
Proceedings of the 27th International Conference on Computational Linguistics, pages 1088–1098
Santa Fe, New Mexico, USA, August 20-26, 2018.

1088

Author Profiling for Abuse Detection

Pushkar Mishra
Dept. of CS and Technology

University of Cambridge
United Kingdom

pm576@cl.cam.ac.uk

Marco Del Tredici
ILLC

University of Amsterdam
The Netherlands

m.deltredici@uva.nl

Helen Yannakoudakis
Dept. of CS and Technology

The ALTA Institute
University of Cambridge

United Kingdom
hy260@cl.cam.ac.uk

Ekaterina Shutova
ILLC

University of Amsterdam
The Netherlands

e.shutova@uva.nl

Abstract

The rapid growth of social media in recent years has fed into some highly undesirable phenomena
such as proliferation of hateful and offensive language on the Internet. Previous research suggests
that such abusive content tends to come from users who share a set of common stereotypes
and form communities around them. The current state-of-the-art approaches to abuse detection
are oblivious to user and community information and rely entirely on textual (i.e., lexical and
semantic) cues. In this paper, we propose a novel approach to this problem that incorporates
community-based profiling features of Twitter users. Experimenting with a dataset of 16k tweets,
we show that our methods significantly outperform the current state of the art in abuse detection.
Further, we conduct a qualitative analysis of model characteristics. We release our code, pre-
trained models and all the resources used in the public domain.

1 Introduction

Abuse, a term used to collectively refer to offensive language, hate speech, sexist remarks, etc., is om-
nipresent in social media. Users on social media platforms are at risk of being exposed to content that
may not only be degrading but also harmful to their mental health in the long term. Pew Research Center
highlighted the gravity of the situation via a recently released report (Duggan, 2014). As per the report,
40% of adult Internet users have personally experienced harassment online, and 60% have witnessed the
use of offensive names and expletives. Expectedly, the majority (66%) of those who have personally
faced harassment have had their most recent incident occur on a social networking website or app. While
most of these websites and apps provide ways of flagging offensive and hateful content, only 8.8% of the
victims have actually considered using such provisions. These statistics suggest that passive or manual
techniques for curbing propagation of abusive content (such as flagging) are neither effective nor easily
scalable (Pavlopoulos et al., 2017). Consequently, the efforts to automate the detection and moderation
of such content have been gaining popularity in natural language processing (NLP) (Waseem and Hovy,
2016; Wulczyn et al., 2017).

Several approaches to abuse detection demonstrate the effectiveness of character-level bag-of-words
features in a supervised classification setting (Djuric et al., 2015; Nobata et al., 2016; Davidson et al.,
2017). More recent approaches, and currently the best performing ones, utilize recurrent neural networks
(RNNs) to transform content into dense low-dimensional semantic representations that are then used for
classification (Pavlopoulos et al., 2017; Badjatiya et al., 2017). All of these approaches rely solely
on lexical and semantic features of the text they are applied to. Waseem and Hovy (2016) adopted a
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more user-centric approach based on the idea that perpetrators of abuse are usually segregated into small
demographic groups; they went on to show that gender information of authors (i.e., users who have
posted content) is a helpful indicator. However, Waseem and Hovy focused only on coarse demographic
features of the users, disregarding information about their communication with others. But previous
research suggests that users who subscribe to particular stereotypes that promote abuse tend to form
communities online. For example, Zook (2012) mapped the locations of racist tweets in response to
President Obama’s re-election to show that such tweets were not uniformly distributed across the United
States but formed clusters instead. In this paper, we present the first approach to abuse detection that
leverages author profiling information based on properties of the authors’ social network and investigate
its effectiveness.

Author profiling has emerged as a powerful tool for NLP applications, leading to substantial perfor-
mance improvements in several downstream tasks, such as text classification, sentiment analysis and
author attribute identification (Hovy, 2015; Eisenstein, 2015; Yang and Eisenstein, 2017). The relevance
of information gained from it is best explained by the idea of homophily, i.e., the phenomenon that peo-
ple, both in real life as well as on the Internet, tend to associate more with those who appear similar. Here,
similarity can be defined along various axes, e.g., location, age, language, etc. The strength of author
profiling lies in that if we have information about members of a community c defined by some similarity
criterion, and we know that the person p belongs to c, we can infer information about p. This concept has
a straightforward application to our task: knowing that members of a particular community are prone to
creating abusive content, and knowing that the author p is connected to this community, we can leverage
information beyond linguistic cues and more accurately predict the use of abusive/non-abusive language
from p. The questions that we seek to address here are: are some authors, and the respective communities
that they belong to, more abusive than the others? And can such information be effectively utilized to
improve the performance of automated abusive language detection methods?

In this paper, we answer these questions and develop novel methods that take into account community-
based profiling features of authors when examining their tweets for abuse. Experimenting with a dataset
of 16k tweets, we show that the addition of such profiling features to the current state-of-the-art methods
for abuse detection significantly enhances their performance. We also release our code (including code
that replicates previous work), pre-trained models and the resources we used in the public domain.1

2 Related Work

2.1 Abuse detection

Amongst the first ones to apply supervised learning to the task of abuse detection were Yin et al. (2009)
who used a linear SVM classifier to identify posts containing harassment based on local (e.g., n-grams),
contextual (e.g., similarity of a post to its neighboring posts) and sentiment-based (e.g., presence of
expletives) features. Their best results were with all of these features combined.

Djuric et al. (2015) experimented with comments extracted from the Yahoo Finance portal and showed
that distributional representations of comments learned using paragraph2vec (Le and Mikolov, 2014)
outperform simpler bag-of-words (BOW) representations in a supervised classification setting for hate
speech detection. Nobata et al. (2016) improved upon the results of Djuric et al. by training their clas-
sifier on a combination of features drawn from four different categories: linguistic (e.g., count of insult
words), syntactic (e.g., POS tags), distributional semantic (e.g., word and comment embeddings) and
BOW-based (word and characters n-grams). They reported that while the best results were obtained with
all features combined, character n-grams contributed more to performance than all the other features.

Waseem and Hovy (2016) created and experimented with a dataset of racist, sexist and clean tweets.
Utilizing a logistic regression (LR) classifier to distinguish amongst them, they found that character
n-grams coupled with gender information of users formed the optimal feature set; on the other hand,
geographic and word-length distribution features provided little to no improvement. Working with the
same dataset, Badjatiya et al. (2017) improved on their results by training a gradient-boosted decision

1https://github.com/pushkarmishra/AuthorProfilingAbuseDetection
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tree (GBDT) classifier on averaged word embeddings learnt using a long short-term memory (LSTM)
network that they initialized with random embeddings.

Waseem (2016) sampled 7k more tweets in the same manner as Waseem and Hovy (2016). They
recruited expert and amateur annotators to annotate the tweets as racism, sexism, both or neither in
order to study the influence of annotator knowledge on the task of hate speech detection. Combining
this dataset with that of Waseem and Hovy (2016), Park et al. (2017) explored the merits of a two-step
classification process. They first used a LR classifier to separate abusive and non-abusive tweets, followed
by another LR classifier to distinguish between racist and sexist ones. They showed that this setup had
comparable performance to a one-step classification setup built with convolutional neural networks.

Davidson et al. (2017) created a dataset of about 25k tweets wherein each tweet was annotated as
being racist, offensive or neither of the two. They tested several multi-class classifiers with the aim of
distinguishing clean tweets from racist and offensive tweets while simultaneously being able to separate
the racist and offensive ones. Their best model was a LR classifier trained using TF-IDF and POS n-gram
features, as well as the count of hash tags and number of words.

Wulczyn et al. (2017) prepared three different datasets of comments collected from the English
Wikipedia Talk page; one was annotated for personal attacks, another for toxicity and the third one
for aggression. Their best performing model was a multi-layered perceptron (MLP) classifier trained on
character n-gram features. Experimenting with the personal attack and toxicity datasets, Pavlopoulos
et al. (2017) improved the results of Wulczyn et al. by using a gated recurrent unit (GRU) model to
encode the comments into dense low-dimensional representations, followed by a LR layer to classify the
comments based on those representations.

2.2 Author profiling
Author profiling has been leveraged in several ways for a variety of purposes in NLP. For instance,
many studies have relied on demographic information of the authors. Amongst these are Hovy et al.
(2015) and Ebrahimi et al. (2016) who extracted age and gender-related information to achieve superior
performance in a text classification task. Pavalanathan and Eisenstein (2015), in their work, further
showed the relevance of the same information to automatic text-based geo-location. Researching along
the same lines, Johannsen et al. (2015) and Mirkin et al. (2015) utilized demographic factors to improve
syntactic parsing and machine translation respectively.

While demographic information has proved to be relevant for a number of tasks, it presents a signif-
icant drawback: since this information is not always available for all authors in a social network, it is
not particularly reliable. Consequently, of late, a new line of research has focused on creating repre-
sentations of users in a social network by leveraging the information derived from the connections that
they have with other users. In this case, node representations (where nodes represent the authors in the
social network) are typically induced using neural architectures. Given the graph representing the social
network, such methods create low-dimensional representations for each node, which are optimized to
predict the nodes close to it in the network. This approach has the advantage of overcoming the absence
of information that the previous approaches face. Among those that implement this idea are Yang et
al. (2016), who used representations derived from a social graph to achieve better performance in entity
linking tasks, and Chen and Ku (2016), who used them for stance classification.

A considerable amount of literature has also been devoted to sentiment analysis with representations
built from demographic factors (Yang and Eisenstein, 2017; Chen et al., 2016). Other tasks that have
benefited from social representations are sarcasm detection (Amir et al., 2016) and political opinion
prediction (Tălmăcel and Leon, 2017).

3 Dataset

We experiment with the dataset of Waseem and Hovy (2016), containing tweets manually annotated for
abuse. The authors retrieved around 136k tweets over a period of two months. They bootstrapped their
collection process with a search for commonly used slurs and expletives related to religious, sexual,
gender and ethnic minorities. From the results, they identified terms and references to entities that
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frequently showed up in abusive tweets. Based on this sample, they used a public Twitter API to collect
the entire corpus of ca. 136k tweets. After having manually annotated a randomly sampled subset of
16, 914 tweets under the categories racism, sexism or none themselves, they asked an expert to review
their annotations in order to mitigate against any biases. The inter-annotator agreement was reported at
κ = 0.84, with a further insight that 85% of all the disagreements occurred in the sexism class.

The dataset was released as a list of 16, 907 tweet IDs along with their corresponding annotations2.
Using python’s Tweepy library, we could only retrieve 16, 202 of the tweets since some of them have
now been deleted or their visibility limited. Of the ones retrieved, 1,939 (12%) are labelled as racism,
3,148 (19.4%) as sexism, and the remaining 11,115 (68.6%) as none; this distribution follows the original
dataset very closely (11.7%, 20.0%, 68.3%).

We were able to extract community-based information for 1,836 out of the 1,875 unique authors who
posted the 16, 202 tweets, covering a cumulative of 16,124 of them; the remaining 39 authors have either
deactivated their accounts or are facing suspension. Tweets in the racism class are from 5 of the 1,875
authors, while those in the sexism class are from 527 of them.

4 Methodology

4.1 Representing authors

In order to leverage community-based information for the authors whose tweets form our dataset, we
create an undirected unlabeled community graph wherein nodes are the authors and edges are the con-
nections between them. An edge is instantiated between two authors u and v if u follows v on Twitter
or vice versa. There are a total of 1,836 nodes and 7,561 edges. Approximately 400 of the nodes have
no edges, indicating solitary authors who neither follow any other author nor are followed by any. Other
nodes have an average degree3 of 8, with close to 600 of them having a degree of at least 5. The graph is
overall sparse with a density of 0.0075.

From this community graph, we obtain a vector representation, i.e., an embedding that we refer to as
author profile, for each author using the node2vec framework (Grover and Leskovec, 2016). Node2vec
applies the skip-gram model of Mikolov et al. (2013) to a graph in order to create a representation for
each of its nodes based on their positions and their neighbors. Specifically, given a graph with nodes
V = {v1, v2, . . . , vn}, node2vec seeks to maximize the following log probability:∑

v∈V
logPr (Ns(v) | v)

where Ns(v) denotes the network neighborhood of node v generated through sampling strategy s.
In doing so, the framework learns low-dimensional embeddings for nodes in the graph. These embed-

dings can emphasize either their structural role or the local community they are a part of. This depends
on the sampling strategies used to generate the neighborhood: if breadth-first sampling (BFS) is adopted,
the model focuses on the immediate neighbors of a node; when depth-first sampling (DFS) is used, the
model explores farther regions in the network, which results in embeddings that encode more informa-
tion about the nodes’ structural role (e.g., hub in a cluster, or peripheral node). The balance between
these two ways of sampling the neighbors is directly controlled by two node2vec parameters, namely p
and q. The default value for these is 1, which ensures a node representation that gives equal weight to
both structural and community-oriented information. In our work, we use the default value for both p
and q. Additionally, since node2vec does not produce embeddings for solitary authors, we map these to
a single zero embedding.

Figure 1 shows example snippets from the community graph. Some authors belong to densely-
connected communities (left figure), while others are part of more sparse ones (right figure). In either
case, node2vec generates embeddings that capture the authors’ neighborhood.

2https://github.com/ZeerakW/hatespeech/blob/master/NAACL_SRW_2016.csv
3The degree of a node is equal to the number of its direct connections to other nodes.
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(a) Densely-connected authors (b) Sparsely-connected authors

Figure 1: Snippets from the community graph for our Twitter data.

4.2 Classifying content

We experiment with seven different methods for classifying tweets as one of racism, sexism, or none. We
first re-implement three established and currently best-performing abuse detection methods — based on
character n-grams and recurrent neural networks — as our baselines. We then test whether incorporating
author profiling features improves their performance.

Char n-grams (LR). As our first baseline, we adopt the method used by Waseem and Hovy (2016)
wherein they train a logistic regression (LR) classifier on the Twitter dataset using character n-gram
counts. We use uni-grams, bi-grams, tri-grams and four-grams, and L2-normalize their counts. Character
n-grams have been shown to be effective for the task of abuse detection (Nobata et al., 2016).

Hidden-state (HS). As our second baseline, we take the “RNN” method of Pavlopoulos et al. (2017)
which achieves state-of-the-art results on the Wikipedia datasets released by Wulczyn et al. (2017).
The method comprises a 1-layer gated recurrent unit (GRU) that takes a sequence w1, . . . , wn of words
represented as d-dimensional embeddings and encodes them into hidden states h1, . . . , hn. This is
followed by an LR layer that uses the last hidden state hn to classify the tweet. We make two minor
modifications to the authors’ original architecture: we deepen the 1-layer GRU to a 2-layer GRU and use
softmax instead of sigmoid in the LR layer.4 Like Pavlopoulos et al., we initialize the word embeddings
to GLoVe vectors (Pennington et al., 2014). In all our methods, words not available in the GLoVe set are
randomly initialized in the range ±0.05, indicating the lack of semantic information. By not mapping
these words to a single random embedding, we mitigate against the errors that may arise due to their
conflation (Madhyastha et al., 2015). A special OOV (out of vocabulary) token is also initialized in the
same range. All the embeddings are updated during training, allowing some of the randomly-initialized
ones to get task-tuned; the ones that do not get tuned lie closely clustered around the OOV token, to which
unseen words in the test set are mapped.

Word-sum (WS). As a third baseline, we adopt the “LSTM+GLoVe+GBDT” method of Badjatiya et al.
(2017), which achieves state-of-the-art results on the Twitter dataset we are using. The authors first
utilize an LSTM to task-tune GLoVe-initialized word embeddings by propagating the error back from an
LR layer. They then train a gradient boosted decision tree (GBDT) classifier to classify texts based on
the average of the embeddings of constituent words. We make two minor modifications to this method:
we use a 2-layer GRU5 instead of the LSTM to tune the embeddings, and we train the GBDT classifier
on the L2-normalized sum of the embeddings instead of their average.6 Although the authors achieved

4We also experimented with 1-layer GRU/LSTM and 1/2-layer bi-directional GRUs/LSTMs but performance only worsened
or showed no gains; using sigmoid instead of softmax did not have any noteworthy effects on the results either.

5We note the deeper 2-layer GRU slightly improves performance.
6Although GBDT, as a tree based model, is not affected by the choice of monotonic function, the L2-normalized sum ensures

uniformity of range across the feature set in all our methods.
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state-of-the-art results on Twitter by initializing embeddings randomly rather than with GLoVe (which
is what we do here), we found the opposite when performing a 10-fold stratified cross-validation (CV).
A possible explanation of this lies in the authors’ decision to not use stratification, which for such a
highly imbalanced dataset can lead to unexpected outcomes (Forman and Scholz, 2010). Furthermore,
the authors train their LSTM on the entire dataset (including the test set) without any early stopping
criterion, which leads to over-fitting of the randomly-initialized embeddings.

Author profile (AUTH). In order to test whether community-based information of authors is in itself suf-
ficient to correctly classify the content produced by them, we utilize just the author profiles we generated
to train a GBDT classifier.

Char n-grams + author profile (LR + AUTH). This method builds upon the LR baseline by appending
author profile vectors on to the character n-gram count vectors for training the LR classifier.

Hidden-state + author profile (HS + AUTH) and Word-sum + author profile (WS + AUTH). These
methods are identical to the char n-grams + author profile method except that here we append the author
profiling features on to features derived from the hidden-state and word-sum baselines respectively and
feed them to a GBDT classifier.

5 Experiments and Results

5.1 Experimental setup

We normalize the input by lowercasing all words and removing stop words. For the GRU architecture,
we use exactly the same hyper-parameters as Pavlopoulos et al. (2017),7 i.e., 128 hidden units, Glorot
initialization, cross-entropy loss, and the Adam optimizer (Kingma and Ba, 2015). Badjatiya et al.
(2017) also use the same settings except they have fewer hidden units. In all our models, besides dropout
regularization (Srivastava et al., 2014), we hold out a small part of the training set as validation data to
prevent over-fitting. We implement the models in Keras (Chollet and others, 2015) with Theano back-
end and use 200-dimensional pre-trained GLoVe word embeddings.8 We employ Lightgbm (Ke et al.,
2017) as our GDBT classifier and tune its hyper-parameters using 5-fold grid search. For the node2vec
framework, we use the same parameters as in the original paper (Grover and Leskovec, 2016) except we
set the dimensionality of node embeddings to 200 and increase the number of iterations to 25 for better
convergence.

5.2 Results

We perform 10-fold stratified cross validation (CV), as suggested by Forman and Scholz (2010), to eval-
uate all seven methods described in the previous section. Following previous research (Badjatiya et al.,
2017; Park and Fung, 2017), we report the average weighted precision, recall, and F1 scores for all the
methods. The average weighted precision is calculated as:∑10

i=1 (wr · Pi
r + ws · Pi

s + wn · Pi
n)

10

where Pi
r,P

i
s,P

i
n are precision scores on the racism, sexism, and none classes from the ith fold of the

CV. The values wr, ws, and wn are the proportions of the racism, sexism, and none classes in the
dataset respectively; since we use stratification, these proportions are constant (wr = 0.12, ws = 0.19,
wn = 0.69) across all folds. Average weighted recall and F1 are calculated in the same manner.

The results are presented in Table 1. For all three baseline methods (LR, WS, and HS), the addition of
author profiling features significantly improves performance (p < 0.05 under 10-fold CV paired t-test).
The LR + AUTH method yields the highest performance of F1 = 87.57, exceeding its respective baseline
by nearly 4 points. A similar trend can be observed for the other methods as well. These results point to

7The authors have not released their models, and we therefore replicate their approach based on the details in their paper.
8http://nlp.stanford.edu/data/glove.twitter.27B.zip
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the importance of community-based information and author profiling in abuse detection and demonstrate
that our approach can further improve the performance of existing state-of-the-art methods.

Method P R F1

Baselines
LR 84.07 84.31 83.81
HS 83.50 83.71 83.54
WS 82.86 83.10 82.37

Our methods

AUTH 72.13 76.05 71.26
LR + AUTH 87.57 87.66 87.57
HS + AUTH 87.29 87.32 87.29
WS + AUTH 87.11 87.20 87.08

Table 1: Average weighted precision, recall and F1 scores of the different methods on the Twitter datasest.
All improvements are significant (p < 0.05) under 10-fold CV paired t-test.

Method P R F1

LR 77.29 67.92 72.28
HS 74.15 72.46 73.24
WS 76.43 67.77 71.78

AUTH 43.33 0.31 0.61
LR + AUTH 76.10 74.16 75.09
HS + AUTH 74.42 73.54 73.91
WS + AUTH 75.12 72.46 73.72

(a) Racism class

Method P R F1

LR 82.66 63.98 72.09
HS 76.04 68.84 72.24
WS 81.75 57.37 67.38

AUTH 66.85 75.44 70.88
LR + AUTH 86.22 79.07 82.47
HS + AUTH 84.15 81.32 82.75
WS + AUTH 86.37 77.92 81.91

(b) Sexism class

Table 2: Performance of the methods on the racism and sexism classes separately. All improvements are
significant (p < 0.05) under 10-fold CV paired t-test.

In Table 2, we further compare the performance of the different methods on the racism and sexism
classes individually. As in the previous experiments, the scores are averaged over 10 folds of CV. Of
particular interest are the scores for the sexism class where the F1 increases by over 10 points upon
the addition of author profiling features. Upon analysis, we find that such a substantial increase in
performance stems from the fact that many of the 527 unique authors of the sexist tweets are closely
connected in the community graph. This allows for their penchant for sexism to be expressed in their
respective author profiles.

The author profiling features on their own (AUTH) achieve impressive results overall and in particular
on the sexism class, where their performance is typical of a community-based generalization, i.e., low
precision but high recall. For the racism class on the other hand, the performance of AUTH on its own
is quite poor. This contrast can be explained by the fact that tweets in the racism class come from only
5 unique authors who: (i) are isolated in the community graph, or (ii) have also authored several tweets
in the sexism class, or (iii) are densely connected to authors from the sexism and none classes which
possibly camouflages their racist nature.

We believe that the gains in performance will be more pronounced as the underlying community graph
grows since there will be less solitary authors and more edges worth harnessing information from.9 Even
when the data is skewed and there is an imbalance of abusive vs. non-abusive authors, we do expect our
approach to still be able to identify clusters of authors with similar views.

6 Analysis and discussion

We conduct a qualitative analysis of system errors and the cases where author profiling leads to the
correct classification of previously misclassified examples. Table 3 shows examples of abusive tweets
from the dataset that are misclassified by the LR method, but are correctly classified upon the addition
of author profiling features, i.e., by the LR + AUTH method. It is worth noting that some of the wins
scored by the latter are on tweets that are part of a larger abusive discourse or contain links to abusive

9Regarding the scalability of our approach, we quote the authors of node2vec: “The major phases of node2vec are trivially
parallelizable, and it can scale to large networks with millions of nodes in a few hours”.
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content while not explicitly having textual cues that are indicative of abuse per se. The addition of author
profiling features may then be viewed as a proxy for wider discourse information, thus allowing us to
correctly resolve the cases where lexical and semantic features alone are insufficient.10

Tweet Predicted label
LR LR + AUTH

@Mich McConnell Just “her body” right? none sexism
@Starius: #GamerGate https://t.co/xuFwsIgxFK WE WIN!
ahahahaha

none sexism

#Islam dominates our crime, prison & welfare system & na-
tional security. Why are we still importing it? @PeterDut-
ton MP #amagenda #auspol

none racism

@Wateronatrain: @MT8 9 You might like this #patriarchy
http://t.co/c9m2pFmFJ3

none sexism

It seems that Allah sits around all day obsessing about women’s
hands and faces showing. I guess idiots need a god on their
level. #Islam

none racism

@SalemP08: @MT8 9 @LiljaOB @midnitebacon @Superju-
tah @Transic nyc her response is pretty terrifying.

none sexism

@JosephIsVegan @SumbelinaZ @IronmanL1 @Hatewatch
Why would you profile white people. Blacks murder at 6 times
the rate as whites.

none racism

Table 3: Examples of improved classification upon the addition of author profiling features (AUTH).

However, a number of abusive tweets still remain misclassified despite the addition of author pro-
filing features. According to our analysis, many of these tend to contain URLs to abusive content,
e.g., “@salmonfarmer1: Logic in the world of Islam http://t.co/6nALv2HPc3” and “@juliarforster Yes.
http://t.co/ixbt0uc7HN”. Since Twitter shortens all URLs into a standard format, there is no indication of
what they refer to. One way to deal with this limitation could be to additionally maintain a blacklist of
links. Another source of system errors is the deliberate obfuscation of words by authors in order to evade
detection, e.g., “Kat, a massive c*nt. The biggest ever on #mkr #cuntandandre”. Current abuse detection
methods, including ours, do not directly attempt to address this issue. While this is a challenge for bag-
of-word based methods such as LR, we hypothesize that neural networks operating at the character level
may be helpful in recognizing obfuscated words.

Figure 2: Visualization of author embeddings in 2-dimensional space.

We further conducted an analysis of the author embeddings generated by node2vec, in order to validate
that they capture the relevant aspects of the community graph. We visualized the author embeddings in

10We note that the annotators of the dataset took discourse into account when annotating the tweets. However, the dataset
was released as a list of tweet ID and corresponding annotation (racism/sexism/none) pairs; there is no annotation available
regarding which tweets are related to which other ones.
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(a) None class (b) Sexism class

Figure 3: Visualization of authors from different classes.

2-dimensional space using t-SNE (van der Maaten and Hinton, 2008), as shown in Figure 2. We observe
that, as in the community graph, there are a few densely populated regions in the visualization that
represent authors in closely knit groups who exhibit similar characteristics. The other regions are largely
sparse with smaller clusters. Note that we exclude solitary users from this visualization since we have to
use a single zero embedding to represent them.

Figure 3 further provides visualizations for authors from the sexism and none classes separately. While
the authors from the none class are spread out in the embedding space, the ones from the sexism class
are more tightly clustered. Note that we do not visualize the 5 authors from the racism class since 4 of
them are already covered in the sexism class.

7 Conclusions

In this paper, we explored the effectiveness of community-based information about authors for the pur-
pose of identifying abuse. Working with a dataset of 16k tweets annotated for racism and sexism, we
first comprehensively replicated three established and currently best-performing abuse detection meth-
ods based on character n-grams and recurrent neural networks as our baselines. We then constructed a
graph of all the authors of tweets in our dataset and extracted community-based information in the form
of dense low-dimensional embeddings for each of them using node2vec. We showed that the inclusion
of author embeddings significantly improves system performance over the baselines and advances the
state of the art in this task. Users prone to abuse do tend to form social groups online, and this stresses
the importance of utilizing community-based information for automatic abusive language detection.

In the future, we wish to explore the effectiveness of community-based author profiling in other tasks
such as stereotype identification and metaphor detection.
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