@inproceedings{li-etal-2016-joint,
title = "Joint Embedding of Hierarchical Categories and Entities for Concept Categorization and Dataless Classification",
author = "Li, Yuezhang and
Zheng, Ronghuo and
Tian, Tian and
Hu, Zhiting and
Iyer, Rahul and
Sycara, Katia",
booktitle = "Proceedings of {COLING} 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/C16-1252",
pages = "2678--2688",
abstract = "Existing work learning distributed representations of knowledge base entities has largely failed to incorporate rich categorical structure, and is unable to induce category representations. We propose a new framework that embeds entities and categories jointly into a semantic space, by integrating structured knowledge and taxonomy hierarchy from large knowledge bases. Our framework enables to compute meaningful semantic relatedness between entities and categories in a principled way, and can handle both single-word and multiple-word concepts. Our method shows significant improvement on the tasks of concept categorization and dataless hierarchical classification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2016-joint">
<titleInfo>
<title>Joint Embedding of Hierarchical Categories and Entities for Concept Categorization and Dataless Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuezhang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ronghuo</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tian</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiting</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rahul</namePart>
<namePart type="family">Iyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katia</namePart>
<namePart type="family">Sycara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-dec</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers</title>
</titleInfo>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing work learning distributed representations of knowledge base entities has largely failed to incorporate rich categorical structure, and is unable to induce category representations. We propose a new framework that embeds entities and categories jointly into a semantic space, by integrating structured knowledge and taxonomy hierarchy from large knowledge bases. Our framework enables to compute meaningful semantic relatedness between entities and categories in a principled way, and can handle both single-word and multiple-word concepts. Our method shows significant improvement on the tasks of concept categorization and dataless hierarchical classification.</abstract>
<identifier type="citekey">li-etal-2016-joint</identifier>
<location>
<url>https://aclanthology.org/C16-1252</url>
</location>
<part>
<date>2016-dec</date>
<extent unit="page">
<start>2678</start>
<end>2688</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint Embedding of Hierarchical Categories and Entities for Concept Categorization and Dataless Classification
%A Li, Yuezhang
%A Zheng, Ronghuo
%A Tian, Tian
%A Hu, Zhiting
%A Iyer, Rahul
%A Sycara, Katia
%S Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
%D 2016
%8 dec
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F li-etal-2016-joint
%X Existing work learning distributed representations of knowledge base entities has largely failed to incorporate rich categorical structure, and is unable to induce category representations. We propose a new framework that embeds entities and categories jointly into a semantic space, by integrating structured knowledge and taxonomy hierarchy from large knowledge bases. Our framework enables to compute meaningful semantic relatedness between entities and categories in a principled way, and can handle both single-word and multiple-word concepts. Our method shows significant improvement on the tasks of concept categorization and dataless hierarchical classification.
%U https://aclanthology.org/C16-1252
%P 2678-2688
Markdown (Informal)
[Joint Embedding of Hierarchical Categories and Entities for Concept Categorization and Dataless Classification](https://aclanthology.org/C16-1252) (Li et al., COLING 2016)
ACL