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Abstract

Previous work on the problem of Arabic Dialect Identification typically targeted coarse-grained
five dialect classes plus Standard Arabic (6-way classification). This paper presents the first
results on a fine-grained dialect classification task covering 25 specific cities from across the Arab
World, in addition to Standard Arabic – a very challenging task. We build several classification
systems and explore a large space of features. Our results show that we can identify the exact
city of a speaker at an accuracy of 67.9% for sentences with an average length of 7 words (a 9%
relative error reduction over the state-of-the-art technique for Arabic dialect identification) and
reach more than 90% when we consider 16 words. We also report on additional insights from a
data analysis of similarity and difference across Arabic dialects.
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1 Introduction

Dialect identification (DID) is the task of automatically identifying the dialect of a particular segment of
speech or text of any size (i.e., word, sentence, or document). This task has attracted increasing attention
in recent years. For instance, several evaluation campaigns were dedicated to discriminating between
language varieties (Malmasi et al., 2016; Zampieri et al., 2017). This is not surprising considering the
importance of automatic DID for several NLP tasks, where prior knowledge about the dialect of an input
text can be helpful, such as machine translation (Salloum et al., 2014), sentiment analysis (Al-Twairesh
et al., 2016), or author profiling (Sadat et al., 2014).

For Arabic DID, previous work typically targeted coarse-grained five dialect classes plus Standard
Arabic at most (6-way classification) (Zaidan and Callison-Burch, 2014; Elfardy and Diab, 2013; Dar-
wish et al., 2014). In this paper, we tackle a finer-grained dialect classification task, covering 25 cities
from across the Arab World (from Rabat to Muscat), in addition to Standard Arabic. Table 1 shows the
break up we follow in choosing these cities. The table relates the typical five-way regional break up of
Arabic dialects (Habash, 2010) to a more refined ten-way sub-region division, and even further into 25
cities.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Region Maghreb Nile Basin Levant Gulf Yemen
Sub-region Morocco Algeria Tunisia Libya Egypt/Sudan South Levant North Levant Iraq Gulf Yemen

Cities Rabat
(RAB)
Fes
(FES)

Algiers
(ALG)

Tunis
(TUN)
Sfax
(SFX)

Tripoli
(TRI)
Benghazi
(BEN)

Cairo
(CAI)
Alexandria
(ALX)
Aswan
(ASW)
Khartoum
(KHA)

Jerusalem
(JER)
Amman
(AMM)
Salt
(SAL)

Beirut
(BEI)
Damascus
(DAM)
Aleppo
(ALE)

Mosul
(MOS)
Baghdad
(BAG)
Basra
(BAS)

Doha
(DOH)
Muscat
(MUS)
Riyadh
(RIY)
Jeddah
(JED)

Sana’a
(SAN)

Table 1: Different region, sub-region, and city dialects. The bolded cities are our regional representatives.

We build several classification systems and explore a large space of features. Our results show that
we can identify the exact city of a speaker at an accuracy of 67.9% for sentences with an average length
of 7 words (a 9% relative error reduction over the state-of-the-art technique for Arabic dialect identifica-
tion (Zaidan and Callison-Burch, 2014)) and reach more than 90% when we consider 16 words.

We also report the results of training and evaluating our model using datasets obtained from different
sources: (i) A large-scale parallel corpus of five regional representative dialects and MSA (CORPUS-
6); (ii) A smaller-scale parallel corpus of 25 dialects and MSA (CORPUS-26); and (iii) A corpus of
dialectal sentences extracted from Twitter. Furthermore, we report the additional insights we obtain from
analyzing the data with respect to similarity and difference across Arabic dialects.

Our research contributions are the following:

• We extend the problem of Arabic DID to predict 25 fine-grained city-level dialects.
• We demonstrate a solution for leveraging relatively rich resources for a small number of city dialects

to help with the fine-grained DID task for 25 city dialects.
• We present a detailed analysis of dialect similarity and confusability and add insights on top of the

traditional map presented in the literature.
• We show that, on average, it takes 52 words to reach an optimal classification of the dialect and 16

words to reach 90% accuracy.
• We evaluate our system on dialectal sentences extracted from social media.

The remainder of this paper is organized as follows. In section 2, we review the main previous efforts
for DID. In Section 3, we present the main challenges in processing Arabic and its dialects. In Section 4,
we describe our experimental setup and discuss the datasets, models, features, evaluation metrics used as
well as our results. In Section 5, we present a detailed analysis and discussion on dialect confusability,
optimal classification and tweet dialect classification. Finally, we conclude and give our future directions
in Section 6.

2 Related Work

Working on DID is more challenging than just recognizing a specific language (Etman and Beex, 2015).
Since Arabic dialects use the same script and share part of the vocabulary, it is quite arduous to distin-
guish between them. Hence, developing an automatic identification system working at different levels of
representation and exploring different datasets has attracted increasing attention in recent years. Shoufan
and Alameri (2015) and Al-Ayyoub et al. (2017) present a survey on NLP and deep learning methods for
processing Arabic dialectal data with an overview on Arabic DID of text and speech.

Biadsy and Hirschberg (2009) presented a system that identifies dialectal words in speech and their
dialect of origin (on four regional Arabic dialects) from acoustic signals. In the same context, Bougrine et
al. (2017) propose a hierarchical classification approach for spoken Arabic Algerian DID, using prosody.

Diab and Elfardy (2012) presented a set of guidelines for token-level identification of dialectness.
They later proposed a supervised approach for identifying whether a given sentence is prevalently MSA
or Egyptian (Elfardy and Diab, 2013) using the Arabic online commentary dataset (AOC) (Zaidan and
Callison-Burch, 2011). Their system (Elfardy and Diab, 2012) combines a token-level DID approach
with other features to train a Naive-Bayes classifier. Similarly, Tillmann et al. (2014) use a linear SVM
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classifier to label the AOC dataset. Also, El-Haj et al. (2018) used grammatical, stylistic and Subtractive
Bivalency Profiling features for dialect identification on the AOC dataset.

Sadat et al. (2014) presented a bi-gram character-level model to identify the dialect of sentences in
the social media context among dialects of 18 Arab countries. More recently, discriminating between
Arabic Dialects has been the goal of a dedicated shared task (Zampieri et al., 2017; Malmasi et al.,
2016), encouraging researchers to submit systems to recognize the dialect of speech transcripts along
with acoustic features for dialects of four main regions: Egyptian, Gulf, Levantine and North African, in
addition to MSA. The dataset used in these tasks is different from the dataset we use in this work in its
genre, size and the dialects covered.

Several systems implementing a range of traditional supervised learning and more advanced deep
learning methods were submitted. High-order character n-grams extracted from speech or phonetic tran-
scripts and i-vectors (a low-dimensional representation of audio recordings) were shown to be the most
successful and efficient features (Butnaru and Ionescu, 2018), while deep learning approaches (Belinkov
and Glass, 2016) did not perform well.

Recently, there are more efforts to collect and annotate datasets for dialect identification. Abdul-
Mageed et al. (2018) present a large dataset from Twitter domain covering dialects from 29 major Arab
cities in 10 Arab countries. Al-Badrashiny and Diab (2016) present a system that detects points of code-
switching in sentences between MSA and dialectal Arabic.

Most, if not all of the approaches, proposed in the literature have been exploring DID at the regional or
country level. To the best of our knowledge, this is the first fine-grained DID system covering the dialects
of 25 cities from several countries, including cities in the same country in the Arab World. Moreover,
this is the first study pinpointing Arabic DID, discussing the difference between regional and city-level
identification and redrawing the geographical map for Arabic DID. Furthermore, this is the first work
leveraging a parallel corpus covering 25 dialects in addition to MSA (Bouamor et al., 2018).

3 Arabic and its Dialects

Dialectal Arabic (DA) refers to the collection of language varieties used by Arabic speakers in their
daily interactions. DA lives side by side with Modern Standard Arabic (MSA), the official language
in most Arab countries. Although MSA is not acquired natively (through spoken input at home and
in the community), it has an extensive presence in various settings: media, education, business, arts
and literature, and official and legal written documents. The dialects are not standardized, they are not
taught, and they do not have official status. However, they are the primary vehicles of communication
(face-to-face and recently, online) and have a significant presence in the arts as well.

Arabic dialects are often classified in terms of geography. Typical regional groupings cluster the
dialects into Levantine Arabic (Lebanon, Syria, Jordan, and Palestine), Gulf Arabic (Qatar, Kuwait, Saudi
Arabia, United Arab Emirates and Bahrain, with Iraqi and Omani Arabic included sometimes), Egyptian
Arabic (which may include Sudan), North African Arabic (vaguely covering Morocco, Algeria, Tunisia,
Libya and Mauritania), and Yemeni Arabic (Habash, 2010). However, within each of these regional
groups, there is significant variation down to the village, town, and city levels.

Arabic dialects differ from one another and from MSA on all levels of linguistic representation, from
phonology and morphology to lexicon and syntax (Watson, 2007).1 The number of lexical differences is
significant i.e., Egyptian �

é
	

�ð

@ ÂwĎh̄ ‘room’ corresponds to MSA �

é
	
Q̄

	
« γrfh̄, Lybian P@X dAr and Tunisian

�
I�
K. byt (Habash et al., 2012a).2 Morphological differences are also quite common. One example is the
future marker particle which appears as +� sa+ or

	
¬ñ� sawfa in MSA, +hHa+ or hP raH in Levantine

dialects and �
�AK. bAš in Tunisian. This together with the variation in the templatic morphology make the

forms of some verbs rather different: e.g., ’I will write’ is I.
�
J»


A� sa Âaktubu in MSA, I.

�
J» Ag HaÂaktub

1Comparative studies of several Arabic dialects suggest that the syntactic differences between the dialects are minor (Ben-
mamoun, 2012).

2Arabic transliteration is presented in the Habash-Soudi-Buckwalter scheme (Habash et al., 2007): (in alphabetical order)
AbtθjHxdðrzsšSDTĎςγfqklmnhwy and the additional symbols: ’ Z, Â


@, Ǎ @


, Ā

�
@, ŵ 

ð', ŷ ø , h̄ �
è, ý ø.
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in Palestinian, I.
�
Jºë haktib in Egyptian and I.

�
Jº

	
K

�
�AK. bAš niktib in Tunisian.

An example of phonological differences is in the pronunciation of dialectal words whose MSA cognate
has the letter Qaf ( �

� q). It is often observed that in Tunisian Arabic, this consonant appears as /q/ (similar
to MSA), while in Egyptian and Levantine Arabic it is /P/ (glottal stop) and in Gulf Arabic it is /G/ (Haeri,
1991; Habash, 2010).

It should be also noted that while MSA has an established standard orthography, the dialects do not.
Often people write words reflecting the phonology or the history (etymology) of these words. DA is
sometimes written in Roman script (Bies et al., 2014). In the context of NLP, a set of conventional
orthography guidelines (CODA) has been proposed, but only for specific dialects (Habash et al., 2018).

Despite these differences, distinguishing between dialects is a very challenging task because: (i) di-
alects use the same writing script (not in a conventionalized way) and share part of the vocabulary; and
(ii) Arabic speakers usually resort to repeated code-switching between their dialect and MSA (Abu-
Melhim, 1991; Bassiouney, 2009), creating sentences with different levels/percentages of dialectness.
More discussion on the similarity between dialects of 25 cities in the Arab World and MSA is given in
Section 4.1.

4 Experimental Setup

4.1 Data

In this work, we use a large-scale collection of parallel sentences built to cover the dialects of 25 cities
from the Arab World (illustrated in Table 1), in addition to English, French and MSA (Bouamor et
al., 2018). This resource was created as a commissioned translation of the Basic Traveling Expression
Corpus (BTEC) (Takezawa et al., 2007) sentences from English and French to the different dialects. It
contains two corpora. The first consists of 2,000 sentences translated into dialects of 25 cities. Each of
these sentences has a corresponding 25 parallel translations. We refer to it as CORPUS-26 (25 cities plus
MSA). The second corpus has 10,000 additional sentences (non-overlapping with the 2,000 sentences)
from the BTEC corpus translated to the dialects of only five selected cities: Beirut, Cairo, Doha, Tunis
and Rabat. We refer to it as CORPUS-6 (5 cities plus MSA). Effectively, the five selected cities will each
have 12,000 sentences that are five-way parallel translations. An example of a 28-way parallel sentence
(25 cities plus MSA, English and French) extracted from CORPUS-26 is given in Figure 1.

Data pre-processing and splitting In our experiments, we only tokenize the sentences in both
CORPUS-6 and CORPUS-26 using punctuation marks. Morphological analysis has been shown to im-
prove the performance of DID systems for a small number of dialects (Darwish et al., 2014). However,
the number and sophistication of morphological analysis and segmentation tools for DA are very limited
(Pasha et al., 2014), cover only a small number of dialects (Habash and Rambow, 2006; Habash et al.,
2012b; Khalifa et al., 2017) and unavailable for most of the others. We split each corpus into Train,
Development (Dev) and Test sets. The splits are balanced for each dialect and the distribution of each
split is given in Table 2. We use TRAIN, DEVELOPMENT and TEST terms with CORPUS-6 and
CORPUS-26 to refer to the training, development and test sets of the specified corpus. We use the term
MODEL to refer to the trained system.

Train Dev Test Classes
CORPUS-6 9000 1000 2000 6
CORPUS-26 1600 200 200 26

Table 2: Distribution of the Train, Dev
and Test sets used in our experiments.

Pairwise similarity between dialects In order to get a
sense of the complexity of our task, we explore the de-
grees of similarity and variation between the dialects in
CORPUS-26. We accomplish this by building a similar-
ity matrix representing the lexical similarity between the
dialects of every two cities D1 and D2 (i.e., BEI and CAI,
TUN and MUS, etc.). We measure the similarity by com-
puting the percentage of common tokens between the cor-
pus of D1 and the corpus of D2. This is solely a bag of word comparison.

Then, we apply a hierarchical agglomerative clustering algorithm to the similarity matrix. We group
the clusters using single linkage clustering, thus combining two clusters that contain the closest pair of
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English I’ll take this one, please.
French Je vais prendre celui-ci, s’il vous plaît.
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. ¼A

	
¯A« , ø



XAë Y

	
gA

	
K ø
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Aswan .
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Khartoum
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g@ h
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Jerusalem .
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@ hP
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rAH Axd wHdh̄ mn hAy, lw smHt .

Beirut
.

	
¬ðQªÓ ÈñÔ« , @YJ
ë Y

	
g@ hP

rH Axd hydA, ςmwl mςrwf.
Damascus

.
�

IjÖÞ� @
	
X @


, XAë Y
	

g
�
@ hP
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Mosul
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Baghdad
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Basra
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AK.

bÂxð hAðy, mn fDlk.

Riyad
.

�
IjÖÞ� ñË , ù



ë

	
Y

	
gAK.

bAxð hy , lw smHt .
Jeddah

.
�

IjÖÞ� ñË , Zú


æ
�
�Ë @ @X

	
Y

	
gAg

HAxð dA Alšy’, lw smHt.

Sana’a .
�

IjÖÞ� ñË , @
	
Yë É

�
�@ A

�
�

šA Ašl hðA, lw smHt.

Figure 1: Sample of a 28-way parallel sentence extracted from CORPUS-26. The MSA and dialectal
sentences are given along with their transliteration in the Habash-Soudi-Buckwalter scheme (Habash et
al., 2007).

dialects (have the largest number of common tokens). The dendrogram in Figure 2 illustrates the result
of this clustering algorithm, with the y-axis showing the token dissimilarity ratio between the clusters.

The dendrogram shows the not surprising closeness of dialects of cities within the same countries,
and in the same geographic region. For example, Damascus and Aleppo dialects are different from each
other only by 32% and from Beirut dialect by 38%. While the dissimilarity between the cluster enclosing
Tunis and Sfax and the cluster containing the rest of the dialects is more than 50%. Thus, the high degree
of similarity among some dialects shows that discriminating between dialects on the word-level is rather
challenging. This can affect the accuracy of our models due to the increase of confusability among
similar dialects.

4.2 Multi-level Dialect Identification Models

We formulate our DID problem as a multi-class classification task. We consider a Multinomial Naive
Bayes (MNB) classifier for the learning task.3 MNB is a variation of Naive Bayes that estimates the
conditional probability of a token given its class as the relative frequency of the token t in all documents
belonging to class c. MNB has proven to be suitable for classification tasks with discrete features (e.g.,

3Our experiments with MNB outperform other classification models such as Linear SVM, Convolutional Neural Networks
models with multiple words and characters filter sizes (Belinkov and Glass, 2016), and Bi-directional LSTM models. The latter
two had lower accuracy than the simple Language Model baseline, which could be explained by the small size of our training
data.
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Figure 2: Pairwise similarity between dialects in Corpus-26

word or character counts or representation for text classification) (Manning et al., 2008).

Baseline We follow the approach described in Zaidan and Callison-Burch (2014) for dialect identifica-
tion and adapt it to build our baseline model. For each dialect, we train a 5-gram character level language
model (LM) using KenLM (Heafield, 2011) with default parameters and Kneser–Ney smoothing. Then,
we use the LM to assign to each sentence S, the dialect Di that maximizes its conditional probability
score argmaxi P (Di|S). Character-based LMs leverage subword information and are generally good
for capturing particular peculiarities that are specific to certain dialects such as the use of certain cli-
tics, affixes or internal base word structure. For example, the word prefixes K
X


@ Âdy, �

JK. bt and �ËAë hAl

depicted by the character n-gram LM in ? @
	Q�


	
®ËAë ÐY

	
j

�
JK.

�
��
X


@ Âdyš btxdm hAlfyzA ? ‘How long is this

visa good for?’ are good indicators that the dialect of the sentence might be from the Levantine re-
gion. Furthermore, character-level models mitigate the ineffectiveness of word-based LMs caused by the
presence of out-of-vocabulary words (OOVs) that are prominent in dialects, due to the lack of standard
orthography (Habash et al., 2012a).

4.3 Learning Features
We use a suite of features that have been used in works related to DID and text classification. These
features are extracted from CORPUS-6 and CORPUS-26 without any preprocessing beyond punctuation
tokenization.

Word n-grams Word unigrams are extensively used in text classification tasks. For our task, we extract
surface word n-grams ranging from unigrams to 5-grams and use them as features. Word unigrams are
useful for our DID task as they depict words unique to some dialects. As shown in Figure 2, lexical
variations are prominent and could be predictive for certain regions, countries, and cities.

Character n-grams Character n-grams have shown to be the most effective in language and dialect
identification tasks (Zampieri et al., 2017). For DAs, Character n-grams are good at capturing several
morphological features that are distinctive between Arabic dialects, especially the clitical and affixal use
(as described in section 3). In our experiments, we extract character n-grams ranging from 1-grams to
5-grams. We use Term Frequency-Inverse Document Frequency (Tf-Idf) scores as it has been shown to
empirically outperform count weights.
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N-gram Features Other Features Corpus-6 Corpus-26
Word Character Dev Test Dev Test

a. Baseline – – Char 5-gram LM 92.2 92.7 66.2 64.7
b. MNB – 1 45.9 44.6 18.0 17.1
c. MNB – 1+2 70.9 70.4 40.6 37.4
d. MNB – 1+2+3 83.8 84.4 55.1 53.5
e. MNB – 1+2+3+4 87.3 88.2 60.0 58.2
f. MNB – 1+2+3+4+5 88.5 89.3 61.3 59.7
g. MNB 1 – 90.8 91.1 63.9 63.0
h. MNB 1+2 – 90.5 91.2 62.5 62.0
i. MNB 1+2+3 – 90.1 90.9 62.2 61.2
j. MNB 1+2+3+4 – 90.0 90.8 62.0 61.1
k. MNB 1+2+3+4+5 – 89.8 90.7 62.0 60.9
l. MNB 1 1+2+3 90.7 91.1 65.3 63.6
m. MNB 1 1+2+3 Word 5-gram LM 91.5 91.9 62.6 62.8
n. MNB 1 1+2+3 Char 5-gram LM 92.7 93.2 67.6 66.4
o. MNB 1 1+2+3 Char/Word 5-gram LM 93.1 93.6 68.5 67.5

p. MNB 1 1+2+3
Char/Word 5-gram LM

+ Corpus 6 Classifier Prob.
– – 68.9 67.9

Table 3: Accuracy on the dev and test sets for both CORPUS-6 and CORPUS-26. The n-grams features
show the n-gram orders for word and characters in the MNB models.

Language model probability scores We train n LMs each pertaining to the n dialects, on CORPUS-
6 and CORPUS-26. We score the sentences in the TRAIN, DEVELOPMENT and TEST sets, using these
LMs. Then, we use the probability scores of the sentence as features. Thus, each sentence will have n
probability scores, one for each dialect. The probability scores measure how close each sentence is to
the dialect. We experiment using probability scores from word 5-grams LM, character 5-gram LM, and
adding both as features.

4.4 Evaluation Metrics
We report the results on CORPUS-6 and CORPUS-26 using the accuracy metric, which calculates the
percentage of the sentences whose dialect is correctly predicted. We also report the precision, recall and
F1 scores metrics for our best systems on both corpora. The scores are calculated per class for our best
system, which can provide a better understanding on the confusability of the classes and sensitivity of
our model.

4.5 Results
In this section, we present the results of the different MNB models and compare them to the baseline. In
Table 3, we report the results on the DEVELOPMENT and TEST sets for both CORPUS-6 and CORPUS-
26 using the accuracy metric. First, we analyze the use of n-grams as features for our MNB model and
the effect of increasing the n-gram order on the accuracy of the model. Training the MNB classifier on
character n-grams (rows b. to f.) shows an increase in the accuracy on the DEVELOPMENT and TEST

set of both corpora, when increasing the n-gram order. A steep increase is observed from unigrams to
trigrams, while it diminishes from 4-grams to 5-grams. We hypothesize that the morphological features
in the words’ structure are well captured within character LMs.

However, increasing the word n-gram order has a negative effect on the system’s accuracy (rows g. to
k.). It results in a decrease of one and two accuracy points on CORPUS-6 and CORPUS-26 respectively,
as we add higher order n-gram features on the top of unigrams. Still, the of use word unigrams features
alone (row g.) is able to beat 1-to-5-grams character features (row f.)

We experiment with different combinations of word and character n-grams features. Our best combi-
nation is the one using word unigrams with character unigrams, bigrams and trigrams (row l.). Yet, this
combination could not outperform the 5-gram LM baseline (row a.) for both CORPUS-6 and CORPUS-
26, which emphasizes the power of LMs and align with previous results on language and dialect identi-
fication. This important result suggests adding LM probability scores as features to our model. Adding
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Figure 3: Confusability patterns of our 26 dialects in terms of the best MODEL-6 system.

LM scores (row m.) improves the accuracy on CORPUS-6 while it hurts the system on CORPUS-26. This
can be attributed to the small size of CORPUS-26 TRAIN data used to train the 5-gram LM and the large
number of classes. However, adding 5-gram character LM scores as features (row n.) beats the baseline
scores (row a.). The accuracy is further improved when we include 5-gram word LM scores.

CORPUS-26 TRAIN is considered small with a large number of labels. We can make use of CORPUS-6
MODEL for providing evidence about the region that sentences of CORPUS-26 belong to. Our intuition
is that sentences from CORPUS-26 can be weighed by how close to the five main cities and MSA in
CORPUS-6. Thus, we train a model on CORPUS-6 TRAIN and run it on CORPUS-26 TRAIN, DEVELOP-
MENT, and TEST. We use the six probability scores generated by CORPUS-6 MODEL, each correspond-
ing to a probability of the dialect given a sentence from CORPUS-6, as extra features to train CORPUS-26
model. The combination of these features with features from row (o.) resulted in the best performance
of our model among all the experiments. Overall, our best CORPUS-6 and CORPUS-26 models achieve
a 12% and 9% relative error reduction rate over the character Language Model baseline respectively.

5 Analysis and Discussion

5.1 Dialect Confusability and Identifiability

In this section, we present an analysis of the MODEL-6 Classifier Probability features that gave us our
best MODEL-26 system results. In Figure 3, we show the average probability distribution of MODEL-6
for the sentences in CORPUS-26 TRAIN. The colors in the columns refer to the probability of assigning
a specific MODEL-6 label from the six dialects we consider as anchors. The 25 cities are organized
in a general West-to-East order, with some exceptions: we start from Rabat in the west and head to
Alexandria; then we go up the Nile to southern Egypt and Sudan and jump over the Red Sea to the
south of the Arabian Peninsula; then we head north through Iraq and visit the Levant ending in Beirut.
MSA is presented at the end by itself. The first thing we observe is that there is general anchor-dialect
diffusion pattern: e.g., the Rabat-ness is strong in Rabat, but it fades away in Algiers as more Tunis-ness
sets in. Another example is how cities in the South Levant (Amman, Salt, Jerusalem) seem to have less
of the Beirut-ness which strongly marks North Levantine cities, and more of Cairo-ness and Doha-ness.
These confusability patterns correlate with geography independently of any pre-design of the data sets is
a very interesting result. But furthermore, these patterns are valuable as unique identifying markers that
help distinguish among the fine-grained 26-labels in CORPUS-26. It suggests that in the future as we go
into more fine-grained distinctions, we can rely on a small number of anchors to help with identifiability
through patterns of confusability.
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5.2 Region Level Identification

Dialect Precision Recall F1

Corpus-26
MOS 88 83 86
ALG 79 82 81
TRI 83 79 81
ALX 78 77 77
MSA 72 78 75
RAB 76 74 75
SAN 80 71 75
KHA 71 74 73
SFX 72 73 73
FES 74 70 72
TUN 75 69 72
BEI 76 62 69
BEN 73 65 69
DOH 64 76 69
ALE 73 64 68
BAS 69 66 67
BAG 66 65 65
ASW 61 66 63
JED 57 66 61
JER 61 60 61
RIY 56 61 59

AMM 61 56 58
CAI 64 52 57
DAM 47 66 55
SAL 52 59 55
MUS 55 51 53

Average 69% 68% 69%
Corpus-6

MSA 97 97 97
RAB 96 95 95
TUN 95 94 95
BEI 94 93 94

DOH 91 94 93
CAI 92 92 92

Average 94% 94% 94%

Table 4: Results in terms of Precision,
Recall and F1 of our best model on the
CORPUS-26 and CORPUS-6 test sets.

The upper part of Table 4 presents the precision, recall and
F1 score for the 25 dialects, in addition to MSA from the
best MODEL-26 system, ordered by F1 score. It is in-
teresting to note that the top four cities classified with F1
scores ranging between 77% and 86% (MOS, ALG, TRI,
ALX) are not members of CORPUS-6. Also, the dialects
of CORPUS-6 keep the same relative order when classified
using MODEL-26, that they have in MODEL-6 (See the
bottom part of Table 4), but with Cairo lagging behind.

Upon examining the full confusion matrix (which we do
not show in this paper), we observed two phenomena: (i)
most confusion patterns tend to be bigger within limited
geographical regions, e.g., Baghdad is more confused with
other Iraqi cities, than with Maghreb (i.e., RAB, FES, etc.)
or Egyptian cities (ALX, ASW, CAI); (ii) some cities are
predicted a lot more than others, with Damascus being the
most predicted (281 times) compared to Cairo (162 times).
The most predicted cities tended to come from bigger re-
gions (Levant and Gulf) which are more represented in our
data.

In Table 5, we present a reduced confusion matrix in
which we collapse our 25 dialects into eight regions. The
regions are geographically organized and ordered followed
by MSA. Naturally, the eight-region scores are higher than
the 25-dialect and MSA scores (more coarse, less labels).
However, interestingly, the scores are generally higher for
smaller regions compared to larger regions. In the future,
we will consider different methods for training varying re-
gional granularities.

5.3 Sample Size and Optimal Classification

With more test input examples from the same source and
the same dialect, the dialect could be determined with
higher accuracy. This allows any system to get more ev-
idence that could support the selection of one dialect over
others. In this section, we present two experiments to mea-
sure the effect of increasing the length of the inputs of our
test set by: (i) adding additional sentences, and (ii) adding
additional words.

The main goal of these experiments is to answer the fol-
lowing question: how many sentences or words are needed

on average to guarantee an optimal classification into a certain dialect? To answer this, we run CORPUS-
26 MODEL on CORPUS-26 TEST.

For each sentence having an incorrectly predicted dialect label, we sample a sentence from the subset
of sentences belonging to its correct dialect class and append it to it. We keep randomly sampling
sentences until the system correctly predicts the right label. Interestingly, on average, it takes 1.52
sentences to predict the right class of a given sentence. With more examples of text by a writer, our
system can confidently determine the correct dialect of the writer with a high accuracy reaching 100%.

Our CORPUS-26 has short sentences with an average length of seven words per sentence. The corpus
includes sentences that are common among several dialects such as Q�


	
mÌ'@ hAJ.� SbAH Alxyr ’good morn-
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MAG TUN LIB EGY GLF IRQ LEV MSA Match Predict Gold Prec Rec F1
MAG 3 (RAB, FES, ALG) 539 7 8 10 19 3 10 4 539 591 600 91 90 91
TUN 2 (TUN, SFX) 15 356 4 0 10 6 9 0 356 386 400 92 89 91
LIB 2 (TRI, BEN) 8 8 308 20 34 2 20 0 308 370 400 83 77 80
EGY 4 (CAI, ALX, ASW, KHA) 8 4 8 677 45 8 41 9 677 784 800 86 85 85
GLF 5 (DOH, JED, RIY, SAN, MUS) 10 3 22 37 798 33 59 38 798 1046 1000 76 80 78
IRQ 3 (BAG, BAS, MOS) 1 5 3 6 49 504 26 6 504 578 600 87 84 86
LEV 6 (BEI, DAM, ALE, JER, AMM, SAL) 7 3 14 29 63 19 1062 3 1062 1230 1200 86 89 87
MSA 1 (MSA) 3 0 3 5 28 3 3 155 155 215 200 72 78 75

Table 5: Confusion matrix of MODEL-26 over eight geographical regions. Column 1 indicates the label
of the region, the number of cities and the labels of the cities. The regions are (in order): Maghreb,
Tunisia, Libya, Egypt and Sudan, Gulf, Iraq, Levant, and MSA.

ing’. We want to answer the question of how many words per sentence do we need in order to have an
optimal classification. Given that short sentences and common phrases among dialects are less indicative
of the dialect, we append the sentences in CORPUS-26 TEST with sentences randomly selected from the
set with similar dialect. We continuously append each sentence until the total number of words reaches
at least 65 words. We run CORPUS-26 MODEL on the modified test set over several iterations, by con-
sidering a fixed number of words at each iteration, starting from a sentence length of 1 until 60. Figure 4
illustrates the accuracy of CORPUS-26 MODEL with respect to the number of words in the sentences. It
is important to note that the accuracy increases proportionally to the number of words considered in a
sentences. Our system reaches an accuracy of 69.4% (compared to an accuracy of %67.9 on the original
test set) using examples with fixed length of six words. We reach a score above 90% when we consider
16 words, while the optimal classification is reached using 51 words. This could be explained by the
importance of longer context and its impact on improving the accuracy of the classifier.

Figure 4: Accuracy on Corpus-26 with respect to the number of words in the input.

5.4 Initial Results on Classifying Tweets
The datasets we use in our experiments (CORPUS-6 and CORPUS-26) are built using a controlled ap-
proach, as dialectal translations of English and French sentences in the travel domain (Bouamor et al.,
2018). We would like to evaluate the performance of our best CORPUS-6 MODEL on naturally occurring
data from social media. For this, we revert to Twitter for collecting Arabic tweets using dialectal function
words as seeds to guarantee that the content of the tweet is dialectal. We run CORPUS-6 MODEL on one
million tweets. For each of the five cities, we retrieve the top 500 tweets predicted with a probability
greater than 0.9. Each of the 500-tweets set is annotated and evaluated by an annotator who is familiar
with the dialect. We evaluate the performance of CORPUS-6 MODEL on Beirut, Cairo, Doha, Tunis and
Rabat dialects. We obtained an accuracy of 87.0%, 99.6%, 91.4%, 20.2%, 82.6%, respectively for each
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city. The high accuracy on Cairo and Doha dialects could be explained by the large number of users who
are actively using Twitter in this Arab cities.

As we noticed that the accuracy for Tunis dialect is lower than the other cities, we asked a native
speaker to inspect a set of 100 tweets labeled by our system as ’Tunis’. The result obtained showed that
70% of the tweets happen to be tweets from Libya, which is the closest country to Tunisia geographically.
Also, this could be explained by the fact that some of the words we consider in the "Tunis" seed list could
also be used in Libya, especially that some of the Southern Tunisian dialects are structurally similar to
those in close cities in the borders between Tunisia and Libya (Čéplö et al., 2016).

Overall, these initial results are encouraging and suggest a further exploration of Twitter, as it could
be mined to extend CORPUS-26 in terms of size, dialects and text genres.

6 Conclusion and Future Work

In this paper, we explored the problem of Arabic DID from the typically studied variety of coarse-grained
classification into a finer-grained classification problem covering 25 specific cities from the Arab World,
in addition to Modern Standard Arabic (MSA). We presented a detailed analysis of dialect similarity and
confusability and added interesting insights on top of the traditional map presented in the literature. We
showed that using our best model, we can identify the exact city of a speaker at an accuracy of 67.9%
for sentences with an average length of 7 words (a 9% relative error reduction over the state-of-the-art
technique for Arabic dialect identification) and reach more than 90% when we consider 16 words. We
also showed that a model trained on a commissioned dataset can be used to classify sentences in a corpus
of naturally occurring dialectal sentences appearing in social media platforms such as Twitter.

In the future, we plan to explore DID for social media text and improve our model to deal with its
complexities. We also plan to experiment on multi-level hierarchical classification, by classifying into
regional, subregional and then city level.
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