@inproceedings{yang-etal-2018-design,
title = "Design Challenges and Misconceptions in Neural Sequence Labeling",
author = "Yang, Jie and
Liang, Shuailong and
Zhang, Yue",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1327",
pages = "3879--3889",
abstract = "We investigate the design challenges of constructing effective and efficient neural sequence labeling systems, by reproducing twelve neural sequence labeling models, which include most of the state-of-the-art structures, and conduct a systematic model comparison on three benchmarks (i.e. NER, Chunking, and POS tagging). Misconceptions and inconsistent conclusions in existing literature are examined and clarified under statistical experiments. In the comparison and analysis process, we reach several practical conclusions which can be useful to practitioners.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2018-design">
<titleInfo>
<title>Design Challenges and Misconceptions in Neural Sequence Labeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuailong</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-aug</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the design challenges of constructing effective and efficient neural sequence labeling systems, by reproducing twelve neural sequence labeling models, which include most of the state-of-the-art structures, and conduct a systematic model comparison on three benchmarks (i.e. NER, Chunking, and POS tagging). Misconceptions and inconsistent conclusions in existing literature are examined and clarified under statistical experiments. In the comparison and analysis process, we reach several practical conclusions which can be useful to practitioners.</abstract>
<identifier type="citekey">yang-etal-2018-design</identifier>
<location>
<url>https://aclanthology.org/C18-1327</url>
</location>
<part>
<date>2018-aug</date>
<extent unit="page">
<start>3879</start>
<end>3889</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Design Challenges and Misconceptions in Neural Sequence Labeling
%A Yang, Jie
%A Liang, Shuailong
%A Zhang, Yue
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 aug
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F yang-etal-2018-design
%X We investigate the design challenges of constructing effective and efficient neural sequence labeling systems, by reproducing twelve neural sequence labeling models, which include most of the state-of-the-art structures, and conduct a systematic model comparison on three benchmarks (i.e. NER, Chunking, and POS tagging). Misconceptions and inconsistent conclusions in existing literature are examined and clarified under statistical experiments. In the comparison and analysis process, we reach several practical conclusions which can be useful to practitioners.
%U https://aclanthology.org/C18-1327
%P 3879-3889
Markdown (Informal)
[Design Challenges and Misconceptions in Neural Sequence Labeling](https://aclanthology.org/C18-1327) (Yang et al., COLING 2018)
ACL