project 107, "A logio oriented approach to knowledge and datal bases supporting natural user interaction"). The goal of the NL part of the projeot is to build a pragmatioally sensitive natural language interface to a knowledge base. By "pragmatically sensitive", we mean that the system should not only produce well-farmed coherent and cohesive language (a minimum requirement of any NL system designed to handle discourse), but should also be sensitive to those aspeots of user behaviour that humans are sensitive to over and above simply providing a good response, including producing output that is appropriately decorated with those minor arid semantically inconsequential elements of language that make the difference between natural language and natural natural language.

This paper concentrates on the representation of the structure of conversation in our system. We will first outline the representation we use for dialogue moves, and then outiline the nature of the definition of well-formed dialogue that we are operating with. Finally, we will note a few extensions to the representation mechanism.

## 2. The MOVE frame

We are assuming a seven-slot frame for the representation of moves withir a dialogue, with the following slots: MOVE, USER, AGENT, TURN, ACT, BABE, CONT. Every move in a conversation is represented by such a frame. The MOVE slot uniquely idenitifies a particular move in the oonversation by an arbitrary integer. The USER slot identifies the current user of the system. The AGENT slot specifies whether it is a user move or a system move. The TURN slot has the value OPEN $n$ or CLOSE $n$, where $n$ is a number that refers to a particular exchange. Typically, a move with a value OPEN $n$ for the TURN 5 lot might be a request, and one with a CLOSE $n$ value the corresponding response.

The ACT slot speoifies what act is performed by the utterance. This will be either a speech act, or the value ACTION, since not, all moves need be speeoh acts. The range of speech acts that the system will have to recognise or produce is clearly smaller than that which occurs in conversations between humans. Furthermore, certain speech acts will be of primary importance given the domain of application of the system, namely, as a front end to an expert system. We have therefore produced an initial hierarchy of potentially relevant speech acts (Wachtel 1985a), where the major classification is into requests, assertions and commentaries. Some of these are referred to below. Many of the speech acts we use go one level below what is traditionally viewed as a speech act (i.e. in the sense of Austin (1962), Searle (1967), etc.) and may be compared with distinctions that Mokeown (1985: 9ff.), for example, discusses under the category of "rhetorical predicates", though they are by no means the same. The only speech acts discussed below are referred to by the following abbreviations:

REQACT REQAFF SUPPAFF REQCONST SUPPCONST REQCONF SUPPCONF
request-for-action request-for-affirmation supply-of-affirmation request-for-constant supply-of-constant request-for-confirmation supply-of-confirmation

The BASE slot specifies the current topic, in the very restricted sense of a pointer to the node in the semantio network that corresponds to the object what the current exohange is about. This simplistic view of topic is adopted here as a first step only, and serves to illustrate the points discussed below.
The cont slot specifies the semantio
representation of the utterance, and we
envisage using the same representation for
semantics and for actions, so that all
possible ACT types can be represented
uniformly in the cont slot, In partioular
we will define an exohange as a pair of
utterances with the same value for the cont
slot, for the time being. This is of course
too strict. other functions specifying
"looal coherence" in the sense of Hobbs (1982: 227) are also relevant here. The particular illooutionary force of an utterance will be a function of the value of the ACT slot and the CONT slot. Subdialogues that are not in the mainstream of the conversation will be idertified by particular relationship of values for the TURN slot between adjacent moves; enhanced by the values of the $A C T$ slots for the moves.

Some examples of the use of this frame to represent sequences of utterances in conversations can be found in Wachtel (1985b, 19850), inoluding its use to identify shifts of topic, subdialogues and relevance, as well as the contextual disambiguation of speech acts, which is the main topic of these working papers.

## 3. The structure of conversation

We assume that it is possible to define the structure of a possible oonversation by rule. Actual human-human conversations may defy such analysis, as illustrated by, for example, the work of Sachs, Schegloff \& Jefferson (1974). However, the possible ways in which the conversations we axe dealing with may go are severely limited by three factors: (a) this is an interface to an expert system (or some similarly specific software), which delimits the possible range of topics; (b) one of the participants in the dialogue is machine, whioh means that it will not suddenly want to indioate that, for example, Albert's nieoe is a friend from school, but this fact has no bearing on the supportive things being said about her; and (c) the other participant knows that his interlocutor is a machine, and will behave aceordingly. Therefore; what we need to model is not a typically natural open human conversation, but a restricted type of oonversation that also ocours between humans in certain well-circumseribed contexts. For example, a conversation between a would-be passenger and a tioket olerk at a railway station is closer to what we need to model, and in such cases it is possible to define what is or is not a well-formed conversation by rules of an abstract nature that may well be inadequate for other naturally ocourring oonverations.

We therefore propose three rules that define the notion of well-formed conversation in the present context, making the following assumptions. The structure of a conversation can be represented as a tree structure. The wellformedness of such trees can be defined by rewrite rules. The maximal number of levels of embedding in such trees is six (see below). In particular, subdialogues can be embedded within dialogues, but there can be no embedding within subdialogues. The last restriction confliots with what people da. It is one of the restriotions we consider neoessary, and whioh can be handled in such a way that the user will not notice
that any such restriction exists.
We assume that the following four categories are sufficient for the representation of the structure of conversation. The symbols used serve as momonics for their approximate oounterparts in English, but they should not, be strictly equated with them: CONV (eorversation), DIAL (dialogue); EXCH (exchange) and MOVE (as discussed above).

To formulate in informal terms the general style and atmosphere of the rules that we will propose more formally below, let us say that a CONV may oonsist of one or more DIALS, a DIAL may consist of one on more EXCHs, and an EXCH consists of two MOVEs, with each of these Moves followed by an optional DIAL.

A major point about conversations that must be handled in a grammar of this type is the faot that although MOVEs are the only terminal nodes, and are therefore the nodes that correspond to the utteranoes that are actually produced, with all other nodes representing more abstract elements, gertain features of conversation need to be associated with these abstract nodes. Far example, although each MOVE is speoified for who the current user of the system is and each MOVE also has a particular topic, as disoussed above, these notions properly belong to more abstract levels of conversational structure. Who the user is can be defined at the CoNV level (i.e. we define a conv as a conversation with one user). The topic of an utterance can be defined at the DIAL level (i.e. a CONV can consist, of one or more dialogues, each on a single topio). Furthermore, a DIAL can consist of one or more EXCHs, and it is at this point that the content of the utterances that form part of that EXCH is defined.

Let us now be more preqise. We assume that some of the slots mentioned above in the MOVE frame are represented as features on the nodes in the trees representing the struoture of the conversation of which the moves described by the MOVE frames are part. This association of features with nodes, plus the assumption that all features trickle down, with a few exoeptions discussed below, provides for trees of the general form shown in Table 1. The lower case letters are constants. Nate that the values of the BASE feature on the subdialogue nodes have not been specified. We return to this point below. Table 1 represents a goal: the sort of struotures we want the rules to produce. The following three rules generate trees of this type. Kleene plus notation is used.
The notation should be interpreted as follows. Roman letters as feature values are constants. Greek letters are variables ranging over possible feature values, and are to be interpreted oonsistently within a rule, but not neoessarily between rules. They are used to ensure that the oorrect

feature values triokle down in the right bases. Node subseripts distinguish between different instances of the same node. Note that Greek letters are also used as variables for node subsoripts (rule (3)). Round brackets indicate optionality in the usual way. Angle brackete (rule (3)) are used in the same way as used by e.g. Labov (1972: th. B) in the study of Eociolinguistio variation. They indioate a relationship between elements on the left and on the right of the rule. The expansion on the right is only possible if the feature on the left of the rule has the value speaified, if both are enolosed in angle brackets. In the present came, they are used to prevent the expansion of a subdialogue as a further subdialogue. The feature [SUBDi-] is introduced by the rule that expands CONV.

The rule expanding DiAL copies this feature with this value. The rule expanding EXCH allows an expansion of ExCH to inolude (optionally) one or two DIALs, but if the DIALs appear, then they carry the feature [SUBD:+J. The expansion of suoh a DIAL by rule (2) copies this feature with this value, as before, when the DIAL is expanded to one or more EXCHg. However, since the EXCHs so generated carry the feature $[S U B D:+]$, the rule that expands EXCH will not allow the possibility of further DIALs, because any such expansion is conditional upon the EXCH having the feature [SUBD:-], as gpecified in rule (3).

The value of the feature TURN is either OPEN or CLOSE plus a constant that refers to the relevant EXCH. Note the use of the Greek


```
variable. The same constant is used as the
value of the feature BASE in subdialogues.
What this amounts to is a stipulation that
the topic of a subdialqgue is the EXCH that
it is part of, which segems to be about right
intuitively: This is what makes them
metalinguistic ir oharaoter. Furthermore,
note that this is a case where a
feature/value pajr does not triokle down.
This is tantamount to stipulating that DIAL
is a BASE-bounding mode: it oreates
"islands" with BASEs that do not extend
upwards to the main dialogue; but without
overwritimg the BASE of the current main
dialogue. Again, this seems intuitively
Gorrect.
Let us now provide a concrete example of the
struoture that these rules assign to a
dialogue suoh as (4).
```

4 U1 When is the next JlCAI meeting?

## S1 I presume you mean "IJCAI"

U2 Yes
52 Do you mean the next conference or the next conveners' meeting?
U3 Conference
5312 Augurt.
14 1985?
54 Yes

The structure is given as Table 2. The values for the feature CoNT are given as constants rather than as full semantic representations, and the constants rather than as full semantic representations, and the constant IJCAI is used for the BASE, which is the actual conference due to take place on 12 August 1985. This value has been given in all relevant oases, thus glossing
over the fat that the BASE could not be identified immediately, which is what triggered the subdialogues. We add, however, nertain features that were disoussed earlier, suoh as MoVE, AGENT and ACr, to clarify how the final form of the frame representing each MOVE is derived.

This is a conversation in whioh there is only one main dialogue and only one main exohange within that dialogue. $x$ hope that it is olear how these additional elements would be inoorporated into the struoture, and how the appropriate values for BASE, CONT and SUBD would be maintained or ohanged.

It is interesting to note that the modes in conversation trees of this sart have a coneeptual validity, in that di.fferent node types correspand to dieferent aspects of a eonverateion. Thus a conv node corresponds to "this gonversation with this user", a DIAL [SUBD:-] node correspunde to "rbis topic", am EXCH [GUBD:-J mode corresponds to "fhit point", a DYAL LELBD:\%7 node corresponds to "a paint that meeded olaxification", and an EXCH [SUBD:ty mode oorresponds to "what was unolear" "Each move node repmesemós an utterance, ox courese. The set of HOVE nodes dominated by EXCH CBUBO: $\cdots$ g orresporids to "what was saids the genosal dine of the eonversation", and the get ot fove notes dominated by ExCH [GUBD: AJ oocreaponds to "ehe tubdialogues" " Likewise, sets of ofhes nodes baxrospond to other betoder elaments of a ognversation. The set os GONV modes boxrends to "all the difiement. obrveresations $x$ had in this session with disyeremt users" the get or DyAt [BUBD: yodes oorresponds to "hhe topios otavered", the set of EXCH CSUBD:- 3 nodes normesponds to "ehe poinds discussed", and so ori. By faking into aoooumb oonfigurations ox Eeabures at modes, one oan isolate, therefores muoh elements as "Ehe dase but one topic disousced by the previous user " as "6he ixest point in this oonversaidon that meeded elarisication"。
L.et us now tuxn to tiwa entensione of the above system, hypobhetical moves and anticipatary moves, required by eertain dialogue phenomena.

## 4s Hypothetical moves

There axe apparently imocuous conversations guch as (5) which may cause trouble on formad greunde.

5
U: Can you print the minutes of the last meeting?
S: Yes. Do you want to see them?
U: Yes
5: (prints)

This is a fivemove conversation (the system's "Yes" counts as a separate move). The graminar would assign the structure shown informally as (6) to the first four moves.

6 MOVE 1: USER, OPEN 1, REQAFF

```
MOVE 2: SYGTEM, CLOSE 1, SUPPAFF
MOVE 3: SYSTEM, OPEN 2, REQAFF
MOVE 4: USER, CLOSE 2, SUPPAFF
```

On sormal grounds, the bonversation is closed after the fourth move (U: Ves), with all opENed moves having been Closed. What, thon, triggers the system's printing of the requiced text (MOVE 5), and what happens after that, gince an odd number of moves cannot eonstitute a well-formed conversation acoording to the grammar presented above? ft is olear that it is the meaning of hoVE 3 that is the key. To handle this fommally, we propose the use of the motion of "hypothetical move" and the representation speech actis not as atomio elements but as structures. Thus we will represent a supply of-aifinmation in responce to a sequest-for-affirmation as gUPPAFF (REQAFF).

A hypothetical move is a move that does not actually oocur in the conversediung but whioh the system constructs on whe basis os very speoifio dues, and whith allow it to oumimue the conversation appropsiatedy. They soseespond in some way do a Eupresentation at Grice's (19\%5) notion of impidaducen For examples a more dedailed analysis of (5) reveals that (6) omits several important detaile. The first move is actually ambiguous between a request-forafismadion ame a request-for-action bhat be would dile the tystem fo do its to supply
 afixemation paxt, and bo request aficmation concerming the requesterorwaction part: The impordiant poine is that a pioper analysid of "Do you want do see them?" should represemt the faut fhat this is response to the potential request-for-agtion interpretation of "Can you print the winutes of the last meeting?". The upthot of this is that a more precise representation or the firet four moves of (5) is (7), rather than ( 6 ).

## 7

POVE I: U, OPEN I, REQAFF/REQACT
HOVE 2: 5 , GLOSE 1, GUPPAFF (REQAFF)
HOVE 3: 5 , OPEN 2, REQAFF (REQACT)
FOVE $4: U_{\text {, CLOSE }}^{2}$, SUPPAFF (REQAFF (REQACT)

We now have a way of accounting for the Gystem's next more (printing), and for explaining why anything at all happens. POVE 4 is a SUPPAFF(REQAFF(REQACT)), i.e. a supply of affirmation in response to a request for affirmation in response to a request for action. It seems quite dear intuitively that this eamplex structure is equivalent to a REQACT, and we propose that this type of reduction ghould take place by rule.

However, thig rule must not over-write the original interpretation of the illooutionary force of the move, whioh must be retained for the dialogue to be well-formed with respect to the grammar. We propose that the effect of this type of rule (an implicature redundanoy rule) is to create a hypothetical move immediately following it of the appropriate type. Its effect is to alter the struoture of the oonvereation in exactily the same way as if the user (in this oase) had actually uttered something like "I request you to print the minutes now", except far the fact that it is noted that this is a hypothetiaal move. We now have a formal entity that con trigger the printing of the required tert, since this is a closure of the hypothetioal move. If no printing took place, then the dialogue would be illformed, sinoe it would contain one OPEN that had not teen closed. This, the system is behaving as if the user had made a particular move that did not aotually oceur. (The notion 'as if is central to Vaihinger'g (1935) theory of dictions. it is also cruaial to Gricean implicature.)

The result is that (4) is now analysed as a six-move dialogue, with the structure shown as (8).

## 8

MOVE 1: U, OPEN 1, REQAFF/REQACT
MOVE 2: $S$, CLOSE 1, SUPPAFF (REQAFF)
MOVE $3: 5$; OPEN 2, REQAFF (REQACT)
MOVE 4: U, CLOSE 2, SUPPAFF (REGAFF (REQACT))
MOVE 5: U, OPEN 3, REQACT, hypothetical
MOVE 6: $G$, CLOSE 3, ACTION

## 5. Antioipatory moves

Another type of irrealis move is an articipatory moves where on the basis of specific clues the system antioipates what the user's next move will be. The difference between these and hypothetical moves is that no action $i m$ taken by the system until there has been a reaction from the user that either confirms or disoonfirms the correctress af the move that has been anticipated. The use of such moves will be of absistance in the interpretation al oryptic follow-ups, as in (9).

## 9

U: Can you provide progress reports on LOKI
S: Yubprojects?
U: LokA yo you want to see them?
S: (prints)

U: LOKA
S: (prints)

The user's second utterance must be interpreted as a request-for-action, which is difficult on formal grounds. Without going into too much detail, we propose that in suoh cases ths system should have formulated an anticipation of a following
request-formaetion before the user's next utteranoe This oould either te an explicit request-formation ("Please print the LOKA progress report"), or simply "Yes" (i.e. a SUPPAFF (REQAFF (REQACT) ), which would trigger a system request for olarifioation, perhaps, or anything else at all that oan serve to identily the BASE of the anticipated request-for-action. This is whe important point about the antioipation. Anything - at all that can fill in the unspeoified slots in the BASE of the antioipated request-for-action will confirm that this utteranee is intended as a REQACT. For this reasony the bare name LoKA is enough to get the report printed. Any other suffieiently identifying description of the relevant mubprojeot would have achieved the same, such as any of the following (as appropriate)" the one based in Hamburg, Hamburg, NL, Max's project, most recent, etc.

## 6. Conclusions

The processes and formalisms outlined above are all tentative in nature, and repretent part of an approach to the problem of pragmatio gensitivity, rather than purported solutions to the problem. We envisage then as being part of a system that umes a multi-level parsing techrique, with mutual assistance between different subcomponents of the parser, so that pragmatic information can immediately be used to assimt parsing for syntax, and so on. We also see that parsing will involve not only senternce parsing, but also corverseation paraing, in that the appropriate struoture of a conversation must be built up at each step. This is simply one further part of the general parsing prooess, but one that we envisage as being of assistance to other parser subcomponents, as well as fulfilling its primaxy funotion of making gure that the system is something of a conversationalist, rather than just being a communicative plodder.

## REFERENCES

Cole, P. A. J. L. Morgan (eds.) 1975. Syntax \& Samanties, volume 3: Speeoh aots. New York: Acaddemio Press

Findler, N. V. (ed.) 1979. Assuoiative networkss representation and use of knowledge by oomputers": New York: Aoademio Press

Givon, T. (\#d.) 1979. Syntan ${ }^{\text {G }}$ Gemantios, volume 12: Disoourme and syntax. Naw Yock: Agademic Press

Grioe, H. P. 1975 "Logio and oonversation". In: Cole A Morgan (eds.), 1979, 41-58

Hobbs, J. R. 1982. "Towards an understanding of coherence in discourse". In: Lehnert \& Ringle (eds.), 1982, 223-243

Labov, W. 1972. Gociolinguistio patterns. Philadelphia: University of Pennsylvania Press

Lehnert, W. * M. $H_{4}$ Ringle (eds.) 1982. Strategiem for natural language processing. Landon: Enlbaum

Mokeown, K. R. 1985. "Discourse strategies for generating natural-language text". In: Artificaial Intelligencev27, 1-41

Vaihinger, H. 1935. The philosophy of 'As if -- a system of the theoretieal, practical and religious fitctions of mankind. London: Routledge \& Kegan Paul

Wachtel, T. 1985a. "Digcourse structure". LOKI Report NLI-1.1, University of Hamburg


