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Abstract

We present domain independent models to date documents based only on neologism usage pat-
terns. Our models capture patterns of neologism usage over time to date texts, provide insights
into temporal locality of word usage over a span of 150 years, and generalize to various domains
like News, Fiction, and Non-Fiction with competitive performance. Quite intriguingly, we show
that by modeling only the distribution of usage counts over neologisms (the model being agnostic
of the particular words themselves), we achieve competitive performance using several orders of
magnitude fewer features (only 200 input features) compared to state of the art models some of
which use 200K features.

1 Introduction

Determining when a document is written is an important task in historical linguistics and temporal infor-
mation retrieval. For instance, several works attempt to date historical biblical texts like the The Book of
Isiah (Rooker, 1996; Ehrensvärd, 1997; Hurvitz, 2000; Young and Rezetko, 2016) or ancient texts like
Beowoulf (Chase, 1997). Likewise, in the field of information retrieval, establishing the dates of docu-
ments is an important pre-requisite to returning temporally relevant documents and provides important
information for a large number of search tasks (Ostroumova Prokhorenkova et al., 2016; Efron, 2013).

Most efforts to automatically date texts adopt a learning based approach and rely on several linguis-
tic features that are time-relevant (Garcia-Fernandez et al., 2011; Jatowt and Tanaka, 2012; Zampieri
et al., 2015; Ostroumova Prokhorenkova et al., 2016). Such time-relevant features include neolo-
gisms/archaisms, political events, spelling variations, and the presence of named entities as well as ex-
ternal knowledge bases. In addition to the large input feature dimensionality (of the order of the input
vocabulary), these approaches all focus on particular domains (for example, primarily News articles).
While such feature rich models which are arguably domain specific perform very well, these features are
rarely generalizable across domains (for example. models that use political events can perform very well
when evaluated in the News domain, but do not necessarily generalize to Fiction). Developing models
that generalize across domains without further fine tuning generally entails modeling linguistic cues that
are stable across domains.1

Consequently, in this work, we propose the first set of models that effectively generalize across do-
mains by leveraging insights into the temporal usage of language. Our models rely on a key insight
which we term the temporal locality of neologisms: Documents written at time t tend to use neologisms
invented shortly before t. By effectively modeling this usage of neologisms (as a feature class cumula-
tively) we propose models that not only reduce our input feature dimensionality by at-least an order of
magnitude, but also effectively generalize across a variety of domains (Fiction, Non-Fiction, and News)

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1It is worth noting that ultimately most domain adaptation techniques attempt to find such a general feature set by either
attempting to map source domain features to the target domain or learning a more abstract feature set.
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Figure 1: Sample output predictions of a Naı̈ve Bayes model (NB) on a portion of a speech given by
President John F.Kennedy in 1961. Note that this model outputs a probability distribution over years with
a MAP estimate of year 1968. Note also that the model was trained only using Google Book Ngrams and
not on the domain it is evaluated on. Finally, observe that words like 1957, Sputnik, tyranny
and space were most influential in this prediction thus providing insight into linguistic patterns the
model has captured only from Google Book Ngrams. Moreover, the model is generic and can be applied
to multiple domains like Fiction, News or Non Fiction. This motivates our hypothesis that neologisms
can be effectively used to date documents across multiple domains.

without further tuning and perform competitively with more complex models that capture fine-grained
linguistic cues. Intriguingly, we demonstrate that neologism-based models that use only ∼ 200 features
achieve a performance within 5 units of mean absolute error (21.58 on NonFiction) over the best Naı̈ve
Bayes model (18.25 on NonFiction) which uses more than 200K features.

In a nutshell, we make the following contributions:

• We propose domain independent models for the task of dating documents. We emphasize that our
goal is not to necessarily outperform the state of the art domain specific models, but to demonstrate
the effectiveness of simple models drawing on linguistic insights that generalize across domains.

• We leverage cumulative usage patterns of neologisms over time to propose the first set of simple
generalizable models for this task while revealing insights into the cumulative usage patterns of
neologisms over time.

• We empirically evaluate our models against several competing methods including neural models
like LSTMs on three different domains (News, Fiction and Non Fiction).

2 Datasets

Here, we describe data-sets which we use for learning and evaluating our models.

Training Dataset We train all of our models using only the Google Book Ngrams dataset spanning
the time 1850− 2005. Since the Google Book Ngrams spans multiple domains, we can capture domain
agnostic linguistic cues to learn generalizable models for our task. Since our neologism models need
only the frequency of occurrences, the Google Book Ngrams is an ideal dataset providing not only a
large sample size for robust parameter estimation but also inherently spanning multiple domains.
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Evaluation Datasets To evaluate our models, we consider the following datasets2:

• NYTimes: We consider a random sample of 10000 leading paragraphs of NEW YORK TIMES

articles from the range 1850 − 2005 constructed by scraping the New York Times website. Note
that this dataset is primarily from the NEWS domain.

• Corpus of Historical American English (COHA): We consider a random sample of 10000 articles
from each genre, namely FICTION, NONFICTION, and NEWS from the COHA corpus (Davies,
2002). The COHA corpus is an ideal dataset to evaluate our models since it spans a wide time
range, with multiple domains where the dates have been validated by human experts and is easily
available for research purposes3.

We emphasize that all of our models only use the Google Book Ngrams data to learn parameters. The
models are then evaluated on the evaluation datasets which span multiple domains without any further
fine-tuning.

3 Baselines

Before we describe our proposed models, we introduce two baseline methods to evaluate against on our
task.

BOOKPROP We estimate the probability of a document written in a given year y, by computing the
fraction of books written in year y over all books written in the time period under consideration. Formally,
we estimate the following probability:

P(Y = y) =
#(books, y)∑
y #(books, y)

We estimate the number of books in English written in year y, as the number of distinct books the word
the was mentioned in a given year y as per Google Book Ngrams (Michel and others, 2011) data. As
expected, the distribution is skewed towards the right with more books written in the 20th century than in
the 18th century (see Figure 2). Given a document to date, a random sample drawn from this distribution
is then taken as the predicted estimate of the date of the document. A limitation of BOOKPROP is that it
does not model language.
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Figure 2: Estimate of the probability of English books being from a given year using the Google Book
Ngrams data. As expected, the distribution is skewed towards the right with more books written in the
20th century than in the 18th century.

2While there has been work on dating documents (Zampieri et al., 2016; Kumar et al., 2012; Graliński et al., 2017), there
are no standard publicly available evaluation datasets in the community for this task especially spanning multiple domains in
English.

3We note that another option to construct such a dataset spanning multiple domains would be to use books from the
HathiTrust. However, accessing a large clean dataset required institutional access unavailable to us at this point in time.



205

WORD Estimated Year Actual First Usage

HIV 1987 1986
Hitler 1933 1934
LSD 1955 1950

Obama 2007 2006
SARS 2003 2003

...
...

...

WORD Estimated Year Actual First Usage

Sputnik 1958 1957
electron 1905 1891

radio 1904 1907
television 1931 1907
transistor 1950 1948
walkman 1993 1979

Table 1: Example cases of estimated year of popular usage (MR) and actual year of first use (FU)
obtained from http://www.etymonline.com/ for different words from Google Book Ngrams
data. Note that in the majority of these words, our estimated year is close to the year of first usage and
shows a small lag from the year of first use as expected.
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Figure 3: Figure illustrating NEO and NEOPROBBAYES on the same document which was written in
1970. NEO is easily misled by outlier words and predicts the date to be 1992 ignoring other evidence
like counts of other words. NEOPROBBAYES, in contrast incorporates all observed evidence to estimate
more accurately that the document was written in 1965.

NEO A more sophisticated approach to assigning dates to documents is based on the following obser-
vation: If we observe a word which first came into popular usage in a year y, then the document is very
likely written after year y. A simple model based on this hypothesis is to output the year of the most
recent word found in the document. For example, in Figure 1, NEO estimates the date of a document to
be 1958, since it is clear that Sputnik, the most recent word used in the document, sprung into popular
use in 1958.

We estimate the year in which a word came into popular usage MR(w) from Google Book Ngrams
as follows: (a) Compute the cumulative usage of a word w through every year in the Google Book
Ngrams. (b) Compute the first year in which the cumulative usage of the word w exceeds a small fraction
α (empirically set to 1/250.0) of the total cumulative usage. As an example, our method estimates
MR(Obama) = 2007 while the year of actual first usage is 2006. We validate our approach on a small
set of manually curated words which we show in Table 1.

Observe that for the majority of these words, our estimated year is close to the year of first usage and
shows a small lag, which is expected since we seek to estimate the year in which the word came into
popular usage and not its year of first usage.

While NEO serves as a strong baseline, there are two limitations of this method: (a) The document
could be written long after the time period corresponding to the most recent word observed in the docu-
ment. (b) It ignores evidence of other words seen in the document and bases its decision on the occurrence
of a single word.

Figure 3a illustrates these drawbacks. First, note that only one word vinaya with an MR(w) in
the 1990’s was observed in this document. NEO is easily misled by this single erroneous estimation
of MR(vinaya) and estimates the date of this document to be 1992. It ignores other evidence that
suggests that the document was written after 1940, but is unlikely to be written in the 1990’s since words
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with MR(w) a few decades before 1990’s are not observed at all.

4 Proposed Neologism Based Model

We now describe a probabilistic model that effectively uses new words incorporated into popular usage to
estimate when the document was written. In particular, our model computes the likelihood of observing
a set of words that came into popular usage after year x given the document was written in year y to
estimate when the document was written. Our method has two key steps:

1. Ensemble Model Construction: We construct an ensemble of probabilistic models where model
Mi outputs P(y|Xi) and Xi is a discrete random variable counting the words observed in a docu-
ment which came into popular usage after year i.

2. Combining Ensemble Predictions: Each model Mi outputs P(y|Xi), so we investigate multiple
methods to combine predictions from individual models.

Ensemble Model Construction Let F(o, n) be the probability of observing a word that came into
popular usage after year o in year n, where n > o. For every year pair (o, n), we estimate F(o, n) from
the Google Books Ngrams Corpus by computing the fraction of words with MR(w) > o in the Google
Book Ngrams of year n.

Given a text T of length N , let N ′(i) denote a realization of Xi in T . Each model Mi models the
probability of T written in year y based on Xi as follows:

P(y|Xi) ∝

{
P(Xi|y)P(y), if i < y

0, otherwise

P(Xi|y) follows a binomial distribution with success probability F(i, y) which can be computed know-
ing the length of the documentN andN ′(i) a realization ofXi. We assume the prior P(y) to be uniform.

Combining Ensemble Predictions Each model Mi computes a probability distribution over years,
namely P(y|Xi). We now describe three methods to combine these individual model predictions to
output a final prediction:

1. NEOProbMean: We output the mean of individual MAP predictions as the predicted year of au-
thorship.

2. NEOProbMedian: We output the median of individual MAP predictions as the predicted year of
authorship.

3. NEOProbBayes: We use a Bayesian scheme to incorporate all the observed evidence as follows:
LetX = {Xi for each year i}. Specifically we compute the following:

P(y|X) ∝ P(X|y)P(y)

=

(∏
i

P(Xi|y)

)
P(y)

where we make the Naı̈ve Bayes assumption that each Xi is independent of any other Xj , when
conditioned on the year y. We output the MAP estimate of P(y|X) as the final prediction.

Figure 3b shows this approach for a document and also contrasts it with the baseline NEO. Observe
how NEOPROBBAYES enables a more accurate prediction by incorporating observed evidence ignored
by NEO.

As we will show empirically, performance of each of the above methods is a function of the length
of the document it is evaluated on since the accuracy of the individual probability estimates depends
on the length. 4 While NEOPROBBAYES is better for large documents, it is quite sensitive to errors
in estimates for small documents. Therefore, NEOPROBMEDIAN and NEOPROBMEAN which are less
sensitive in the presence of outliers are better than NEOPROBBAYES for short documents (100 tokens)
but are outperformed by NEOPROBBAYES for larger documents (2000 tokens) when individual model
estimates are much more accurate.

4The larger the length, the more accurate the individual estimates.
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5 Comparison to more Feature Rich Models

To place our models in the context of prior work which use a large set of linguistic features, we consider
two linguistically feature rich models. Specifically, we consider a bag-of-words based Naı̈ve Bayes’
model as well as a neural network based model NEURALDATE for this task.

5.1 NAÏVEBAYES

We consider a simple, standard Multinomial Naı̈ve Bayes classifier learned using Google Book Ngrams
to date the year a document was written. We use unigram bag-of-words (we restrict our vocabulary to
200K tokens and discard out-of-vocabulary words) features and Laplace smoothing. It is worth noting
that Naı̈ve Bayes uses 200K features which is orders of magnitude higher than NEO-Prob approaches.

5.2 NEURALDATE

We propose a neural model NEURALDATE, to date texts. NEURALDATE operates on short sequences
of words (n-grams), and outputs a probability distribution over years, P(y|xi) for each ngram xi in the
documentD,

Our model consists of a bi-directional LSTM with an embedding layer, two hidden layers and an
output layer5. The embedding layer maps the input (one hot encoding of the word) to a dense embedding
of size 200 dimensions. The implementation of the LSTM hidden layers are as described in (Graves and
others, 2012) and therefore not described in this paper. The output layer is a soft-max layer over the years
within the time-range considered. We use ADAM optimizer (Kingma and Ba, 2014) with a learning rate
of η = 0.001.6

In order to date a document D, we use the model to compute P(y|xi) for each n-gram (we use n=5)
inD. We then compute P(y|D) to be the mean of these individual probability distributions. Finally, we
use the MAP estimate of P(y|D) as our point estimate of the year.

Autocorrelation Regularizer The model described above does not explicitly leverage structure of
the label space, namely temporal structure (linear sequential structure). Observe the high variance in
probability scores around the mode in Figure 4. Therefore, for a given n-gram xi it would be preferable
to learn model parameters such that P(y|xi) is “smooth” around any given label. This captures the
insight that classes (years) in the neighborhood of a label l should be assigned probabilities similar to
that assigned to l.7

We can formalize this notion of smoothness as follows: Let pl be the probability assigned to label l.
Given a neighborhood k, let d be the vector of first order differences: pi − pi+1 for i ∈ [l − k · · · l + k].
We define the distribution to be L-smooth at l around neighborhood k if ω(d) = σ(d)

mean(|d|) ≤ L, for some
small constant L > 0, where smaller values of L indicate smoother distributions.

We therefore propose to add the following cost to the original cost function:

Ω(θ;Xtrain) =
∑
j

ω (dj) ,

where dj are differences between predicted probabilities for neighboring years for example j.
In summary, the final loss function including this regularization is J(θ;Xtrain,ytrain) +

αΩ(θ;Xtrain) , where J(θ;Xtrain,ytrain) is the standard cross-entropy loss and α is a hyper-parameter
weighing the regularization.

Figure 4 shows the effect of incorporating label smoothness constraints in the cost function for a
sample n-gram. Note that incorporating the temporal structure of labels in the cost function produces
markedly smoother and realistic distributions than a model not exploiting label structure.To investigate

5While more sophisticated and complex sequence models are being developed even as we write this paper, our goal here
is only to place the performance of our proposed neologism models in context of other sophisticated methods. Therefore,
Bidirectional LSTMs serve as a good lower bound for complex models.

6Hyper-parameter settings were chosen based on a validation set.
7We initially also experimented with using mean square loss and modeling this as a regression problem, but the resulting

model did not perform well empirically.
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Figure 4: Predicted distribution over years for a given 5-gram (shown above the figure), motivating the
need for the auto-correlation regularizer. Note that when α = 0, the regularizer is disabled and the
output probability distribution is very noisy and neighboring values have large variance. In contrast,
when the regularizer is properly enabled (α = 0.16), observe how the output probability distribution is
much smoother and neighboring probability values are more similar.

Figure 5: MAE from cross validation for candidates of α which controls the strength of the auto-
correlation regularizer. The means and the standard deviations over 20 independent runs are shown.
When the model is properly regularized (α = 0.16), observe the improvements over model without reg-
ularization (α = 0). Also, note that when the model is over-regularized (α > 0.25), the performance is
worse and demonstrates larger variance.

the effect of α, we measure the MAE (Mean Absolute Error) over n-grams and use cross-validation by
selecting α from a set of candidates in [0, 0.8] (see Figure 5). Based on these observations, we set α at
0.16 empirically for training our model.

6 Experiments

We evaluate all of our methods against several baselines on diverse data sets spanning multiple domains.
We consider the time period of 1850−2005 for the purpose of dating documents and evaluate our models
on the evaluation data-sets described in Section 2. Since the tasks should get easier on long documents,
we measure the performance of our models as a function of the length. Since the NYTIMES dataset only
consists of the first paragraph of articles (about 100 tokens on average) we use the entire paragraph for
evaluation on this dataset. Tables 2 and 3 show the Mean Absolute Error (MAE) over the NYTIMES and
COHA datasets, from which we make the following observations:

• Neologism Methods need relatively large documents to perform competitively: Overall, the ne-
ologism based models perform competitively with Naı̈ve Bayes using 1000 times fewer features (see
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#(Tokens) #(Features) MAE
BOOKPROP - 43.46
NEO ≤ 200 58.77
NEOPROBMEAN ≤ 200 27.55
NEOPROBMEDIAN ≤ 200 28.22
NEOPROBBAYES ≤ 200 67.14
NAÏVEBAYES ∼ 200K 23.69
NEURALDATE (w/o reg.) 1000 22.80
NEURALDATE 1000 20.54

Table 2: Mean Absolute Error on New York Times data. Note that neologism based methods (high-
lighted) whose feature set size is much smaller, perform competitively with NAÏVEBAYES with a feature
space of dimension of 200K. NEURALDATE uses a 200 dimension embedding for each word in a 5-gram
and so has an effective feature input size of 1000. It is worth noting that our neologism based models do
not directly rely on the actual words themselves but on the number of neologisms used at a given time
thus drastically reducing the feature size while yielding competitive performance.

Dataset #(Tokens) 100 500 1000 2000

BOOKPROP 44.57 44.54 43.95 44.21
NEO 66.99 34.74 27.39 24.80
NEOPROBMEAN 32.40 30.76 31.45 31.13

COHA-Fiction NEOPROBMEDIAN 36.90 32.96 32.03 31.73
NEOPROBBAYES 78.99 41.90 33.77 27.92
NAÏVEBAYES 26.61 23.98 22.62 21.93
NEURALDATE (w/o reg.) 37.56 30.71 28.96 27.97
NEURALDATE 35.66 30.02 27.81 26.96

BOOKPROP 45.19 45.07 45.04 45.51
NEO 57.99 30.75 24.84 22.86
NEOPROBMEAN 31.13 26.90 26.02 25.39

COHA-NonFiction NEOPROBMEDIAN 30.68 26.60 25.73 25.13
NEOPROBBAYES 56.58 30.73 25.46 21.58
NAÏVEBAYES 24.28 19.83 18.36 18.25
NEURALDATE (w/o reg.) 27.91 23.57 22.29 21.60
NEURALDATE 25.21 20.07 20.38 20.09

BOOKPROP 44.97 45.34 44.99 45.02
NEO 39.86 20.39 19.80 20.26
NEOPROBMEAN 24.36 23.40 23.30 23.31

COHA-News NEOPROBMEDIAN 25.22 22.88 22.45 22.39
NEOPROBBAYES 48.30 22.79 20.97 20.82
NAÏVEBAYES 21.35 17.21 16.64 16.60
NEURALDATE (w/o reg.) 20.40 16.04 15.43 15.34
NEURALDATE 19.30 15.33 14.72 14.59

Table 3: Mean Absolute Error of different models on COHA datasets as a function of number of tokens
used for evaluation in each document. Note that our proposed neologism based methods (highlighted) use
a much smaller feature set, generalize across domains without any further fine-tuning, and perform com-
petitively with feature rich models like NAÏVEBAYES and NEURALDATE for long documents (greater
than 500 tokens).

Table 2) suggesting that effective usage of neologism usage patterns can serve as strong baselines.

Furthermore, from Table 3, the baseline NEO generally performs very poorly on short documents
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(of length 100 tokens). For example, on the COHA-FICTION dataset using 100 tokens, the MAE
is 66.99 compared to BOOKPROP which yields an MAE of 44.57. On short documents NEO is
easily misled due to lack of effective sample size. In contrast, observe that as the length of the
document increases NEO’s error reduces significantly (note Table 3 that for 2000 word documents
on COHA-FICTION the mean absolute error is now 24.80).

Finally, the probabilistic models we propose extending NEO also perform better than NEO espe-
cially on short documents (for example, on COHA-FICTION for documents with 100 tokens the
MAE for NEOPROBMEAN is 32.40 compared to 66.99 for NEO). Similarly, NEOPROBMEAN and
NEOPROBMEDIAN outperform NEOPROBBAYES on documents of up to 1000 tokens but NEO-
PROBBAYES almost always outperforms all of these on documents of length 2000, suggesting that
NEOPROBBAYES needs a larger sample size to make effective predictions.

• Deeper linguistic features boost performance: We finally observe that including linguistic fea-
tures like the words used in a simple Naı̈ve Bayes classifier consistently outperforms methods rely-
ing solely on neologisms. Further, observe that the NEURALDATE with the auto-correlation regu-
larizer demonstrates superior performance over NEURALDATE without regularization. Finally, note
that NEURALDATE also performs competitively and sometimes out-performs Naı̈ve Bayes.

Altogether, our proposed neologism based models generalize well across domains, reduce the input
feature size significantly while performing competitively with more complex feature rich models.

7 Related Work

A large body of related work on the task of automatically dating texts exists in the field of temporal
information retrieval (De Jong et al., 2005; Popescu and Strapparava, 2015; Kanhabua and Nørvåg,
2009; Garcia-Fernandez et al., 2011; Niculae et al., 2014; Zampieri et al., 2015; Zampieri et al., 2016;
Bamman et al., 2017; Jatowt and others, 2017; Kumar et al., 2012; Kumar, 2013; Graliński et al.,
2017). The community also has two shared tasks (Popescu and Strapparava, 2015) and (Graliński et al.,
2017). However, both of these shared tasks differ from our setting. Popescu and Strapparava (2015) is a
shared task for diachronic text evaluation but only focuses on the Newspaper domain in contrast to our
work which focuses on generalizable models across domains. Graliński et al. (2017) is the most recent
challenge on dating texts but it focuses on Polish texts. De Jong et al. (2005) proposed using temporal
language models based on unigrams to date texts on Dutch newspaper articles. Several works incorporate
additional features like lexical features, part-of-speech tagging, extraction of concepts and word sense
disambiguation and use external knowledge bases (Kanhabua and Nørvåg, 2009; Garcia-Fernandez et
al., 2011; Niculae et al., 2014; Zampieri et al., 2015; Zampieri et al., 2016). Recently Jatowt and others
(2017) propose an interactive system to estimate the age of document using moment statistics of n-grams
focusing on only a qualitative analysis.

Our work is most closely related to the works of (Kumar et al., 2012), (Garcia-Fernandez et al.,
2011),(Zampieri et al., 2015) and (Bamman et al., 2017). Kumar et al. (2012) propose a model for
predicting the dates of documents without explicit temporal cues. This model essentially learns tempo-
ral language models on the temporal corpus where explicit temporal expressions are removed. It then
assesses the likelihood of a given document under each time point to make a prediction. It thus relies
on implicit temporal cues and words and typically has an input feature dimensionality of the order of
the vocabulary (in this case 300K words). Furthermore, this model has only been evaluated in differ-
ent settings (like predicting the mid-point of an individual’s lifetime using their Wikipedia biography).
Garcia-Fernandez et al. (2011) develop a model to date documents using both chronological methods
with external knowledge and classification methods like using an SVM to date documents on a French
Newspaper corpus while Zampieri et al. (2015) propose a ranking based approach to temporal text clas-
sification. These methods learn models on the respective domains they are evaluated on. Bamman et al.
(2017) proposed bag-of words based models (using Ridge Regression as well as Naı̈ve Bayes) to predict
the date of first publication over books obtained from the Hathi Trust.
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Differing from these works, our proposed method seeks to learn a global model that can be applied
across multiple domains without further tuning. We propose new probabilistic models to date texts
by analyzing statistical patterns of the introduction of neologisms over time. Our models are simple,
domain-independent, use several orders of magnitude fewer features and yet achieve competitive perfor-
mance.

8 Conclusion

In this paper, we investigated the task of dating books on a large fine-grained time scale (spanning
150 years) through the lens of neologisms introduced over time. We propose probabilistic models that
effectively analyze the usage of neologisms. We demonstrate that our methods perform competitively
with models that use deeper linguistic cues (which could use a feature space of more than thousands
of features). Furthermore, our models are learned using only the Google Book Ngrams, do not need
any further tuning when evaluated on other domains and potentially enable researchers to obtain literary
insights into the language of authors over time.
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