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Abstract

We investigate the stability of narrative schemas (Chambers & Jurafsky, 2009) automatically
induced from a news corpus, representing recurring narratives in a corpus. If such techniques
produce meaningful results, we should expect that small changes to the corpus will result in only
small changes to the induced schemas. We describe experiments involving successive ablation of
a corpus and cross-validation at each stage of ablation, on schemas generated by three different
techniques over a general news corpus and topically-specific subcorpora. We also develop a
method for evaluating the similarity between sets of narrative schemas, and thus the stability of
the schema induction algorithms. This stability analysis affirms the heterogeneous/homogeneous
document category hypothesis first presented in Simonson & Davis (2016), whose technique
is problematically limited. Additionally, increased ablation leads to increasing stability, so the
smaller the remaining corpus, the more stable schema generation appears to be. We surmise
that as a corpus grows larger, novel and more varied narratives continue to appear and stability
declines, though at some point this decline levels off as new additions to the corpus consist
essentially of “more of the same.”

1 Introduction

Narrative schemas complement other approaches to the automated analysis of topical and narrative in-
formation in documents. Unlike template-filling techniques, they do not require a defined set of human-
crafted templates; instead, template-like structures are induced. Unlike topic models, they generate
representations in which event types and participant types are organized into relational structures, speci-
fying shared participants between events. Unlike automatic summarization, they generalize over similar
but distinct narratives, with the goal of revealing their underlying common elements.

Scripts (or schemas or frames) have long been touted as a way to provide artificial intelligence systems
with world knowledge and understanding (Schank & Abelson, 1977). Building these scripts by hand is
labor intensive, so automatically learning script knowledge has attracted attention for decades (Bala-
subramanian et al., 2013; Chambers & Jurafsky, 2009; Mooney & DeJong, 1985; Pichotta & Mooney,
2014, 2015). However, we are also interested in what such techniques reveal about broad, quantitative
properties of discourse in general.

Like many unsupervised tasks, the evaluation of schemas is still a matter of debate and depends on
their intended use; there is no one broadly accepted method, and nothing that closely models human in-
tuitions about narrative. Chambers & Jurafsky (2008, 2009) proposed and used the cloze task to evaluate
their procedure, widely adopted in subsequent work (Cheng & Erk, 2018; Jans et al., 2012; Pichotta &
Mooney, 2014, 2015). In the cloze task, an event from a sequence in holdout data—either a coreference
or sentence-to-sentence sequence—is removed and must be guessed by a model of the events in text.

However, it is questionable whether the cloze task actually requires script knowledge to perform well
(Mostafazadeh et al., 2016; Rudinger et al., 2015; Simonson, 2018), and thus whether it is an effective
measure of schema quality. Cloze does not evaluate schemas directly—only indirectly through the score
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used to generate schemas—and is fundamentally unsolvable, even by humans, so it is an open question
whether the information needed to perform well on a cloze task corresponds closely to the information
within narrative schemas. Others have evaluated schemas directly. Balasubramanian et al. (2013) eval-
uated schemas manually using mechanical turkers, but this is labor intensive and pre-supposed specific
properties about schemas—for example, that “a child exploded a blast” cannot be part of a valid schema,
despite that we live in a world where such incidents occur on a regular basis. Simonson & Davis (2016)
introduced the NASTEA task for schema evaluation where schemas are used to identify salient entities
in a document, but this is dependent on a set of “salient entity annotations” from the New York Times
corpus (Sandhaus, 2008). We noted that some document categories are homogeneous—that is, requiring
only one schema to obtain optimal performance on their task—and others are heterogeneous—requiring
multiple schemas for optimal performance. It is not clear whether their findings are robust or a mere
artifact of the idiosyncrasies of NYT annotations.

In this paper, we turn instead to the stability of narrative schemas, as a method of gauging schema
quality complementary to cloze and the NASTEA task. We assume that high-quality schemas are robust;
that is, the addition, deletion, or modification of a few narratives in the corpus should not drastically
affect the schemas generated. We conducted experiments using both corpus ablation and cross-validation
at each stage of ablation. This kind of evaluation is relatively easy to carry out in many sorts of corpora;
it does not require any annotation effort and is conceptually straightforward. Two challenges, however,
are the computationally intensive nature of these experiments, and the similarity measure employed in
comparing sets of narrative schemas.

In Section (2), we describe the data set used in this paper. In Section (3), we describe the schema
germinators used in this study, including one novel technique intended to complement the others from
prior work. In Section (4), we explain the ablation and cross-validation procedure used to perform a
schema stability analysis. in Section (5), we propose the “Fuzzy Jaccard” coefficient used for comparing
sets of schemas. In Section (6), we present the results of this study. In Section (7), we discuss the results.
In Section (8), we conclude this paper.

2 Data

We performed our stability analysis of narrative schemas on a subset of the New York Times Annotated
Corpus (Sandhaus, 2008), the same subset as Simonson & Davis (2016). containing over 1.8 million
articles from 1987 to 2007.

We selected the same document set from Simonson & Davis (2016) for direct comparison with our
previous work, to affirm or disprove our homogeneity-heterogeneity hypothesis. Note that in these earlier
results, included an “Education and Schools” category is mentioned (Simonson & Davis (2016), Figure
3), but is unfortunately omitted in Table (1) in that paper. This has been included in our Table (1) here.

Table 1: Counts of document categories selected from the online producer tag for use in this study
after pre-processing. Simonson & Davis (2016) chose categories to contain roughly the same number of
articles and to represent different sorts of topics.

online producer category counts online producer category counts
Law and Legislation 52110 United States Armament and Defense 50642
Weddings and Engagements 51195 Computers and the Internet 49413
Crime and Criminals 50981 Labor 46321
Education and Schools 50818 Top/News/Obituaries 36360

For NLP preprocessing, the Stanford CoreNLP suite of tools (Manning et al., 2014),1 was chosen for
comparability to Simonson & Davis (2016)’s original work, itself chosen because it has both parsing and
coreference capabilities (de Marneffe et al., 2006; Lee et al., 2013), which are essential for generating
schemas. Using the same version of tools as Simonson & Davis (2016), we were able to replicate their

1Stanford CoreNLP, Version 3.4.1 (2014-08-27), (via Simonson (2018))
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category counts after excluding a number of articles that produced no coreference chains or failed to
survive pre-processing.

3 Germinators for Schema Generation

The heart of Chambers & Jurafsky (2009)’s schema induction technique, and our variants derived from
it, is a similarity measure between narrative chains in the context of a schema and a candidate event
verb. A narrative chain is a set of verb-dependency pairs—i.e. slots—that share a common participant
filling all the slots. These are constructed from verbs that are statistically associated using a PMI-based
measure plus a preference for verb-argument slot pairs in which the argument slot is filled by participants
of a consistent type. This similarity measure determines the best candidate verb-argument slot pair to
add to an existing chain; a score termed chainsim′ is computed for each candidate pair, summing this
similarity measure for each candidate and the existing elements of the chain. Lastly, narrative schemas,
consisting of merged sets of chains sharing events, are produced.

Here, we focus primarily in generating schemas. The cloze task does not directly evaluate schemas.
Rather, it evaluates a component of the model used to generate schemas. For example, in the case of
Chambers & Jurafsky (2008, 2009), chainsim and chainsim′ are used to rank event verbs in the cloze
task. The schemas therein generated are not directly evaluated. Thus, we draw a line after chainsim′

and other techniques used on the cloze task, referring to them as the candidate score.
However, a candidate score alone is not enough to generate schemas. We must decide on a tech-

nique for traversing candidates and interpreting their scores as prospective additions to a schemas under
construction. We will refer to these techniques collectively as germinators.

We employ two previously devised germinators for schema generation (Section 3.1): counter-training
(Simonson & Davis, 2015) and Chambers’ original technique or schema germination (Chambers & Ju-
rafsky, 2009), though here referred to as “linear induction.” Both of these techniques are relatively
deterministic, so for comparison, we present a novel stochastic technique for schema generation called
the “random walker” germinator (Section 3.2). We expect this stochastic technique to be less stable than
its deterministic counter-parts.

All of the implementations for narrative schema germinators can be found in durruti.2

3.1 Prior Techniques

Linear induction is what we call Chambers & Jurafsky (2009)’s technique for inducing schemas. In
this technique, the event verbs are considered in order for adding to narrative schemas. Each event verb
is compared against an ever-growing set of schemas. New schemas are created when the event verb
does not pass a threshold parameter β. In Chambers & Jurafsky (2009)’s original implementation, if a
candidate event verb’s chainsim′ score is greater than β, it is added to the schema that best fit the event
verb. We differ in this regard, adding the candidate event verb to every schema for which its chainsim′

score crossed the threshold.
Alternatively, counter-training (Simonson & Davis, 2015)—inspired by Yangarber (2003)—considers

a fixed set of schemas simultaneously, which start as a set of seeds. Candidate events are scored against
all schemas, then those scores are penalized based on how many different schemas each candidate fit into.
After penalties have been applied, the best candidate event for each schema is added to each schema.

With respect to both techniques, once the decision has been made to add an event to a schema, we insert
new events into each schema the same way in both germinators, following Chambers & Jurafsky (2009)’s
technique for doing so. Additionally, for both prior germinators and the random walker—described in
Section 3.2—chainsim′ is used as the underlying score.

3.2 Random Walker

Both prior techniques are deterministic. Adding a “random walker” stochastic germinator potentially
provides a nice contrast to these deterministic techniques. For a particular schema, all possible insertions
are treated as weighted random choices based on the scores between chains already in a schema and

2https://github.com/thedansimonson/durruti



3673

candidate events. However, because the scores are pmi-based, the values, if turned into a probability
distribution, are nearly uniformly distributed. This causes events selected for schemas to be effectively
unrelated to one another. Instead, we use a weighting function to weight the score more appropriately
for random selection, in this case weight(C, vd) = 2chainsim

′(C,vd), which effectively undoes the log
contained in the score function.

This algorithm departs from a simple random walk, because the weights on the graph change at each
step; the current score value for each schema depends not only on the last event added, but on all of the
events previously added. The “graph” is thus recomputed based on the current state of the schema being
grown.

4 Stability Ablation and Cross-Validation

The stability evaluation procedure alternates two stages: an ablation step and a cross-validation step. At
each ablation step, 10% of the total set of documents are removed (not 10% of the previous ablation).
Then, using the corpus at each ablation stage, ten-fold cross-validation partitions the set of documents
and 9/10ths of the available documents are used in each fold to generate schemas. These splits are not
preserved across ablations. While these procedures involve removing portions of the original corpus,
the most intuitive way to interpret the intent is in reverse—that is, to think of some sort of search and
retrieval procedure yielding slightly different results (cross-validation step) at each step in a larger data
collection effort (ablation step).

We generate schemas using each of the three schema germinators described above. Separate sets of
schemas are generated from the documents in each category in Table (1), using separate PMI models pro-
duced from documents in each category, at each stage of ablation, and for each fold of cross-validation.
These sets of schemas are what we compare to one another to gauge their stability in different experi-
mental configurations.

Since the total number of schemas generated is about 4 million, we did not attempt to optimize various
parameter values pertinent to each germinator, instead using a single set of approximately optimized
values from an earlier study of schemas in a salient named entity detection task.

5 Fuzzy Jaccard Coefficient and the Jaccard Reciprocal Fraction

The result from each run (using a given schema germinator, on documents from a given category at a
specified stage of ablation and fold of cross-validation) is a set of narrative schemas. How can we then
measure the similarity between different sets of schemas? A schema in one set may be highly similar
but not identical to a schema in the other set; see, for example, any two schemas in Figure (3). We
wish to take their similarity into account in our overall measure of the similarity between the two sets.
It is simple to measure the similiarity Je between two individual schemas σ and τ , using the Jaccard
coefficient, where σe and τe are the sets of events contained in each schema:

Je(σ, τ) =
|σe ∩ τe|
|σe ∪ τe|

(1)

But evaluating the similarity between two sets of schemas is not so straightforward, particularly when
we need to compare thousands of pairs of sets of schemas. Essentially, we would like to determine, for
each schema in one set, how similar its best match is in the other. We therefore define a fuzzy Jaccard
measure over two sets (of schemas, in this case), by redefining the intersection cardinality in a “fuzzy”
way, as:

JJe(S, T ) =
|S ∩Je T |
|S ∪Je T |

(2)

where S and T are sets and Je is a symmetric and well-defined comparison between elements of S and
T, with values between 0 and 1. We invoke the identity (|S ∪T | = |S|+ |T | − |S ∩T |) to derive a fuzzy
counpart for the cardinality of the union. The fuzzy similarity measure then becomes:

JJe(S, T ) =
|S ∩Je T |

|S|+ |T | − |S ∩Je T |
(3)
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This allows us to have to only define |S ∩Je T |, which we define as:

|S ∩Je T | =
∑
τ∈T

max
σ∈S

Je(σ, τ) (4)

The values rendered by this approximation are somewhat misleading, however. It tends to skew low,
especially when considering schemas. Two schemas with six events each, sharing five events, have a
Jaccard score of only 71%, since the schemas are “punished” for having two events that do not match.
The Fuzzy Jaccard measure JJe further exaggerates this discrepancy. Assume that all of the schemas in
two sets of schemas have a Je value as described above, at 71%. In other words, these are fundamentally
two very similar sets of schemas—each schema in one set has a counterpart in the other set sharing five
out of six events. Assume also that both sets of schemas are the same size. This gives us:

JJe(S, T ) =
|T | × 0.71

2|T | − |T | × 0.71
= 55% (5)

This value misleadingly implies that the sets of schemas are only 55% similar despite each schema in
one set having a close match in the other.

If we make a few assumptions about JJe , we can find a better interpretation for the values it computes.
Essentially, what we want to know is the typical value of |σe ∩ τe| implied by a given JJe value. We
define |σe ∩ τe| = x since that is what we want to solve for. If there is such a value, we will assume it is
fixed under the maximization in the defined cardinality of the intersection. This also allows us to reduce
the summation over T to the cardinality of T . We also assume that |σe| = |τe| = σ′ since our schema
germinator ceases at a maximum of six events for all germinators:

|S ∩Je T | =
∑
τ∈T

max
σ∈S

|σe ∩ τe|
|σe|+ |τe| − |σe ∩ τe|

= |T | x

2σ′ − x
(6)

Let us allow for one more approximation, that |S| = |T |. This is absolutely true for the counter-
training, random walker, and linear induction truncated germinators, since they generate a fixed number
of schemas. It is approximately true for the linear induction germinator. Substituting Formula (6) into
Formula (3) and making the given approximation yields:

JJe(S, T ) =
|S ∩Je T |

|S|+ |T | − |S ∩Je T |
=

|T | x
2σ′−x

2|T | − |T | x
2σ′−x

=
x

2σ′−x
2− x

2σ′−x
=

x

2(2σ′ − x)− x
=

x

4σ′ − 3x
(7)

Solving for x, we get the Jaccard Reciprocal Fraction, or JRF :

x =
4

J−1Je (S, T ) + 3
= JRF (8)

This gives us the typical fraction of shared events between schemas in two sets of schemas, regardless
of the size of schemas in each set. As the Fuzzy Jaccard value approaches 1, so does the JRF; as the
Fuzzy Jaccard value approaches 0, the denominator approaches infinity, and thus the JRF approaches 0.
For the example shown above, JRF = 4/(1/0.55 + 3) = 0.83 = 5/6. This is more intuitive while
simultaneously preserving the underlying set theoretic machinery and justification for the comparisons
performed.3

It has been suggested that we include a more sophisticated lexical similarity metric—for example,
those presented by Corley & Mihalcea (2005) or Kusner et al. (2015). However, fundamentally, these
would obscure the answers to the questions we are asking here, which is, through the lens of coreference
chains, dependencies, event verbs, and their pointwise mutual information, how stable are the schemas
produced to perturbations in the data used? Were the models used to generate the schemas more depen-
dent on a lexical similarity measure, such would be essential in answering that question—and while a

3Preliminary results indicate that the JRF values are quite similar to the raw numeric values computed.
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great potential next step in improving schema induction, the problem of lexical similarity has largely been
neglected in narrative schemas and the narrative cloze task. We suspect adherence to editorial guidelines
within a single publication will likely normalize the most interchangeable terms—for example, selec-
tively choosing “pursue” over “chase.” In a multi-newspaper corpus, we suspect lexical distance would
be much more important.

6 Results

For each individual pair of sets of schemas within an ablation, we compute Fuzzy Jaccard scores, their
means and their standard deviations, transformed into JRF form. Presenting these values here is too
cumbersome, however. As an overview, average JRF values across germinators and document categories
are shown in Figures (1) and (2).

0 1 2 3 4 5 6 7 8 9

0.65

0.7

0.75

0.8

Ablation

JR
F

Computers and the Internet Crime and Criminals
Education and Schools Labor
Law and Legislation Top/News/Obituaries

United States Armament and Defense Weddings and Engagements

Figure 1: Stability averaged across document categories. Ablation is on the x-axis; Jaccard Reciprocal
Fraction (e.g. events typically shared) is on the y-axis.

Note that increasing ablation number refers to a decreasing number of documents; in other words,
ablation 8 refers to 8/10ths of the documents having been removed.

In total, the series of experiments generated a total of 3,978,865 schemas. These are not “unique,” as
the whole point was to generate schemas that are hopefully as similar to one another as possible. Linear
induction produced 2,698,865 schemas, in part a product of its open-ended generation process. Both
counter-training and random walker generated 640,000 schemas, as the number of schemas generated
within each category was fixed at 800 for practical computational reasons. 4

Figures (1) and (2) contain the stability values as averaged across different dimensions. Figure (1)
averages all stability values for a given ablation across all algorithms, leaving separate values for each
category. Conversely, Figure (2) averages the stability values across document categories, leaving each
algorithm individually expressed.

In both figures, stability generally increased as the number of total documents decreased. The one
exception to this was the linear induction schemas, as shown in Figure (2). The causes and consequences

4Since the linear induction truncated algorithm is simply linear induction but with a few schemas clipped off the end, it is
not counted as a separate instance of generation.
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Figure 2: Performance averaged across algorithms. Ablation is on the x-axis; Jaccard Reciprocal Fraction
(e.g. events typically shared) is on the y-axis.

of this will be discussed in the next section.
In Figure (1), the document categories Simonson & Davis (2016) found to be homogeneous are no-

tably more stable than the categories we found to be heterogeneous. The difference between similarity
scores in each cross-validation was significant (p < 0.001) in 140/140 comparisons (t-tests) between the
similarity scores of “Weddings and Engagements” and the other document categories for both counter-
training and the random walker germinators; the difference was significant (p < 0.001) in 137/140
comparisons between “Top/News/Obituaries” and the other document categories for both as well. Two
of the insignificant differences occurred during the 9th ablation against “Computers and the Internet”
and “Labor,” one occurred during the 2nd ablation against “Education and Schools.” This does not itself
have to do with the content of the schemas, but the differences in similarities internal to the document
category itself.

Some examples of schemas generated in this process—six from the counter-training germinator in two
different cross-validations of the 0th ablation—are contained in Figure (3). Schemas containing these
sorts of events are typical of the Obituaries section. Note that “bear” is simply the lemmatized form of
“be born”. In each schema, participants of the same chain of argument slots of the verbs are indicated by
the same color and shape, but this does not extend across schemas. Each column of shapes is, from left
to right, in each schema, SUBJ, OBJ, and PREP, respectively. Dotted boxes indicate slots attested in the
data but not linked to a chain; completely blank slots were never attested in the data. Each chain shares a
number of types, too many to explicitly enumerate here. The object slot of “survive,” for example from
the idiom “person was survived by,” was typically a generic person type or type that would qualify as a
subset of person: “woman,” “man,” “boy,” “microbiologist,” “lawyer,” etc.

7 Discussion

The first striking aspect of these results is the affirmation that the Weddings and the Obituaries categories,
the two determined to be homogeneous by Simonson & Davis (2016), were consistently more stable at
all ablations than the rest of the document categories. The differences were significantly different the vast
majority of the time (277/280), and in cases where this was not the case, only a handful of the stability
scores of the heterogeneous categories had increased. This affirms our earlier findings from another angle
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Figure 3: Six schemas generated by the counter-training germinator in two cross-validations, showing
varying degrees of similarity between schemas. The two rows show schemas generated from two differ-
ent cross-validation of the data in the same ablation.

unrelated to the NYT corpus’ salient entity annotations, as we managed to show a similar distinction
between homogeneous and heterogeneous document categories without salient entity annotations. The
document categories are written from templates, so in some respects, it’s not surprising that a template
extractor should exhibit different properties on the categories written from templates. Simonson & Davis
(2016) showed that this can be ascertained from labelled evaluation data; the stability procedure used
here shows the same distinction, significantly without labelled data.

Unexpectedly, however, stability increased as the number of documents decreased.
Our initial expectations were that stability would increase with the number of documents. The ratio-

nale, as with many statistical learning algorithms, is that the more documents in the training data, the
better the algorithm performs, as it has more examples to leverage and overall improves performance.
This presupposes that better stability mirrors performance improvements, and that with more data, a ger-
minator can better converge on the ground truth reflecting underlying knowledge about narratives in the
news.

In most circumstances, contrary to expectations, as the number of documents decreases, stability in-
creases, with linear induction constituting the sole exception. There are two possible explanations for
this: (1) the number of documents withheld in cross-validation decreases with the number of documents,
and stability depends more on the number of documents that differ between cross-validations than on the
fraction of documents that differ, or (2) a fixed number of schemas can better capture the information
contained in a smaller set of documents because new documents add more novel and unique narratives,
thereby making the content of the narratives more difficult to capture in a finite set. In other words,
provided with more and more documents, the germinators do not converge to some finite set of schemas,
but instead are presented with an increasingly difficult problem to solve. These two explanations are not
completely orthogonal; however, the first is a far more mechanical explanation. It is simply that more
word types are contained in a larger set of documents, and therefore will be subject to a larger Zipfian tail,
which is more difficult for a finite set of recorded event verbs to cover. The second presupposes that the
system has some semblance of understanding the language data and narrative, and the challenge comes
from the increased diversity of narratives contained therein. The second explanation could cause the first,



3678

but the second claim requires a much greater burden of evidence because of its deeper implications.
Unlike the other germinators, linear induction has no limit to the number of schemas it can produce,

albeit with a great number of schemas containing single events. This means there are two possible
explanations for its behavior. The first is the explanation originally hoped for—that as the algorithm is
given more documents, it begins to converge on a stable core of knowledge derived from the source data
that in one form or another represents a consistent understanding of the data. The second explanation
is more mundane—that what’s actually stable is the schemas containing single events, schemas which
then bias the apparent stability upward as more events that do not cross the β threshold are observed in a
greater number of documents.

The second explanation is more likely here. The linear induction schemas here generated 1,544,879
single event containing schemas, roughly 57.2% of the total schemas generated by linear induction.
Additionally, the LI-Truncated stability provides some insight here. If there is a stable content core that
linear induction is approaching, then the first 800 schemas generated should reflect that. What we see
instead is the lowest stability scores across the board. However, note that as ablation 9 is approached, the
stability of the LI-Truncated schemas increases, likely because the number of schemas actually produced
by linear induction is approaching 800, so the effect of the truncation is vanishing.

While the arbitrary clipping of the linear induction schemas greatly decreases stability, this may point
to the unexpected decrease in stability in the other germinators as the number of documents increases.
Given their hard limit on the number of schemas used, they are in some sense performing a similar
“clipping” of the content contained in the documents. However, their increased stability, while still
conducting a form of clipping, could be attributed to performing a more informed clipping than the
LI-Truncated schemas.

8 Conclusions

We have explored the stability of narrative schemas. We used both an ablation and cross-validation of
the data to produce different sets of schemas and compared them using the Fuzzy Jaccard coefficient and
the Jaccard Reciprocal Fraction, which produces a transformation of the Fuzzy Jaccard coefficient that
is easier to interpret.

Our results affirmed the homogeneous-heterogeneous distinction found in Simonson & Davis (2016).
The homogeneous categories produced more stable batches of schemas than the heterogeneous ones.
The counter-training and linear induction germinators produced more stable results, but the linear induc-
tion truncated results indicate that much of the apparent stability of the linear induction germinator is
contained in its long tail of schemas.

Additionally, contradicting expectations, the schemas produced were more stable when given fewer
documents. It is difficult to say whether this is because fewer documents were removed at every step
of the cross-validation or because there is simply fewer narratives to capture in the same number of
schemas. These explanations do not necessarily contradict one another, and the effect witnessed may be
a mixture of both.

Understanding the stability of schemas provides us with a window into the quantitative properties of
news narratives at large. Additionally, stability provides another technique for evaluating what makes
a “good set of schemas:” as objects that are consistent regardless of what subset of a corpus they are
derived from. Not for all purposes is this property necessarily “good,” but the stability procedure provides
a quantitative metric for this property if it is desired.

For sake of comparison, further analysis, and potential use in other projects, we have also made our
schemas publicly available for potential use in the future.5
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