@inproceedings{zhao-etal-2018-adaptive,
title = "Adaptive Learning of Local Semantic and Global Structure Representations for Text Classification",
author = "Zhao, Jianyu and
Zhan, Zhiqiang and
Yang, Qichuan and
Zhang, Yang and
Hu, Changjian and
Li, Zhensheng and
Zhang, Liuxin and
He, Zhiqiang",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1173",
pages = "2033--2043",
abstract = "Representation learning is a key issue for most Natural Language Processing (NLP) tasks. Most existing representation models either learn little structure information or just rely on pre-defined structures, leading to degradation of performance and generalization capability. This paper focuses on learning both local semantic and global structure representations for text classification. In detail, we propose a novel Sandwich Neural Network (SNN) to learn semantic and structure representations automatically without relying on parsers. More importantly, semantic and structure information contribute unequally to the text representation at corpus and instance level. To solve the fusion problem, we propose two strategies: Adaptive Learning Sandwich Neural Network (AL-SNN) and Self-Attention Sandwich Neural Network (SA-SNN). The former learns the weights at corpus level, and the latter further combines attention mechanism to assign the weights at instance level. Experimental results demonstrate that our approach achieves competitive performance on several text classification tasks, including sentiment analysis, question type classification and subjectivity classification. Specifically, the accuracies are MR (82.1{\%}), SST-5 (50.4{\%}), TREC (96{\%}) and SUBJ (93.9{\%}).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2018-adaptive">
<titleInfo>
<title>Adaptive Learning of Local Semantic and Global Structure Representations for Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianyu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiqiang</namePart>
<namePart type="family">Zhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qichuan</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changjian</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhensheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liuxin</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiqiang</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-aug</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Representation learning is a key issue for most Natural Language Processing (NLP) tasks. Most existing representation models either learn little structure information or just rely on pre-defined structures, leading to degradation of performance and generalization capability. This paper focuses on learning both local semantic and global structure representations for text classification. In detail, we propose a novel Sandwich Neural Network (SNN) to learn semantic and structure representations automatically without relying on parsers. More importantly, semantic and structure information contribute unequally to the text representation at corpus and instance level. To solve the fusion problem, we propose two strategies: Adaptive Learning Sandwich Neural Network (AL-SNN) and Self-Attention Sandwich Neural Network (SA-SNN). The former learns the weights at corpus level, and the latter further combines attention mechanism to assign the weights at instance level. Experimental results demonstrate that our approach achieves competitive performance on several text classification tasks, including sentiment analysis, question type classification and subjectivity classification. Specifically, the accuracies are MR (82.1%), SST-5 (50.4%), TREC (96%) and SUBJ (93.9%).</abstract>
<identifier type="citekey">zhao-etal-2018-adaptive</identifier>
<location>
<url>https://aclanthology.org/C18-1173</url>
</location>
<part>
<date>2018-aug</date>
<extent unit="page">
<start>2033</start>
<end>2043</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adaptive Learning of Local Semantic and Global Structure Representations for Text Classification
%A Zhao, Jianyu
%A Zhan, Zhiqiang
%A Yang, Qichuan
%A Zhang, Yang
%A Hu, Changjian
%A Li, Zhensheng
%A Zhang, Liuxin
%A He, Zhiqiang
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 aug
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F zhao-etal-2018-adaptive
%X Representation learning is a key issue for most Natural Language Processing (NLP) tasks. Most existing representation models either learn little structure information or just rely on pre-defined structures, leading to degradation of performance and generalization capability. This paper focuses on learning both local semantic and global structure representations for text classification. In detail, we propose a novel Sandwich Neural Network (SNN) to learn semantic and structure representations automatically without relying on parsers. More importantly, semantic and structure information contribute unequally to the text representation at corpus and instance level. To solve the fusion problem, we propose two strategies: Adaptive Learning Sandwich Neural Network (AL-SNN) and Self-Attention Sandwich Neural Network (SA-SNN). The former learns the weights at corpus level, and the latter further combines attention mechanism to assign the weights at instance level. Experimental results demonstrate that our approach achieves competitive performance on several text classification tasks, including sentiment analysis, question type classification and subjectivity classification. Specifically, the accuracies are MR (82.1%), SST-5 (50.4%), TREC (96%) and SUBJ (93.9%).
%U https://aclanthology.org/C18-1173
%P 2033-2043
Markdown (Informal)
[Adaptive Learning of Local Semantic and Global Structure Representations for Text Classification](https://aclanthology.org/C18-1173) (Zhao et al., COLING 2018)
ACL
- Jianyu Zhao, Zhiqiang Zhan, Qichuan Yang, Yang Zhang, Changjian Hu, Zhensheng Li, Liuxin Zhang, and Zhiqiang He. 2018. Adaptive Learning of Local Semantic and Global Structure Representations for Text Classification. In Proceedings of the 27th International Conference on Computational Linguistics, pages 2033–2043, Santa Fe, New Mexico, USA. Association for Computational Linguistics.