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Abstract

Word composition is a promising technique for representation learning of large linguistic units
(e.g., phrases, sentences and documents). However, most of the current composition models do
not take the ambiguity of words and the context outside of a linguistic unit into consideration
for learning representations, and consequently suffer from the inaccurate representation of se-
mantics. To address this issue, we propose a model-free context-aware word composition model,
which employs the latent semantic information as global context for learning representations.
The proposed model attempts to resolve the word sense disambiguation and word composition in
a unified framework. Extensive evaluation shows consistent improvements over various strong
word representation/composition models at different granularities (including word, phrase and
sentence), demonstrating the effectiveness of our proposed method.

1 Introduction

Recent development in natural language processing (NLP) has seen a rise of continuous representation
learning of linguistic units, which has been successfully applied to various tasks such as contextual word
similarity (Iacobacci et al., 2015; Huang et al., 2012), machine translation (Devlin et al., 2014), para-
phrase detection (Socher et al., 2011a) and sentiment classification (Tang et al., 2015). The continuous
representation of linguistic units bring many benefits. For example, we can easily calculate the semantic
relatedness between two words ‘dog’ and ‘cat’ using cosine distance of their continuous representa-
tions. Specifically, a representation learning method aims at mapping a linguistic unit with k words
S = [w1, w2, ..., wk] into a continuous vector in a low dimensional feature space.

Currently, most of the representation learning methods focus on learning word embeddings, mostly
based on the distributional hypothesis (Harris, 1954), i.e., words in similar contexts tend to have similar
meanings. In most cases, a word is represented by summarizing all its contexts in a large text corpus, ei-
ther by dimension reduction from co-occurrence matrix (Levy and Goldberg, 2014), or by neural network
models (Collobert and Weston, 2008; Mikolov et al., 2013; Huang et al., 2012).

Intuitively, a word may express distinct meanings in different contexts, so its representations may be
distinct in various linguistic units. For example, the word ‘bank’ should have different representations in
‘commercial bank’ and in ‘river bank’, because they correspond with two distinct senses of ‘bank’: the
former with the meaning of ‘financial institution’, and the latter with ‘riverside’ meanings. To address
this issue, some multi-prototype word embeddings models are proposed to learn multiple representations
for individual words. For instance, MSSG (Neelakantan et al., 2015) utilizes local context to infer the
accurate semantic of a word, and the global context is incorporated by TWE (Liu et al., 2015) to learn
accurate representations of a word.

The representations of linguistic units larger than words (e.g., phrases, sentences), unfortunately, usu-
ally cannot be learned using the method as word representations. The main reason is the context sparsity
problem, i.e., most of the large linguistic units will not occur frequently even in a large text corpus, which
leads to insufficient context statistics for accurate representations learning.
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To effectively learn the representations of large linguistic units, a promising approach is word com-
position, which is based on the Frege’s principle of composition: (Pelletier, 2001) – the meaning of a
complex expression is determined by the meanings of their constituent expressions and the rules used to
combine them. Specifically, given a linguistic unit S with [w1, w2, ..., wk] words, a composition method
first infers the vectors of all words in S based on embedding matrix. After that, a composition model is
utilized to transform the word vectors into a single representation of unit S. For example, to represent
the phrase ‘the dog outside’, a composition method will first infer the representations of ‘the’, ‘dog’
and ‘outside’, and then feed those word vectors into a composition model, e.g., element-wise addition,
element-wise multiplication (Mikolov et al., 2013), recursive neural network (Socher et al., 2012), gated
recurrent neural network, Long-Short Term Memory network (Le and Zuidema, 2015) or convolutional
neural network (Xu et al., 2015). There are also approaches that jointly learn the representations of words
and larger units, e.g Le and Mikolov (2014).

However, the meaning of a large linguistic unit not only depends on its constituent words but also
affected by the context around it. For example, the meaning of word ‘going’ in sentence ‘I am going
to the bank.’ can be disambiguated based on the local context (the other words in the sentence). But
the meaning of word ‘bank’ in this sentence can not be inferred without context outside this sentence.
Unfortunately, deriving contextual information outside of a given sentence is not trivial due to the data
sparsity problem. What’s worse, in some practical NLP applications, there is no context for a given
sentence, such as question answering or information retrieval.

To address this issue, this paper proposes a model-free context-aware word composition model to
learn proper representations for linguistic units at different granularity levels by incorporating latent
semantic information. The proposed model attempts to address the word sense disambiguation and word
composition in a unified architecture. Specifically, inspired by TWE (Liu et al., 2015), this paper utilizes
topic distribution as the global context of a linguistic unit. Each topic is utilized to derive accurate
meanings for all the word occurrences in the linguistic unit and to learn the topic-specific representation
of the unit. After that, the context-aware representation of the linguistic unit is inferred by summarizing
all its representations under different topics based on the topic distribution. In this way, our method can
make use of the topic information of a word to learn its accurate topic-specific representation, and the
topic distribution of the a unit is employed as a cue to guide the process of word composition to learn
meaningful representation.

Note that, our context-aware composition framework is model-free in that it can employ any existing
composition model as the base composition model. We assess our method on multiple text similarity
tasks based on various base composition models. Experimental results verify the effectiveness of our
model on learning the representations of linguistic units at different granularity level, and show consis-
tently improvements over various base composition models. The main contribution are threefold: (1) It
regards the linguistic unit as a whole, and utilizes the latent semantic information to learn the accurate
representations for both the linguistic unit and the word occurrences in it; (2) This paper verifies that
the topic information is benefit for both the accurate word representation and word composition. (3) We
proposed a model-free framework that can enhance various kinds of methods.

2 Related Work

This section briefly reviews related work, including context representation models, word/phrase embed-
dings leanings methods and word composition methods.

2.1 Context Representation Model

How to represent contextual information is a key topic in natural language processing research area.
Currently, a main trend is to represent context via latent variable models (Szpektor and Dagan, 2008),
e.g., the Latent Dirichlet Allocation (LDA) (Blei et al., 2003). Using LDA models, a context will be
represented as a topic distribution. Frank et al. (2014) used topic models to provide context for a vowel
categorisation task in child directed speech.
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2.2 Word/Phrase Embeddings

Currently, most of the word embeddings methods use either neural network or co-occurrence matrix.
Several well-known models include C&W (Collobert and Weston, 2008), word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014). The main drawback of these methods is that they represent a
word using a single vector, such a uniform representation method cannot accurately represent polysemy.

There are also various methods which try to learn multi-prototype word embeddings to solve the pol-
ysemy problem, with each vector corresponding to a sense instead of word, such as the Multi-Prototype
model (Huang et al., 2012), the MSSG (Neelakantan et al., 2015), the EHModel (Tian et al., 2014), the
SenseEmb (Guo et al., 2014) and the SAMS model (Cheng and Kartsaklis, 2015). The main drawback
of these models is that they need to induce the senses of a word, which is a very challenging task.

Salant and Berant (2017) verified the importance of the contextual information for word representation.
Recently, a number of methods are proposed to learn contextual word representations based on neural
network (Melamud et al., 2016; Peters et al., 2018) without considering word composition.

(Liu et al., 2015) proposed a TWE model which employs the topic assignments to produce topic-
specific word embeddings to avoid the challenging task of word sense induction, and generates the rep-
resentation of a larger unit by adding the vectors of topical word embeddings weighted by TFIDF of
them. Fadaee et al. (2017) labels a word with topic distribution in both hard and soft ways, and learns
topic-specific representations and general representation for a word simultaneously. Shi et al. (2017) in-
troduces a method to enhance the word representation and topic model with each other. By contrast, our
proposed model aims at utilizing topic distribution to enhance the word composition models for learning
representations of linguistic units of different granularity levels, including word, phrase and sentence.

2.3 Word Composition

Due to the context sparsity problem, word composition is a promising technique to learn representations
of linguistic units larger than words. A lot of models have been developed for word composition, e.g.,
simple models such as element-wise addition/multiplication (Mitchell and Lapata, 2010; Mikolov et al.,
2013) and neural network based models such as recurrent neural network (Paulus et al., 2014), gated
recurrent neural network, Long-Short Term Memory network (Le and Zuidema, 2015), convolution neu-
ral network (Xu et al., 2015) and attention-based model (Ling et al., 2015). These composition models
could be used as the base composition model in our model-free framework.

Skip-Thought (Kiros et al., 2015) learns word and sentence representations based on sentences around
it simultaneously. Doc2vec (Le and Mikolov, 2014) jointly trains the word sentence vectors by predict-
ing the words in it. Recently, (Mao et al., 2017) introduced a topic-aware model to enhance the word
composition model based on topic embeddings, which verifies the benefit of topic information for word
composition. But despite its apparent success, there remains a major drawback: this method suffers
from the limitations that learning topic embeddings and the uniform representation of words. By con-
trast, our method generates different vectors for a word in various context and only depends on the topic
distributions of linguistic units.

3 Model-Free Context-Aware Word Composition Framework

In this section, we present our model-free context-aware word composition framework, which contains
two main components: context-aware word representation and context-aware word composition. We first
describe the method of learning a context-aware word embeddings. After that, we propose a model-free
context-aware word composition framework to learn contextual representation of a linguistic unit.

3.1 Context-Aware Word Embeddings

This section describes how to learn the context-aware word representation of a contextual word based on
contextual Information.

Contextual Information. In this paper, we represent contextual information using the most
prevalent topic model (Blei et al., 2003), i.e., the context of a linguistic unit is represented as a
topic distribution C = {p(Topic1), p(Topic2), ..., p(TopicK)}. For example, the phrase context
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‘river bank’ of the word ‘bank’ may be represented as {Geography0.8, F inancial0.01, ..., Sport0.1},
by contrast the phrase context ‘commercial bank’ of the word ‘bank’ may be represented as
{Geography0.02, F inancial0.85, ..., Sport0.03}. Note that, the proposed method can also use other con-
text representation model, such as Melamud et al. (2016; Peters et al. (2018).

Using the above context representation model, we estimate the context-aware representation as fol-
lows: (1) We train a topic model on a large-scale text corpus using topic model; (2) Given the context
of a word occurrence S = [w1, w2, ..., wk], where wi represents a word, we employ collapsed Gibbs
sampling algorithm (Griffiths and Steyvers, 2004) to infer the topic assignments for all words in S, and
the topic distribution of S is utilized as contextual information.

Context-Aware Word Embedding Learning: Based on the above contextual information, a word can
express distinct meanings under different topic assignments, and the unit representation can be learned
separately for each individual topic, before being combined to constitute the final context-aware unit
representation. For example, the word ‘bank’ with topic assignments ‘Geography’ and ‘Financial’ re-
spectively express two distinct senses of ‘bank’: ‘riverside’ and ‘financial institution’. We employ the
topic assignment as the contextual cue of a word in a specific context. In this way, we need to learn the
embeddings of all 〈word : topic〉 pairs – we refer them topic-specific word embeddings. Formally, we
learn a set of vectors for each word, with each vector corresponding to a specific topic. For instance, the
word ‘bank’ will be represented as:

~VGeo(bank) = [0.628, 0.093, 0.051, ..], ~VFin(bank) = [0.034, 0.016, 0.320, ..]

where ~VGeo(bank) and ~VFin(bank) correspond to two distinct senses of ‘bank’ under topics of ‘Geog-
raphy’ and ‘Financial’, respectively.

To learn the above topic-specific word embeddings from a text corpus, we first assign each word in
the text corpus with a topic using the topic models; secondly we treat each 〈word : topic〉 pair as an
individual unit; finally we learn the embeddings of all 〈word : topic〉 pairs using word embedding model,
such as Word2Vec and Glove.

3.2 Context-aware Word Composition
In this section, we propose a model-free context-aware word composition framework, which represents
a linguistic unit based on contextual information and context-aware word representation. Our method
employs topic distribution of a linguistic unit as its contextual information. Specifically, given a lin-
guistic unit S = [w1, w2, ..., wn], its topic distribution C = {p(topic1|S), p(topic2|S), ...} and the
topic-specific embeddings of all words, we construct the representation of S as follows:

1) We calculate the topic-biased representation of S under topic t by composing the topic-specific
word embeddings as follows:

~VTopicBiased(S, t) = f(~Vt(w1), ..., ~Vt(wn)) (1)

where f is a base composition model, which composes a sequence of vectors into a single representation.
Notice that we can utilize any context-unaware word composition model as our base composition model,
such as recurrent neural network, convolutional neural network, element-wise addition/multiplication,
etc. For example, given the sentence ‘we run along the bank’, the topic-biased representation of the
sentence under topic ‘Geography’ is learned as:

~VTopicBiased(S,Geo) = f(~VGeo(we), ..., ~VGeo(bank))

2) We construct the context-aware representation of S by the weighted average of all topic-biased
representations of S based on its topic distribution:

~VContextual(S) =
∑
t∈T

p(t|S) · ~VTopicBiased(S, t) (2)

where p(t|S) is the topic probability of topic t of S. For instance, using the inferred topic distribu-
tion of the sentence S as {Geography0.03, F inancial0.01, .., Sport0.73}, we generate the context-aware
representation of S by averaging all the topic-biased vectors of S according to its topic distribution as:
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~VContextual(S) = 0.03 · ~VTopicBiased(S,Geo) + ...+ 0.73 · ~VTopicBiased(S, Sport)

To learn the context-aware representation for a word in a specific sentence,the latent topic distribution
of the sentence and the topic-specific word embeddings are needed. Specifically, a word in a specific
context can be learned by averaging the topic-specific word embeddings based on the topic distribution:

~VContextual(w|S) =
∑
t∈T

p(t|S) · ~Vt(w) (3)

where ~Vcontextual(w|S) represents the context-aware representation of word w in context S, p(t|S)
is the topic probability of S under topic t, ~Vt(w) represents the topic-specific embedding of word
w and T represents the set of topics. For example, given a sentence S=‘Bank is a financial
institution that accepts deposits’, we first infer its topic distribution of the sentence as C =
{Geography0.01, F inancial0.8, ..., Sport0.03}. Secondly we learn the context-aware representation of
‘bank’ as follows:

~VContextual(bank|S) = 0.01 · ~VGeo(bank) + 0.8 · ~VFin(bank) + 0.03 · ~VSport(bank) (4)

where ~Vsport(bank) represents the topic-specific representation of ‘bank’ under topic ‘Sport’.

4 Experiments

In this section, we assess our method on text similarity tasks at different granularities. And we conduct
experiments on paraphrase detection task to evaluate the improvements of our method over various base
word composition models.

4.1 Model Pre-training
In our experiments, we employ two different corpora for a comprehensive comparison to the various
baseline models. We train the LDA model and the topic-specific word embeddings on the British National
Corpus (BNC) (Consortium and others, 2007), which contains more than 93 million terms, and a bigger
corpus – a snapshot of the English Wikipedia corpus1 with about 990 million tokens.

Specifically, we use GibbsLDA++ (Phan and Nguyen, 2007) to estimate the topic distribution and
infer the topic assignment for each word in the corpus. The parameters of GibbsLDA++ are empirically
tuned as follows: α = 0.5, β = 0.1, the number of topics 50, the number of iterations 400. For the
topic-specific word embeddings, we use the SkipGram algorithm, with the dimension of word vector
300, the windows size 5, the number of iterations 5 and 10 negative samples per occurrence.

4.2 Overall Results
The proposed model focuses on learning the context-aware representations of large linguistic units. To
evaluate the learned representations of linguistic units, we conduct experiments on text semantic simi-
larity tasks at different granularities, including contextual word similarity, phrase similarity and sentence
similarity. In this section, we calculate the similarity of two linguistic units based on cosine similarity of
their representations, and we assess different systems using the Spearman’s correlation between system
outputs and gold standards manually labelled.

Contextual Word Similarity Results
To assess the quality of our context-aware word representations, we conduct experiments on the Stanford
Contextual Word Similarity (SCWS) dataset (Huang et al., 2012), which contains 2003 manually labelled
word pair similarities, with each word is paired with a sentence context.

We compare our context-aware word representation model with several baseline word embeddings
models, including C&W (Collobert and Weston, 2008), CBOW and SkipGram (SG) (Mikolov et al.,
2013). We also compare with two multi-prototype word embeddings models, including MSSG model
(Neelakantan et al., 2015) and SAMS model (Cheng and Kartsaklis, 2015), both of which predict the

1https://www.wikipedia.org/
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sense of a word based on its local context. All of the above models are trained on BNC. In addition, we
compare with CBOW and SkipGram (SG) (Mikolov et al., 2013), Huang (Huang et al., 2012), Tian (Tian
et al., 2014), TWE (Liu et al., 2015), STD-dif (Shi et al., 2017) and HTLE (Fadaee et al., 2017) models
based on Wikipedia corpus for fair comparison, which have achieved state-of-the-art performances. And
we report their best published result. The overall results are presented in Table 1.

Corpus CBOW SK C&W MSSG SAMS Tian Huang TWE(best) STE-Dif HTLE Our
BNC 59.0 61.0 55.0 56.0 58.0 - - - - - 63.2

Wikipedia 65.3 65.7 - - - 65.4 65.3 68.1 68.0 63.0 68.3

Table 1: The Spearman’s correlation ρ of different methods on SCWS dataset.

From Table 1, we can see that: (1) Our context-aware word representation had achieved the best
performance on both the BNC and Wikipedia corpora. Compared with the three context-unaware word
representation baselines CBOW, SkipGram and C&W, our method correspondingly achieves 6.8%, 3.3%
and 14.5% ρ improvements. (2) The latent topic model based context representation can effectively cap-
ture the proper meanings of a contextual word. Compared with the multi-prototyped word embeddings
baselines MSSG and SAMS, our method achieved 12.5% and 8.6% ρ improvements, respectively. We
believe the topic distribution of the entire sentence is a beneficial cue for accurately representing poly-
semy words. (3) The results verify that the context-aware way of learning word representation as Formula
(3) may provide a better way of utilizing topic distribution than hard label schema as in TWE, because
both of the models implemented on the dataset.

Phrase Similarity Results
To assess the performance of our method on phrase representation learning, we conduct phrase similarity
experiments on the ML2010 dataset (Mitchell and Lapata, 2010), which contains 108 pairs of phrases
for adjective-noun (AN), verb-object (VO) and compound-noun (NN) respectively.

In our experiments, we employ the element-wise addition as base composition model, which turns out
to be both robust and effective in many tasks. We compare our system with two baselines: the element-
wise addition models correspondingly using the context-unaware word embeddings learned by CBOW
and SkipGram. We also compare our system with state-of-the-art results from ML Original (Mitchell
and Lapata, 2010), PAS(Hashimoto et al., 2014), PARAGRAM (Wieting et al., 2015b), DeepCCA (Lu et
al., 2015) and vecDCS (Tian et al., 2016). The results of the models are taken from the original papers.
The overall results are shown in Table 2.

ML Original PAS PARAGRAM DeepCCA vecDCS SkipGram CBOW Our
AN 0.46 0.46 0.50 0.45 0.41 0.47 0.45 0.60
NN 0.37 0.49 0.51 0.45 0.51 0.51 0.49 0.54
VO 0.45 0.45 0.40 0.47 0.49 0.39 0.40 0.47

ALL 0.44 0.47 0.47 0.46 0.47 0.41 0.43 0.54

Table 2: The Spearman’s correlation ρ of different methods on ML2010 datasets.

From Table 2, we can see that: (1) By incorporating the topic distributions of phrases, our context-
aware word composition model achieves the best results on all three types of phrases: compared with
SkipGram and CBOW baselines, our method achieves 22.2% and 20.8% ρ improvements on average.
(2) Compared with state-of-the-art systems, our method achieves the best performances on all types of
phrases. The result verified the effectiveness of contextual information in phrase representation.

Sentence Similarity Results
To assess our method on sentence representations, we conduct experiments on the semantic textual sim-
ilarity dataset (STS2015) from SemEval 2015, which contains five datasets of different genres: answers-
students, answers-forums, belief, headlines and images.

In our experiments, the element-wise addition method is employed as the base composition model for
our context-aware word composition model. We compare our method with two baselines: the element-
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wise addition composition model using word embeddings learned from CBOW and SkipGram. All
of the models in this experiment is trained based on Wikipedia corpus. We also compare to several
strong baselines: skip-thought vector (ST) (Kiros et al., 2015) and average Glove vector (Pennington
et al., 2014). Because our proposed model aims at improving word composition model based on topic
distribution, we don’t compare with the methods which incorporate syntax information or other resources
(Wieting et al., 2015a). The overall results are showed in Table 3.

From Table 3, we can note that: our context-aware word composition method significantly improved
the performances on all of the datasets by incorporating the topic distribution information. Compared
with the baselines CBOW and SkipGram, our method achieved 35.5% and 19.2% ρ improvements on
average. And the topic distribution is a beneficial resource for modelling the context of a sentence for
learning better representation of the sentence.

Model Answers students Answers forums Beliefs Headlines Images Overall
ST 0.361 0.330 0.246 0.436 0.177 0.310

GloVe 0.305 0.630 0.405 0.618 0.675 0.527
SkipGram 0.413 0.475 0.392 0.581 0.621 0.496

CBOW 0.477 0.620 0.467 0.573 0.684 0.564
Our 0.632 0.631 0.657 0.681 0.761 0.672

Table 3: The Spearson’s correlation ρ for different methods on STS2015 datasets.

All of the previous experiments have verified that the context-aware combination model is effective
and can achieve better results than the baseline models. Furthermore, the proposed context-aware model
achieved the greatest improvements over base models at sentence level, and made the least progress
on word level. We suspect that because the local contextual information is utilized in learning word
representation, which weakens the value of global context. By contrast, the contextual information is
rarely taken into consideration by word composition models. As a result, we believe the global contextual
information is beneficial for learning representations of larger linguistic units, such as sentence.

4.3 The Effect of Using Different Base Composition Models
Our method is model free that it can employ any context-unware composition models as its base word
composition models. In this section, we intend to clarify whether the context-aware method could en-
hance the representations on different base composition models. Concretely, we conduct experiments
on four of the most commonly used word composition models as base models: element-wise addition
(Mikolov et al., 2013), recurrent neural network (RNN) (Mikolov et al., 2010; Socher et al., 2011b), gated
recurrent neural network (GNN) (Tang et al., 2015) and Long-Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997; Le and Zuidema, 2015; Ghosh et al., 2016) on paraphrase detection task.

Paraphrase Detection
Paraphrase detection is a binary classification task which is used to decide whether two sentences express
the same meanings, which is an appropriate task for evaluating our method. In this paper, we employ
MSRPC datasets (Dolan et al., 2004).

Model C-unware C-aware
Acc F Acc F

Addition 0.658 0.765 0.699 0.801
RNN 0.682 0.80 0.732 0.822
GNN 0.735 0.832 0.763 0.841

LSTM 0.739 0.838 0.776 0.852
ST 0.642 0.739 - -

MSSG - - 0.692 0.793
SAMS - - 0.786 0.853

Table 4: Accuracies and F-Scores of paraphrase detection on MSRPC datasets.

For each base composition model, we compare our method with its context-unaware version. In
addition, we compare with Skip-Thought (ST) vector as a strong baseline, MSSG and SAMS are used
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Topic Top 4 Frequent Words of Topic
Financial money, million, cost, tax

Geography river, lake, mountain, island
Information user, systems, ibm, software

Sport play, team, season, ball

Table 5: Top 4 topics of the word ‘bank’.

〈 word:topic 〉 Neighbors

bank:Geography longitude:Geography, inland:Geography,
coasts:Geography, southward:Geography

bank:Financial bankers: Financial, debt: Financial,
loans: Financial, finance: Financial

Table 6: The top 4 nearest neighbors of word ‘bank’
with topics ‘Geography’ and ‘Financial’.

as the multi-prototype word embeddings models for comparison. In this experiment, we implement a
two layers RNN/GNN/LSTM with a max pooling layer as base word composition model. We randomly
select 500 sentence pairs in training data as validation data to find the best parameters. We learn the
best hyper-parameters based on validation data as follows: the hidden units for RNN/GNN/LSTM is
300, the mini-batch size as 100, the dropout rate is 0.4, the learning rate of SGD is 0.01. All of the
word embeddings are trained on BNC (Consortium and others, 2007) for fair composition with SAMS.
Accuracy and F-Score are used as the metrics. The results are shown in Table 4.

From Table 4, we can see that:(1) The context-aware representation consistently improved the perfor-
mances on all the base word composition models. (2) Compared with Skip-thought vector model and
MSSG model, our proposed model had achieved better performance, we believe the latent semantic in-
formation of a sentence may be the main reason that leads to the results. (3) SAMS achieved better results
than our model, however, it utilized external knowledge resource (PPDB), which is a larger dataset for
enhancing the performance on paraphrase detection task. The paraphrase detection results demonstrate
that our context-aware representation brings beneficial information for different base word composition
models and improves the performances on this task. The proposed model may achieve better results by
utilizing more advanced base word composition models, we leave it for future work.

5 Detailed Analysis

To better understand the way of the proposed method works, this section provides detailed analysis on
the quality of the topic-specific word embeddings and context-aware representations.

5.1 The Quality of Topic-Specific Word Representations

Topic-specific word representations are essential to our method, which is the basic unit for composing
representations of larger linguistic units. In this section, we analyze the quality of topic distributions and
topic-specific word embeddings.

For the reason that the proposed context-aware model is based on an assumption that a word can ex-
press distinct meanings with different topic assignments, so it is important to estimate whether topics can
distinguish different senses of a word. Table 5 shows the top 4 topics of word ‘bank’ and the most fre-
quent words of these topics. From Table 5, we can infer that, ‘bank’ with topic of ‘Financial’ associates
with the meanings of ‘money’ or ‘tax’, and ‘bank’ with ‘Geography’ topic associates with the meanings
of ‘river’ or ‘lake’. In addition, We list the top 4 〈word : topic〉 neighbors for ‘bank:Geography’ and
‘bank:Financial’ in Table 6. The conclusion can be drawn that the topic information can effectively
distinguish distinct senses of a word.

5.2 The Quality of Context-Sensitive Word Composition

We analyze the quality of linguistic unit representations using the ‘river bank’ and ‘commercial bank’ as
examples. We first present the top 3 most frequent topics of their words in Table 7.

Word Topic Probabilities
bank Financial(62.7%), Geography(23.4%), Information(7.3%)
river Geography(89.7%), Information(0.07%) , Sport(0.01%)

commercial Financial(86.3%), Information (6.5%), Law(5.0%)

Table 7: The top 3 most frequent topics of ‘river’, ‘bank’ and ‘commercial’.
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From Table 7, we can see that, both the word ‘commercial’ and ‘bank’ have high probability on topic
‘Financial’, so ‘commercial bank’ will have a high probability belonging to topic ‘Financial’. In this
way, the representation of ‘commercial bank’ will mainly depend on the topic-biased representation un-
der ‘Financial’ topic, which is composed from topic-specific embeddings of ‘commercial:Finanial’ and
‘bank:Financial’. By contrast, the representation of ‘river bank’ will mainly depend on the embeddings
of ‘river:Geography’ and ‘bank:Geography’. In a word, the proposed model is capable of correctly
identifying the important topics for a specific phrase, and generate proper representation for it.

In addition, we list top 5 nearest 〈word : topic〉 pairs of the phrases in Table 8. As shown in Ta-
ble 8, all of the nearest neighbors of ‘river bank’ are labelled with ‘Geography’ topic and all of the
nearest neighbors of ‘commercial bank’ are related to its ‘Financial’ topic. This result demonstrates the
effectiveness of our method on learning accurate representations of phrases.

Figure 1: The precisions on STS2015 datasets
with different numbers of topics in LDA model.

Phrase 〈word : topic〉 neighbors

river bank
river:Geography, valley:Geography,
park:Geography, north:Geography,

boat: Geography

commercial bank
bank:Financial, leasing:Financial,

merchandising: Financial, retailing:
Financial, financing: Financial

Table 8: The top 5 nearest 〈word : topic〉 pairs for
‘river bank’ and ‘commercial bank’.

The experimental results reveal that the topic distribution information could be used as the cue for
learning proper representations of a linguistic unit in different contexts. And the proposed context-aware
model can generate accurate representations for phrases.

5.3 The Number of Topics

One important parameter of our method is the number of topics of the LDA model. In order to detect
the impact of the number of topics on our model, we conduct experiments using different topic numbers
(including 10, 20, 50, 100 and 200) on STS2015 datasets with element-wise addition as base composition
model, the results are shown in Figure 1.

From Figure 1, we can see that: (1) Our method is not very sensitive to the topic number, which
achieved stable performances when using topic numbers range from 10 to 100. But the precision drops
quickly when the number of topics is set as 200, we believe such large number of topics inevitably causes
insufficient occurrences for learning topic-specific word embeddings, which is crucial basic units for our
compositional method. (2) Our method achieved the best precision when the topic number is 50. We
believe this is actually a trade-off between distinguishability and data sparsity.

6 Conclusions

In this paper, we have proposed a model-free context-aware word composition framework for text rep-
resentation learning, which can effectively utilize the latent semantic information of the whole linguistic
unit for learning context-aware representations for linguistic units. The proposed model is model-free
in that our method can employ various context-unaware word composition models as the base model
within our proposed framework. Experimental results demonstrated the effectiveness of our method on
text representation learning at different granularities, including word, phrase and sentence, and the im-
provements on various base word composition models. In future work, to further improve the learned
representations of linguistic units, we want to also take the non-compositional units into consideration,
i.e., to solve the representations of multiword expressions like idioms or name entities, whose meanings
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cannot be composed from the meanings of its constituent parts, such as kill the goose that lays the golden
eggs and speak of the devil.
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