CONTEXTUAL GRAMMARS

- Solomon Marcus -

Institutul de Matematica

Str, Mihai Eminescu, 47
Bucharest 9, ROMANIA

In the following, we shall introduce a type of generative grammars, called contextual grammars. They are not comparable mith regular gramars. But every language generated by a contextual gramuar is a context-Rree language. Generalized contextual gramuars are introduced, which may generate non-con. text-free languages.

Let V. be a finite non-void set ; y. is called a vocabulary. Every fimite sequence of elements in y is said to be a string on V. Given a string $x=A_{1} a_{2} \ldots a_{n}$, the number n is called the length of x. The string of length zero is called the nultring and is denoted by ω. Any set of strings on V is called a language on V. The set of all strings on V (the nulkstring inclusively)is called the universal Janguage on V. By a^{n} we denote the string a...a, where a is iterated n times.

Any ordered pair 〈u, V〉 of strings on V is said to be a context on V. The . - string x is admitted by the context $\langle u, v\rangle$ With respect to the language I if uxy $\in I_{\text {. }}$

Let I_{1} be a finite set of strings on the vocabulary If and let be a finite set of contexts on V. The triple ($\mathrm{V}, \mathrm{I}_{1}, \boldsymbol{G}$)
(1)
is said to be a contextual grammar ; \underline{V}. is the vocabulary of the grammar, In is the base of the grammar and $(\mathbb{C}$ is the con-
textual component of the grammar.
Let us denote by G the contextual grammar defined by (1). Consider the smallest language I on V, fulfilling the following two conditions
(α) $L_{1} \subseteq L_{\text {; }}$
(β) if $x \in I$ and $\langle u, v\rangle \in(G)$ then $u x v \in I$.
The language L is said to be the language generated by the contextual grammar G. This means that the language generated by G is the intersection of all languages I fulfilling the conditions (α) and (β).

A language I is said to be a conteytual language if there exists a contextual gramar G which generates L.

Proposition I. Every finite language is a contextual language.

Proof. Let V be a vocabulary and let I_{y} be a finite lan. guage on V. It is obvious that the contextual grammar (V, L_{1}, O), where 0 denotes the void set of contexts, generates the language I_{1}. The same language may be generated by means of the contextual grammar $\left(V, I_{1},()\right.$, where (U) is formed by the num context orly.

Two contextual grammars are called equivalent if they generate the same language. The grammars $\left(V, I_{1}, 0\right)$ and $\left(V, I_{1}, \mathscr{U}\right.$) are equivalent, since they both generate the language \mathbb{I}_{1} :

The converse of Proposition 1 is not true. Indeed, we have
Proposition 2. The universal language is a contextual language.

Proof. Let $V=\left\{a_{1} a_{2}, \cdots, a_{n}\right\}$ Denote by L the univer. sal language on V : Let us put $I_{1}=\{\omega\}$ and $\mathscr{C}=\left\{\left\langle\omega, a_{1}\right\rangle\right.$,
$\left.\left\langle\omega, a_{n}\right\rangle, \ldots,\left\langle\omega, a_{n}\right\rangle\right\}$ ．It is easy to see that the grammar $\left(\mathrm{V}, \mathrm{I}_{1},(b)\right.$ generates the universal language on V ．

Remarks．If we put，in the proof of Proposition 2，$I_{2}=\mathrm{V}$ ． instead of $L_{2}=\{\omega\}$ ，then the grammar（ $V_{2} I_{2}$ ，（C））does not ge－ nerate the universal language on V ，since the language it ge－ nerates does not contain the null－string．

In order to illustrate the activity of the grammar（V，I_{2}, （6）defined in the proof of Proposition 2，let us consider the particular case when the vocabulary is formed by two elements only ：$V=\{a, b\}$ ．The general form of a string x on V is
 arbitrary non－negative integers．In order to generate the string x ，we start with the null－string ω and we apply i_{i} times the context $\langle\omega, a\rangle$ ．The result of this operation is the string $a^{\frac{i}{1}}$ ，to which we apply j_{1} times the context $\langle w, b\rangle$ and obtain the string $a^{i_{1}} b_{-}^{i}$ ．Now we apply i_{2} times the context $\langle w, a\rangle$ ， then \underline{j}_{2} times the context 〈 $\left.\omega, \underline{b}\right\rangle$ and we continue so al－ Hernaitively．Finen，atter $2 p-2$ steps，we have obtained the
 ply \dot{i}_{p} times the context $\langle\omega, \eta$ ，and，to the string so ob－ tained，j_{p} times the context $\left\langle\omega_{0}, b\right\rangle$ ，in order to generate completely the string x 。

Haskell Curry considered the language $I=\left\{a^{\underline{n}}\right\}(\underline{n}=1,2, \ldots)$ as a model of the set of natural numbers［5］．We call I the language of Curry．

Pronosition 3．The language of Curry is a contextusl lan－
guage。

Proof. The considered language is generated by the grammar ($V, I_{2},(b)$), where $V=\{a \cdot b\}$, $I_{\underline{2}}=\{a\}$ and ($\left.b\right)=\{\langle\omega, b\rangle\}$.

We recall that a language is said to be regular if it may be generated by means of a finite automaton (or, equivalently, by means of a finite state grammar in the sense of Ohomsky).

Proposition 4. There exists a contextual language which is not regular.

Proof. Let us consider the language $L=\left\{a^{n} b^{n}\right\} \quad(n=1,2, \ldots)$ If we put $V=\{a, b\}, I_{\underline{Y}}=\{a b\}$ and (6) $\{\langle a, b\rangle\}$, then it is easy to see that L is generated by the contextual grammar (V, $L_{1},(6)$. On the other hand, L is not a regular language. This fact was asserted by Chomsky in [3] and [4], but the proof he gives is wrong. A correct proof of this assertion and a.discussion of Chomsky's proof were given in [8]. and [9].

Propositions 2,3 and 4 show that there are many infinite languages which are contextual. This fact may be explained by means of

Proposition 5. If the set I_{i} is non-void and if the set (b) contains at least one non-null context, then the contextual grammar (V. I_{1}, (G) generates an infinite language.
 longing to I_{1}. Since (6) contains, at least one non-null cont ext, let <u,v> be a non-null context belonging to (C). From these assumptions, we infer that the strings

$$
\text { uxy }, u^{2} x v^{2}, \ldots, \underline{b}^{n} x v^{n}, \ldots
$$

are mutually distinct and belong all to the language generated by the grammar ($\left.V, I_{y}, \mathscr{C}_{2}\right)$. Thus, this language is infinite.

The converse of Proposition 5 is true. Indeed, we have

Proposition 6. If the cont extual grammar ($V, I_{1},(G)$ gene rates an infinite language, then I_{1} is non-void, whereas (6) contains a non-null context.
proof. Let L be the language generated by $\left(V, L_{2}\right.$ (C). If I_{2} is void, L is void too, hence it cannot be infinite. If (C) contains no non-null context, we have $L=L_{2}$. But I_{1} is in any case finite ; thus, I is finite, in contradiction with the hypothesis.

Since there are contextual language which are not regular (see Proposition 4 above), it would be interesting to establish whether all contextual languages are context-free languages. The answer is affiruative :

Pronosition 7. Every contextual language is a cont ext-free 1anguage.

Proof. Let $L_{\text {_ }}$ be a contextual language. If I is finite, it is a regular language. But it is well known that every regular language is a context-iree language. Therefore, I is a context-free language. Nowe let us suppose that I is infinite. Denote by $G=\left(V, I_{1},(6)\right.$ a contextual grammar which generates the language $I_{\text {. }}$. In view of Proposition 6, I_{2} is non-void, whereas there exists an integer $i, 1 \leqslant 1 \leqslant p$, such that the context $\left\langle u_{i}, v_{i}\right\rangle$ is non-null, i.e. at least one of the equalities $u_{i}=\omega, v_{i}=\infty$ is false. Let us make a choice and suppose that $u_{i} \neq \omega$: Let $I_{i}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\left(\mathcal{E}=\left\{\left\langle u_{1}, v_{1}\right\rangle\right.\right.$, $\left.\left\langle u_{2}, v_{2}\right\rangle, \ldots .\left\langle u_{p}, v_{p}\right\rangle\right\}$. We define a context-free grammar Γ as follows. The terminal vocabulary of Γ is V. The non terminal vocabulary of Γ contains one element only- denoted by S. - which is, of course, the axiom of the grammar Γ. The ter-
minal rules of Γ are

$$
\begin{aligned}
& s \rightarrow x_{1}: \\
& s \rightarrow x_{2} \\
& i . \\
& s \rightarrow x_{n}
\end{aligned}
$$

whereas the non-terminal rules are

$$
\begin{aligned}
& s \rightarrow u_{1} s v_{1}, \\
& s \rightarrow u_{o} s v_{2}, \\
& s \rightarrow \cdot u_{p} S v_{p}
\end{aligned}
$$

It is obvious that the number of terminal rules is equal to the number of strings in I_{h}, whereas the number of non-terminal rules is precisely the number of contexts in (6). Among the nonterminal rules, there is one at least which is nontrivial : it is the rule $s \rightarrow u_{i} S v_{i}$, where $u_{i} \neq \omega$.

It is not difficult to prove that the grammar Γ generates the given language J. Indeed, the general form of a string in I is
where $y \in V$ and

$$
\left\langle\underline{u}_{\underline{i}_{g}}, \underline{\underline{v}}_{\underline{-}_{s}}\right\rangle \in(\mathbb{Q}) \text { for } s=1,2, \ldots, p
$$

In order to generate the considered string we begin by applying \underline{j}_{1} times the rule

$$
s \rightarrow u_{i_{1}} s \underline{v}_{i_{2}}
$$

In this way, we obtain the expression

$$
\underline{u}_{i_{1}}^{j_{1}} S{\stackrel{j_{1}}{i_{1}}}
$$

$$
\begin{gathered}
-7- \\
s \rightarrow u_{u_{2}} s_{\underline{i}_{2}},
\end{gathered}
$$

which yields the expression

$$
u_{i_{1}}^{j_{1}} u_{i_{2}}^{j_{2}} s v_{j_{2}}^{j_{2}} \cdot v_{i_{1}}^{j_{1}}
$$

Continuing in this way, we arrive, after p-l steps, to the expression

We now apply j_{p} times the rule

$$
s \rightarrow u_{i p} s \underline{v}_{p}
$$

and thus we obtain the expression
where, by applying the terminal rule

$$
s . \geq y
$$

the considered string is conpletely generated. Thus, we have proved that I is contained in the languqge generated by Γ.

Conversely, let z be a string generated by Γ. The ge neral form of this generation involves several consecutive applications of non-terminal rules (the number of these applications may be eventually equal to zero) followed by one and only one application of a terminal rule. It is easy to see that the result of this generation is always a string of the form (2). Thus we have proved that the language generated by Γ is contained in I. In view of the preceding considerations, I is precisely the language generated by Γ.

Proposition 7 easily permits to obtain simple examples of
languages which are not contextual languages. For instance, the language of Kleene $\left\{a^{n^{2}}\right\}(n-4,2, \ldots)$, the first example of an infinite langaage which is not regular, is a very simple example of noncontextual language. It is enough to remark that the sequence $\left\{n^{2}\right\}(n=1,2, \ldots)$ contains no subsequence Which is an infinite arithnetic progression (We have $(n+1)^{2}-n^{2}=2 n+1$ and $\lim _{n \rightarrow \infty}(2 n+1)=\infty$, therefore for every subsequence of $\left\{n^{2}\right\}$ the difference of two conse cutive terms has the limit equal to $+\infty$ when $n \rightarrow \infty$). But a result of [1] asserts, auong others, that given an infinite context-free language I, the set of integers which renresent the lengths of the strings in I contains an infinite arithmetic progression. It follows That the language of Kleene is not context-free and, in view of Proposition 7 , it is not a contextual language. The same fact follows from theorem 3.1.2 of [6], p. 86 .

A natural question now arrises : Do there exist non-contextual languages among context-free languages ? The affirmative answer follows froiu the following remark :

The converse of Proposition 7 is not true. Indeed, we have
Proposition 8. There exists a context-free language which is not a cont extual language.

Proof. Let $V=\{a, h\}$. In view of a theorem of Gruske [7] (-mthere exists, for every positive integer n, a context-free language $I_{I_{n}}$ on V, such that every context-free grammar of I_{n} contains at least n non-terminal symbols. But, as we can see in the proof of Proposition 7, every contextual language may be generated with a context-free grammar containing only one non-terwinal symbol. Therefore, if $n \geqslant 2, I_{n}$ is not a contextual language. Proposition 8 suggests the natural question whether there exist regular languages which are not contextual languages. The

answer is affirmative:

Pronosition 9. There exists a regular language which is not a

contéxtual language.

Yroof. Let us consider the language $\left.\left.I=\left\{a b^{m}\right\} c\right\} a^{n}\right\}(m, n=$ $=1,2, \ldots$), which was used by.B.Curry [5], in order to describe the set of mathematical (true or not) propositions. This language is reguiar, since it can be generated by the rules $S \rightarrow A b, A \rightarrow A b$, $A \rightarrow B a, B \rightarrow C c, C \rightarrow C b, C \rightarrow D b, D \rightarrow$ a. We shall show that,\underline{L} is not a contextual language. Indeed, let us admit that the cont ram ry holds and let $G=\left\langle V, I_{I}, G\right\rangle$ be a contextual grammar of $\underline{I}_{\text {。 }}$ Here, the genemaj form of a string in L is
where $x \in I_{1}$, whereas $\left\langle u_{i}, v_{i}\right\rangle \in\left(\mathcal{C}(i=1,2, \ldots, n)\right.$ and p_{1}, p_{2}, \ldots ..., \underline{p}_{n} are arbitrary positive integers. This means that u_{1}, u_{2}, \ldots $\ldots, \underline{\underline{n}}, v_{1}, \underline{v}_{2}, \ldots, v_{n}$ in the expression (3) are formed only by those elements of y whose number of occurences in the strings of I is uniimited. Unly h satisfies this requirement. It follows that in any string of.$\underline{\text { both occurrences of } a \text { and the occurence }}$ of $\underset{\sim}{C}$ are terms of the string X in (3). But this implies that the intermediate terms between the occurrences of a are terms of $x_{\text {, }}$ hence we can find two strings X and z such that

$$
x=y \cdot a \hat{\hat{b}^{m}} \underline{i} \underline{z}
$$

The string y is obviously the nullstring ω, whereas z is of the form \mathbf{b}^{p}. hence.

$$
\left.x=a b^{m}\right\} c a b
$$

But ma may be here an arbitrary positive integer. Therefore, since
$x \in I_{1}$, it follows that I_{1} is an infinite set of strings. This fact contradicts the assumption concerning $G ; I$ is not a contextual language and Proposition 9 is proved.

The contextual gramars may be generalized in order to ge nerate some languages which are not context-free.

A generalized contextuai grammar is a quadruple $G=\langle V$, $I_{I}, I_{2}, \widehat{C} \triangleright$, where V, I_{2} and \mathscr{C} have the same meaning as in the definition of a contextual graminar, whereas I_{2} is a finite set of strings on the vocabulary $\quad V$. We define the language I_{G} generated by G, in the following way : I_{G} is a language on V and $x \in I_{\text {I }}$ if and only if we may express x in the form

$p_{1}, p_{2}, \ldots, p_{n}, p$ are positive integers such that $p_{1}+p_{2} \ldots+p_{n}=p_{0}$
Every language generated by a generailized contextual grammar is said to be a generalized contextual language.

If, in the detinition of G, we take $I_{2}=\{\omega\}, G$ is equivalent to a contextuai grammar ; the language. $t_{\text {t }}$ is then precisely the language generated by the contextual grammar $\left\langle V, I_{1},(\mathcal{E}\rangle . I_{n}\right.$ deed, the general form of a string in the contextual language generated by <V, I_{2}, C 〉 is

$$
{u_{1}}_{p_{1}}^{p_{2}} \ldots u_{p_{n}}^{p_{n}} z_{v_{n}}^{p_{n}} \ldots v_{2}^{p_{2}^{\prime}} p_{v_{1}}^{p_{1}}
$$

where $\left\langle\underline{u}_{\underline{1}}, \underline{v}_{i}\right\rangle \in\left(\underline{C}(\underline{1}, 2, \ldots, n)\right.$ and $z \in I_{1}$. We have thus proved

Proposition 10. \#very contextual language is a generalized contextual language,

We may consider a contextual grammar as a particular case of generalized contextual grammar, by identifying the contextual grammar < V, L_{1} ((b) with the generalized contextual grammar<, I_{1}, $\{\omega\}(E)$.

It is interesting to point out that somet fimes a conteritual language may be easy generated by a generalized contextual grammar which is not a contextual grammar. For instance, let us consider the language $L=\left\{a_{n}^{n} \underline{b}^{n}\right\}(n=1,2, \ldots)$. In view of the proof of Proposition 4, L is a contextual language. We may generate L by the generalized contextual grammar (which is not a contextual grammar) < $V, I_{1}, I_{2},(G)$, where $V=\{a, b\}, I_{1}=$ $\{\omega\}, I_{2}=\{n\},(\mathcal{Q}=\{a, \omega\}$. It is known that \dot{L} is not regutar. We may give a similar example, with a language which is
 In view of Proposition 3, it is a contextual language. It is a regular language too, since it may be generated by the regular gramar containing the following two rules : $S \rightarrow S b$ and $S \rightarrow a_{0}$ Now let us consider the generalized contextuali grammar < V, In, $\left.I_{2}, \mathcal{G}\right\rangle$, where $\left.v=\{a, b\}, I_{I}=\{a\}, I_{z}=\{b\}\right\}=\{\langle\infty, \omega\rangle\}$. This gramar generates the language of Curry, but it is not a contextual gramar.

Now let us show that genexalized contextual languages are an effective generalization of contextual languages.

Proposition 11. There exists a generalized contextual
language which is not a contextual language:
Proof. Let us consider the language $L=\left\{x^{n_{b} n^{n}}{ }^{n}\right\} \quad(n=1,2, \ldots)$ It is known that this language is not context-free (see,for instance, [6],p.84). In view of Proposition 7, every contextual
language is a context-free language ; bence. I is not a contextual language. Now let us consider the generalized conteatual grammar $G=\left\langle V, I_{1}, I_{2},(B)\right\rangle$, where $V_{-}=\{a, h\}$, $L_{2}=\{\omega\}, J_{0}=\{b\}$ and (b) $\{\langle a ; a\rangle\}$. It is easy to see that G generates the ianguage T_{A}

From the proof of Proposition 11 it follows inmediately:
Proposition 12. There exists a generalized contextual language which is not a contiext-free language.

We may now ask whether the converse of Froposition 12 is true. The answer is given by

Proposition 13. There exists a context-free language (and even a regular language) which is not a generalized contextual language.

Proof. We may consider the language $L=\left\{a k^{m} \subseteq a b^{n}\right\}$ (n, $n=$ $=1,2, \ldots$) used in the proof of Proposition 9: It was showed in the proof of Proposition 9. that L is regular. Let us admit that L is a generalized contextual language. Given a string x in I, its representation is of the form

$$
a b^{r n} c a b^{r}=u_{1}^{p_{1}} u_{0}^{p_{2}} \ldots u_{n}^{p_{n}} z y_{v_{n}^{p}}^{p_{n}} \ldots v_{2}^{p_{2}} v_{1}^{p_{1}}
$$

where $\left\langle u_{i}, v_{i}\right\rangle \in(i=1, \ldots, n), z \in I_{1}, J \in L_{2}, p_{1}+\ldots+p_{n}=p$. and $G=\left\langle V, L_{1}, L_{2},(G\rangle\right.$ is the grammar of L_{2}. By a reasoning similar to that used in the proof of Proposition 9 , we find that for . every positive integer m there exists a string z in L_{1} such that

$$
z=a b^{m} c a b^{8},
$$

where s is a non-negative integer, depending of . But this means that I_{1} oontains infinitely many strings. This fact contradicts the definition of a generalized contextual grammar. It
follows that L is not a generalized contextual language.
It is to be expected that every generalized contextual language is a context-senitive language. But the construction of the corresponding context-sensitive grammar seems to be very couplicated, if we think to the generation of the language $\left\{a^{n_{b}} n_{a}^{n}\right\}$.

Iu.A.Šreider has introduced a new type of grammars, called neighborhood graiuars (okrestnostnye grammatiki) and defined in the following way ([10]; see $\frac{[2] \text { and }}{\text { alsor }[11]}$. Our presentation is some what different). Given a finite set V called vocabulary, two strings x and y on V, and a context $\langle\underline{u}, v\rangle$ on V, we say that the pair $\{\langle u . v\rangle, y\}$ is a neighiornood of y with reapect to x if we can find two strings 2 , and w, such that $x=z u y w$. Every pair of the form $\{\langle u, v\rangle, Y\}$, where $\langle u, v\rangle$ is a cont ext on K, whereas y is a string on V, is called a neighborhood on V. Let us consider an elenent θ which does not belong to V; θ will be called the boundary element. A neighborhood grammar is a triple of the form $\langle v, \theta,(J\rangle\rangle$, where V is a vocabulary, θ is the boundary elewent and $(\mathcal{J}$ is a finite set of neighborhoods on the vocabuiary $V \cup\{\theta\}$. Let I ke a language on V. We say that I is cenerated by the considered neighborhood gramnar if in every string x of the form $x=\theta y^{\theta}$ (with $y \in L$) and only in such strings - there exists in (1), far every term a_{i} of $x=y_{1} a_{2} \ldots$, a neighlorhood of a_{i} with respect to \underline{x}. Neighborhood gramars are closely. related to the notion of context, since this notion occurs in the definition of a neighborhood. There is another notion, due to Ja.P.I.Vasilevskil and

M.V.Chomjakov (see the reference in[2],p.40), which explains

 this fact. Following these authors, a grammar of contexts (this name is improper, since no context occurs among its objects) is a triple<V, $\theta, Q\rangle$ where \underline{V} and θ have the same meaning as in the derinition of a neighborhood grammar, whereas Q is a finite set of strings on the vocabulary $\mathbb{V} \cup\{\theta\}$. Phis grammar generates the language I on V in the following way : $x \in I$ if and only if for every string y and any strings z and w for which there exist strings u and v such that $\theta \times \theta=$ = uzywv. we have either1) $\underline{y}=m s p$, where $g \in \underline{Q}$, whereas the strings $\underset{\sim}{m}$ and p may be evencually null
or
2) $\theta x \theta=$ arynt, where $q \mathbf{q}=2$, $n t=w$ and ryn is a string belonging to Q.

A string belonging to Q is said to be closed from the
Left (from the right) if its first (last) term is θ. A string belonging to Q is said to be closed if it is closed both from the left and firm the right.

A grammar of contexts is said to be k-bounded if every non-closed string of Q is of length \underline{k}, whereas every closed string of Q is of length not greater than k.

An important theorem of Borsrev asserts the equival ance between languages generated by neighborhood grammara and lanm guages generated by k-bounded grammars of contexts ([2],p.40).

Since grammars of contexts and cont extual grammars have some similarities in their definitions, it is interesting to estam blish more exactly the relation between them.

Proposition 14. There exists a contextual language hich is regular, but which is not a neighborhood language.

Proof. Let us consider the language $L=\left\{a^{2 n}\right\}(n=1,2, \ldots)$, This language is regular, since it is generated by the regular graumar consisting in the rules $S \longrightarrow T a, T \rightarrow$ Ua, U $\quad \mathrm{T} \rightarrow$ Ta, $T \rightarrow$, where S is the start symbol, $\{a\}$ is the terminal vocabulary, whereas $\{\mathrm{S}, \mathrm{T}, \mathrm{U}\}$ is the non-terminal vocabulary. Let us consider the contextual grammar $G=\langle\{\underline{a}\},\{\omega\},\{\langle a, a\rangle\}\rangle$. It is easy to see that G generates the language $工$ therefore I is a contextual language.

We shall show that L is not a neighborhood language. In this respect, our method will be the following. We shall consider all systems of possible neighborhoods of the terms of the string taae and we shall shov that every such system is either a system of neighborhoods of the terms of every string $\theta a^{n} \theta$ ($n=$ $=2,3,4, \ldots$) or it is not a system of neighborhoods of the terms oif the string $\theta a^{4} \theta$. It is easy to see that the first term of the string eaag adinits the following neighborboods : 1$) \underline{\theta}$,

 The neighborhoods of the third term are : 1) ∂ aa , 2) aa,". 3) g, 4) age , 5) $\theta a \underline{a} \theta$, 6) aag θ. The last term has the neighborhoods : 1) $\underline{\theta}$, 2) $\boldsymbol{\operatorname { a g }} \boldsymbol{\theta}$, 3) aag , 4) $\theta \operatorname{aag} \underline{\theta}$. The notation uxy represents hier the neighborbood $\{\langle u, v\rangle, x\}$.

It is easy to see that the fourth neighbortood of the first and of the last term cannot be a neighborhood of θ with respect to $\theta g^{4} \theta$. On the otber hand, \underline{a} is a neighborhood of a mith respect to $\theta a^{\frac{n}{n}} \theta$ for every $n=1,2, \ldots$. It follows that no
neighborhood grammar of $L=\left\{a^{2 n}\right\}$ may contain one of the neighborhoods $\theta a^{2} \theta$, $\theta a^{2} \theta$ and a. Thus, if a neighborbood gram mar of I exists, it contains at least one neighborbood from every group of the following four groups of neighborhoods :

人) $\underline{\theta}, \underline{\theta} a, \underline{\theta} a^{2}$.

() Bag, aa, à , aag , aag θ.
§) $\underline{\theta}, a \underline{\theta}, a^{2} \underline{\theta}$.
We shall consider all possible combinations between a neighborhood of the group β and a neightorhood of the group γ. By ma we shall denote the combination formed by the math neighborhood of β and the n_th neighborhood of γ. It is easy to see that every neighborhood gramar containing one of the combinations 12, 22, 23, 25, 42 generates a language which contains every string a^{n} with $n \geqslant 2$. On the other hand, every neigh borhood grammar containing one of the combinations 11, 13, 14, $15,21,24,31,32,33,34,35,41,43,44,45,51,52,53,54$, 55 generates a language which either does not contain the string a^{4}. or contains every string a^{n} with $n \geqslant 2$. (This depends on the fact if the neighborhoods a a or ab belong or not to the considered neighborhood grammar). Thus, there exists no neighborhood grammar which generates the language $\left\{a^{2 n}\right\}$.

But the definition of (generalized) contextual grammars, though adequate to the investigation of the generative power of purely contextual operations, does not correspond to the situan tion existing in real (natural or artificial) languages, where every string is admited only by some contexts and every cantext

- 27 -
admits only sowe strings. Let us try to obtain a type of grammar corresponding to this more complex situation. We define a contextual grammar with choice as a system $G=\langle V, L, \Theta, \varphi\rangle$, where V, I_{1} and (C) are the objects of a contextual grammar, whereas φ is a mapping defined on the universal language on V, and having the values in the set of subsets of (6). We define the language generated by G as the smallest language I having the follow-
 and $z \in I_{I}$, then uyve $L, z \in \in$ and $y z \in I$. Thus, every string chooses some contexts and every context chooses some ntrings. We define a contextual language with choice a language which is generated by a contextual gramar withichoice. The investigation of these grammars and languages would better show the generative power of contextual operations, in a manner which corresponds to the situation existing in real languages.

Referances

1. Y.BAR-HILLEL, H.PERL IS, E.SHAMIR : On formal properties of simple phrase structure grammars. Zeitschrift fur Phonetik, Sprachwissenschaft und Kommunikationsforschung, vol.14。1961, p.143-172.
2. V.B.BORŠCEV : Okrestnostnye grammatiki. Nauðno-Techničeskaja Informacija, Serija 2, 1967, No.11, p.39-41.
3. N.CHOHSKY : Three models for the description of language. TRE Transactions on Information Theory, IT-2, 3,1956, p.113-124.
4. iv.GHULSKY : Syntactic Structures; Gravenhage, 1957.
5. H.CURRY : Some logical aspects of gramuatical structure. Prooeedings of the Symposium in Applied inathematics, vol.12, Structure of language and its matheuatical aspects, Amerdiath. Soc., 1961, p.56-68.
6. S.GIISBURG : The mathematical theory of context-free languages. LicGram-Hill Book Company, New York, 1966.
7. JjGEUSKKA : On a classification of cont ext-free languages. Kybernetika, vol.3, mo.1, 1967, p.22-29.
8. S.MARCUS : Gramatici si automate finite. Fditura Academiei R.F.R., Bucureşti,1964.
9. S.MARCUS : Sur les grammaires an nombre dietats fini. Ca hiers de linguistique theorique et appliquee, vol. $\mathbf{k}, 1965, \mathrm{p} .147-144$.
10. Ju.A.SREIDER : Okrestnostnaja model jazyka. Trudy Simpoziuma po primenenijam poroždajustioh grammatik. Tartu,septjabr,1967.
II. Ju.A.SREIDER : Topologireskie_modeli jazyka. Vsesojuznyi In stitut nauðnoi i techniceskoi informacii, woscou,1968.
