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Abstract

This paper describes a unified neural architecture for identifying and classifying multi-typed se-
mantic relations between words in a sentence. We investigate two typical and well-studied tasks:
semantic role labeling (SRL) which identifies the relations between predicates and arguments,
and relation classification (RC) which focuses on the relation between two entities or nominals.
While mostly studied separately in prior work, we show that the two tasks can be effectively
connected and modeled using a general architecture. Experiments on CoNLL-2009 benchmark
datasets show that our SRL models significantly outperform state-of-the-art approaches. Our
RC models also yield competitive performance with the best published records. Furthermore,
we show that the two tasks can be trained jointly with multi-task learning, resulting in additive
significant improvements for SRL.

1 Introduction

Semantic relation identification and classification are important problems towards the understanding of
natural language sentences. Multi-typed semantic relations have been defined between two terms in
a sentence in natural language processing (NLP) to promote various applications. For instance, the
task of Semantic Role Labeling (SRL) defines shallow semantic dependencies between arguments and
predicates, identifying the semantic roles, e.g., who did what to whom, where, when, and how. SRL
has been a long-standing and challenging problem in NLP, primarily because it is strongly dependent on
rich contextual and syntactical features used by the underlying classifiers (Gildea and Jurafsky, 2002).
Another instance is Relation Classification (RC) which assigns sentences with two marked entities (or
nominals) to a predefined set of relations (Hendrickx et al., 2010). Compared with SRL, relations defined
in RC express much deeper semantics. Figure 1 shows example annotations of SRL and RC respectively.

These two problems are typically studied separately in different communities. Hence the connections
between them are neglected, both in data resources and approaches. In this paper, we show that SRL and
RC have a lot of common ground and can be modeled with a unified model. We start by looking into the
key features which have been proven dominant in both SRL and RC.

• Contextual features. Words within a proper window size of the target words are important for most
statistical models of various NLP tasks, such as Part-of-Speech tagging, Named Entity Recognition
and Parsing. They are also important for identifying the semantic relatedness between two terms
in a sentence. Consider the RC example in Figure 1(b), the context word “moved” is a strong
indicator for classifying the relation of ⟨People, downtown⟩ as Entity-Destination. However, most
of the conventional approaches in SRL and RC only considers local context features through feature
engineering, which might be incomplete.

• Syntactical features. Both state-of-the-art SRL and RC systems employ the syntactic path be-
tween the two target terms as an important feature. Figure 1 shows the dependency parses for
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Figure 1: Examples of semantic role labeling (a) and relation classification (b).

the two sentences. For example, the dependency path between “meetings” and the predicate

“holding” (“holdings”
OBJÐÐÐ→ “meetings”) strongly indicates an A1 relation (patient role). Early

approaches built in discrete feature space are not capable of utilizing the word path features which
are extremely sparse. Fortunately, recent progress in distributed representations and deep neural
networks provides a promising solution for this problem.

• Lexical semantic features. Lexical properties of a word (e.g., the identity of a word, its lemma, its
morphological features) are important for semantic tasks. Particularly in tasks like relation classi-
fication, it is often impossible to determine the relation without the semantic ground of the target
words. Therefore, previous approaches have been using lexical features like word embeddings,
lemmas, WordNet, etc.

This paper describes a unified neural model for SRL and RC that effectively utilizes the three kinds
of features above. Our model captures global contextual features and syntactic path features by using
bidirectional long short-term memory (LSTM)-based recurrent neural networks. We especially focus on
SRL which, in our opinion, is more complicated and difficult. SRL is a structure prediction task with
certain structural constraints. To this end, an additional post-inference procedure based on integer linear
programming (ILP) is applied to SRL, in order to meet the constraints. Furthermore, our unified model
successfully connects SRL and RC, presenting the possibility of multi-task learning. We show that the
SRL performance can be significantly improved through knowledge transfer from RC.

We conduct experiments on the CoNLL-2009 shared task datasets for SRL, and the SemEval-2010
Task 8 dataset for RC. On SRL, our models significantly outperform previous approaches in various
languages. On RC, our model also obtains performance competitive to the state-of-the-art.1

Our primary original contributions include:

• We propose a unified model for SRL and RC, which effectively captures global contextual features,
syntactical features and lexical semantic features.

• We show that SRL can be significantly improved by jointly training with RC, reaching new state-
of-the-art performance.

2 Related Work

The present work ties together several strands of previous studies.

Semantic Role Labeling A great deal of previous SRL research has been dedicated to designing rich
and expressive features, pioneered by Gildea and Jurafsky (2002). For instance, the top performing
system on the CoNLL-2009 shared task employs over 50 language-specific feature templates (Che et
al., 2009). These features mostly involve the predicate, the candidate argument, their contexts and
the syntactic path between them (Surdeanu et al., 2003; Xue and Palmer, 2004; Pradhan et al., 2005).
Besides, higher-order features involving several arguments or multiple predicates have also been ex-
plored (Toutanova et al., 2008; Martins and Almeida, 2014; Yang and Zong, 2014).

1Our code is available at: https://github.com/jiangfeng1124/nnsrl-rc.
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Several approaches have been studied to alleviate the intensive feature engineering in SRL and get
better generalization. Moschitti et al. (2008) introduce different kinds of tree kernels for capturing the
structural similarity of syntactic trees. While attractive in automatic feature learning, the kernel-based
approaches typically suffer from high computational cost. Lei et al. (2015) instead use low-rank tensors
for automatic feature composition based on four kinds of basic feature sets. However, tensor-based
approaches cannot well generalize the high-sparsity structural features like syntactic path. Besides, they
still need a relatively small amount of feature engineering to make use of the local contexts. Another
line of research focuses on neural models (Collobert et al., 2011; Zhou and Xu, 2015; FitzGerald et
al., 2015), which have shown great effectiveness in automatic feature learning on a variety of NLP
tasks. Most recently, Roth and Lapata (2016) employ LSTM-based recurrent neural networks to obtain
the representations of syntactic path features, which is similar to our work. Aside from the distributed
path features, they also use a set of binary input feature sets from Anders et al. (2010). In contrast
to these prior work, our model jointly leverages both global contexts and syntactic path features using
bidirectional LSTMs.

Relation Classification Early research on RC has also been relying heavily on human-engineered
features (Rink and Harabagiu, 2010). Recent years have seen a great deal of work on using neural
networks to alleviate the intensive engineering on contextual and syntactic features. For example, Socher
et al. (2012) propose recursive neural networks for modeling the syntactic paths between the two entities
whose relation is to be determined. Zeng et al. (2014) use convolutional neural network for learning
sentence-level features of contexts and obtain good performance even without using syntactic features.
Later approaches have used more sophisticated models for better handling long-term dependencies, such
as sequential LSTMs and tree LSTMs (Liu et al., 2015; Xu et al., 2015b; Miwa and Bansal, 2016). In
addition, Yu et al. (2014) and (2015) investigate tensor-based approaches for learning the combination
of embedding features and lexicalized sparse features.

Therefore, despite that relation classification has mostly been studied separately from SRL, they have
a substantial amount of commonalities. It inspires us to develop a potentially unified architecture to take
advantage of the progress in each research direction.

Multi-task Learning There has been a line of research on joint modeling pipelined NLP tasks, such as
word segmentation, POS tagging, parsing and semantic role labeling (Hatori et al., 2012; Li et al., 2011;
Bohnet and Nivre, 2012; Henderson et al., 2013; Lluı́s et al., 2013). Most multi-task learning or joint
training frameworks can be summarized as parameter sharing approaches proposed by Ando and Zhang
(2005). In the context of neural modeling for NLP, the most notable work was proposed by Collobert
and Weston (2008), which aims at solving multiple NLP tasks within one framework by sharing common
word embeddings. This work also inspires us in this study to develop a unified architecture for SRL and
RC in prior to joint training.

Recently, the idea of neural multi-task learning was applied to sequence-to-sequence problems with
recurrent neural networks. Dong et al. (2015) use multiple decoders in neural machine translation sys-
tems that allows translating one source language to many target languages. Luong et al. (2015) study
the ensemble of a wide range of tasks (e.g., syntactic parsing, machine translation, image caption, etc.)
with multi-task sequence-to-sequence models. Liu et al. (2016) incorporate different kinds of corpus
for implicit discourse relation classification using multi-task neural networks. More recently, multi-task
learning has also been applied to sentence compression (Klerke et al., 2016) and machine translation
quality estimation (Shah and Specia, 2016).

3 Problem Definition

This section gives formal definitions of the two tasks to be investigated: SRL and RC.

3.1 Semantic Role Labeling

We follow the setup of the CoNLL-2009 shared task. Given a sentence s, each token is annotated with
a predicated POS tag and predicted word lemma. Some tokens are also marked as predicates. Besides,
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Figure 2: The unified architecture for SRL and RC.

a predicted syntactic dependency tree ysyn is also provided (cf. below part of Figure 1(a)). The goal
is to determine the semantic dependencies for each predicate pi (cf. upper part of Figure 1(a)). These
dependencies identify the arguments of each predicate and the role labels.

In this work, we focus on the identification and classification of the arguments associated with given
predicates. More formally, for each predicate pi in s, we loop over all the tokens in s except pi: {w ∈
s∣w ≠ pi}, and determine their role labels. It can be considered as a classification problem with each
instance as a word pair ⟨pi,w⟩. We include an additional NULL label indicating that a token is not an
argument of pi. To guarantee the resulting semantic dependencies meet certain constraints, we further
apply ILP over the output probabilities in each position for post-inference (Section 4.4).

3.2 Relation Classification

As demonstrated in Figure 1, the semantic relations specified in relation classification are totally different
from SRL. SRL is more close to the syntactic dependencies while RC is totally semantic. Our setup
follows the SemEval-2010 Task 8. Each sentence s is annotated with a pair of nominals e1 and e2, and
our goal is to identify the relation between e1 and e2. Nine relations are defined in the task, and the
directionality of relation between e1 and e2 is considered in the evaluation. Relations that do not belong
to the nine relations are marked as Other.

4 Unified Neural Architecture

As described above, both SRL and RC can be formalized as a classification problem over instances of
word pairs within a sentence. We propose a unified neural architecture, as illustrated in Figure 2, for
modeling these two tasks. Our architecture includes the following three primary components.

4.1 Lexical Feature Representation

We extract basic lexical features for each token in a sentence. Typical lexical features for SRL and RC
include word (or lemma when available) and POS tag. For RC, additional features can be used, such as
named entity type (NE) and WordNet. All these features are then represented as low-dimensional real-
valued vectors, i.e., feature embeddings. Word embeddings can be readily pretrained using word2vec
on a large unlabeled corpus, which have proved helpful in many applications. Next, various feature
embeddings are composed through a nonlinear transformation, and thus a token can be represented as:

xi = ReLU(WlexΦi + blex),where
Φi = [wi;pi] for SRL, Φi = [wi;pi;nei;wni] for RC

(1)

wi represents the word or lemma (when available), pi represents the POS tag, nei is the named entity,
and wni is the WordNet hypernym.
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4.2 Global Context Representation

We obtain global context representations of the target words by using bidirectional LSTM-based RNNs.
For more computation details of LSTM, we refer the readers to Hochreiter and Schmidhuber (1997). The
LSTMs take as input the token representation xi in each position. The hidden state vectors of the two
directions’ LSTM units corresponding to each target word are then concatenated as its global context
representation:

Rgc
e1
= [Ð→h e1 ;

←Ð
h e1]; Rgc

e2
= [Ð→h e2 ;

←Ð
h e2] (2)

Note that an important difference between our model and previous neural models is that we utilize the
hidden state vectors of e1 and e2 instead of the representation of the whole sentence, which frees us from
using position-related features (Zeng et al., 2014; Collobert et al., 2011; dos Santos et al., 2015).

4.3 Syntactic Path Representation

We define the nearest common ancestor token of e1 and e2 as nca(e1, e2). Then the path from e1, e2
to nca(e1, e2), i.e., e1 → . . . → nca(e1, e2) and nca(e1, e2) ← . . . ← e2, are also modeled with bidi-
rectional LSTMs, as shown in Figure 2 (right panel). We use two kinds of syntactic paths, including
a generic path that takes the token representation xi as input, and a relation path that takes the depen-
dency relations along the path as input (Figure 2). These two paths are modeled with BiLSTMgen and
BiLSTMrel respectively. The hidden state vectors of the two directions’ LSTM units of nca(e1, e2)
are then concatenated as the syntactic path representation of (e1, e2):

Rgen
(e1,e2)

= [Ð→h gen
nca(e1,e2)

;
←Ð
h gen

nca(e1,e2)
]; Rrel

(e1,e2)
= [Ð→h rel

nca(e1,e2)
;
←Ð
h rel

nca(e1,e2)
] (3)

The global context representations and syntactic path representation are then composed through a
non-linear layer, resulting in the representation used for final classification.

p = ReLU(Wgc [Rgc
e1

; Rgc
e2
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Global Context

+Wsp [Rgen
(e1,e2)

; Rrel
(e1,e2)

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Syntactic Path

+b) (4)

p(c∣p) = softmax(g⊺c p + qc) (5)

Our model is trained by minimizing the cross-entropy loss: L(θ) = −∑N
i=0 log p(ci∣pi), where N is

number of training instances.

4.4 Post-Inference with Integer Linear Programming for SRL

SRL is a structure prediction problem and the predicted results should satisfy some structural constraints.
For instance, some roles only appear once for a predicate in a sentence. Following Punyakanok et al.
(2004) and Che et al. (2008), we apply ILP on the probability distributions at each token generated by
our model to get the global optimization. We use the three constraints defined in Che et al. (2008):

• C1: Each word should be labeled with one and only one label (including NULL).

• C2: Roles with a small probability (smaller than 0.3) should never be labeled (except for NULL).

• C3: Some roles (except for NULL) usually appear once for a predicate in a sentence. Hence a
non-duplicate-roles list is utilized for each language.

5 Multi-task Learning

The commonalities between SRL and RC inspire us to explore their potential mutual benefits. According
to the Shortest Path Hypothesis (Bunescu and Mooney, 2005), if e1 and e2 are two entities mentioned
in the same sentence such that they are observed to be in a certain relationship R, they often indicate
two arguments of the same predicate or a sequence of predicates. To gain more insights, let’s look at the
following example in RC:
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“The author[e1]
of a keygen uses a disassembler[e2]

to look at the raw assembly code.”

Instrument-Agency(e2, e1)

Here, the “Instrument-Agency” relation provides significant evidences that author and disassembler
are two arguments of a certain predicate, most likely with semantic roles A0 (agent) and A1 (patient).
Furthermore, given the dependency parse tree, it’s easy to find out that their associated predicate is
“uses”. Therefore, RC is expected to benefit both the identification and classification of semantic roles.
Analogously, SRL results of a sentence also have positive impacts to the identification of semantic rela-
tions between e1 and e2, i.e. whether or not a relation exists between e1 and e2.

However, the roles defined in SRL can hardly contribute to the classification of much more fine-
grained relation types in RC. For example, the roles A0, A1 can hardly help us to distinguish between
the relation types like Instrument-Agency, Product-Producer, Cause-Effect, etc. Given this intuition, we
will mainly focus on improving SRL with RC in this work.

Our proposed unified model allows knowledge transfer across SRL and RC in a natural way through
parameter sharing. In this work, we consider two ways of knowledge transfer.

• Cascaded Learning (CAS). Models are trained in a cascaded manner. Specifically, a RC model is
trained first, and then the parameters (e.g., word embeddings, network weights) are used to initialize
the neural network for training SRL in the second stage.

• Multi-task Learning (MTL). Models are trained jointly in a stochastic manner:

1. Select a task according to a certain probability distribution (explained below).
2. Sample a batch of instances from the task, and feed-forward the neural network.
3. Update the corresponding parameters by back-propagation w.r.t. the instances.
4. Go to 1.

In multi-task learning, two important factors are taken into account. First, we typically expect the two
tasks to converge at a similar rate (Caruana, 1997). We approximately achieve this by using a weighted
task sampling strategy in step 1. More specifically, we observe that SRL converges about 4 times slower
than RC by running them separately, hence we sample from SRL 4 times often than RC during training.
Despite the lack of theoretical guarantee, we found it working well in practice. Second, the key for
multi-task learning to work is parameter sharing. Given the unified architecture, we can share most of
the network parameters for knowledge transfer. Note that different dependency parses might be used for
SRL and RC in practice. In this work, we use the officially provided predicted parses from CoNLL-2009
shared task in SRL, but adopt Stanford parser (Manning et al., 2014) to obtain parses for sentences in
RC. These kinds of parses are quite different in terms of both the head-finding rules and the dependency
relations. Therefore, we set the parameters involving dependency path modeling as task-specific, i.e.,
BiLSTMgen,BiLSTMrel and Wsp (Figure 2). The output weights (g) are task-specific as standard
of multi-task learning, in order to handle different set of relations to be classified in SRL and RC.

6 Experiment

In this section, we first describe data and our experimental settings, then the results and analysis.

6.1 Data and Settings
For SRL, we evaluate on the English dataset and other 4 languages (Chinese, Catalan, German and
Spanish) in the CoNLL-2009 shared task. We use the official split for training, development and testing.
In addition, a subset of the Brown corpus is used as the out-of-domain test set. We use the officially
provided predicted POS tags, lemmas and dependency parses as our input. All predicates are given for
each sentence during both training and testing. Besides, we neither predict nor use the sense for each
predicate, and thus exclude the predicate senses in most of the evaluation. We follow Lei et al. (2015)
and combine the predicate sense output of Anders et al. (2010) with our SRL output, to provide results
directly comparable to previous published results.
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We compare our model to several state-of-the-art systems, primarily including the best performing
system in CoNLL-2009 shared task, the most recently proposed PathLSTM model of Roth and Lapata
(2016), the neural network model of FitzGerald et al. (2015), and the low-rank tensor model of Lei et al.
(2015). We also consider some variants of the above models that use reranking or model ensemble.

For RC, we use the relation classification dataset of the SemEval 2010 task 8. The dataset contains
10,717 annotated sentences, including 8,000 for training and 2,717 for testing. We conduct 5-fold cross-
validation to determine the best training iterations, and use the official scoring script for evaluation.

Several competitive models are to be compared, including the top performed system in SemEval
2010 (Rink and Harabagiu, 2010), the Matrix-Vector Recursive Neural Network (MV-RNN) model
of Socher et al. (2012), the CNN model of Zeng et al. (2014), the tensor-based model of Yu et al. (2014),
the CNN model using ranking loss (dos Santos et al., 2015), and the dependency-based neural network
models (Liu et al., 2015; Xu et al., 2015b).

Word embeddings are pretrained using word2vec on large-scale unlabeled data. For English, Cata-
lan, German and Spanish, we use the latest Wikipedia data. For Chinese, we obtain the raw text from
Xinhua news section (2000–2010) of the fifth edition of Chinese Gigaword (LDC2011T13). The LTP
toolkit (Che et al., 2010) is applied to segment Chinese text into words.

We adopt predicate-wise training for SRL and sentence-wise training for RC, and use stochastic gra-
dient descent for optimization. Initial learning rate is set to η0 = 0.1 and updated as ηt = η0/(1+0.1t) on
each epoch t. Our hyperparameters for the unified model are listed in Table 1. When training RC-only
models, the LSTM input/hidden dimension is set to 200, and the dimension of hidden layer is 400.

Dimension of embeddings Dimension of layers
word POS NE WordNet LSTM input LSTM hidden hidden
200 25 25 25 100 100 200

Table 1: Hyperparameters settings.

6.2 SRL Results
Table 2 reports the SRL performance on the English dataset. Our supervised models (SUP) outperform
the six top performing systems on both in-domain and out-of-domain datasets (the second block), and is
comparable to two top systems that use reranking or model ensemble (the third block).

Effect of transfer learning By comparing the cascaded training system (CAS), the multi-task learning
system (MTL) with SUP, we can find that the task of RC is significantly helpful for improving SRL
models. In particular, MTL consistently works better than CAS. Our best models (MTL) outperform all
of the previous systems, and achieve new state-of-the-art SRL results.

Figure 3 shows the learning curves of SUP, CAS and MTL on development data. At early training
iterations, CAS is very close to MTL, and improves faster than SUP, indicating that the RC parameters
indeed serve as a good initialization for SRL. MTL gradually outperforms CAS as the training converges,
which further verifies the advantage of joint training over cascaded training.

Effect of post-inference We further investigate the effect of post-inference with ILP. As shown in
Table 3, ILP has a considerable impact on the final SRL performance consistently for all of our models.

Multilingual Results Table 4 shows the results of our SRL-only system (SUP) on other languages
in the CoNLL-2009 shared task. Our model outperforms the best performing system on all the four
languages we considered, with particularly large gains on Chinese (+6.3 absolute F1-score). Note that our
model is also unified for each language, without language-specific tuning of features or hyperparameters.

6.3 RC Results
The only difference of our RC model from the SRL model is at the input layer, where we use two
additional features: NE and WordNet. Table 5 shows the RC results on the SemEval 2010 task 8. Our
model achieves an F1-score of 83.9%, which is comparable to the top performing systems in previous
work. dos Santos et al. (2015) obtain an F1-score of 84.1% by using ranking loss, with special treatment
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Model Excluding predicate senses Including predicate senses
WSJ-dev WSJ-test Brown-test WSJ-test Brown-test

SUP 82.32 84.06 72.12 87.67 76.56
CAS 83.33 84.73 73.00 88.14 77.15
MTL 83.51* 85.04* 73.22* 88.37* 77.34*
CoNLL-2009 1st place – 82.08 69.84 86.15 74.58
(Roth and Lapata, 2016) – – – 86.7 75.3
(FitzGerald et al., 2015) 82.3 83.6 71.9 87.3 75.2
(Lei et al., 2015) 81.03 82.51 70.77 86.58 75.57
(Roth and Woodsend, 2014) – 80.87 69.33 85.50 74.67
(Anders et al., 2010) 78.85 81.35 68.34 85.80 73.92
Model + Reranker/Ensemble WSJ-dev WSJ-test Brown-test WSJ-test Brown-test
(Roth and Lapata, 2016)+R,E – – – 87.9 76.5
(FitzGerald et al., 2015)+E 83.0 84.3 72.4 87.8 75.5
(Roth and Woodsend, 2014)+R – 82.10 71.12 86.34 75.88
(Anders et al., 2010)+R 80.50 82.87 70.91 86.86 75.71

Table 2: SRL labeled F1-score of our model variants, with comparison to the state-of-the-art systems on
the CoNLL-2009 shared task. Statistical significance (MTL vs. SUP) with p < 0.01 is marked with *.

●

●

●

●

●

● ●
● ●

● ● ● ● ● ● ●
● ● ● ●

0.60

0.65

0.70

0.75

0.80

0 20 40 60 80
Every 10,000 predicates

D
ev

 F
1−

sc
or

e

● MTL
CAS
SUP

Figure 3: SRL F1-scores on the development data
w.r.t. the number of predicates trained.

Model WSJ-dev WSJ-test
SUP 82.32 84.06

w/o ILP 81.87 83.53
CAS 83.33 84.73

w/o ILP 82.90 84.40
MTL 83.51 85.04

w/o ILP 83.15 84.75

Table 3: Effect of post-inference, evaluated
excluding predicate senses.

to the artificial relation (Other). Such task-specific strategy can also be potentially used in our model
for further improvements. As discussed in Section 5, to our intuition, knowledge contained in SRL is
not supposed to benefit RC. To verify this, we further test on RC with cascaded learning and multi-
task learning. We obtain a small degradation in RC performance in both cases (-0.9 for CAS and -0.7
for MTL). Nevertheless, we still expect improvements on joint learning of SRL and relation extraction
(rather than classification), which we leave to future exploration.

7 Conclusion

In this paper, we propose a unified architecture for the task of SRL and RC. We effectively capture
the global contextual representation and syntactic path representations using bidirectional LSTM-based
recurrent neural networks. By evaluating on benchmark datasets for both SRL and RC, we show that
our models outperform or get competitive results with the state-of-the-art systems. Furthermore, we take
advantage of our unified model to transfer knowledge across the two tasks using multi-task learning with
parameter sharing. Our models obtain new state-of-the-art results for SRL.
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Language Test set
Ours (Lei et al., 2015) CoNLL 1st CoNLL 2nd

Chinese 75.46 69.16 68.52 68.71
Catalan 79.24 74.67 76.78 74.02
German 77.41 76.94 74.65 76.27
Spanish 79.17 75.58 77.33 74.01

Table 4: SRL labeled F1-score excluding predicate senses on Chinese, Catalan, German and Spanish.
All results are evaluated excluding predicate senses.

Model Features F1

SVM (Rink and Harabagiu, 2010)
(Best in SemEval 2010)

POS, prefixes, morphological, WordNet, Levin classes,
PropBank, FrameNet, dependency parse, NomLex-Plus,
Google n-gram, paraphrases, TextRunner

82.2

MVRNN (Socher et al., 2012) syntactic parse 79.1
MVRNN (Socher et al., 2012) syntactic parse, POS, NER, WordNet 82.4
CNN (Zeng et al., 2014) position, WordNet 82.7
FCM (Yu et al., 2014) dependency path, NER 83.0
DepNN (Liu et al., 2015) dependency parse, NER 83.6
CR-CNN (dos Santos et al., 2015) position 84.1
depLCNN (Xu et al., 2015a) WordNet, words around nominals 83.7
Ours dependency path, POS, NER, WordNet 83.9
Model + Ensemble/Additional data
ER-CNN+R-RNN (Vu et al., 2016) position 84.9
depLCNN+NS (Xu et al., 2015a) WordNet, words around nominals 85.6

Table 5: Comparison with previously published results for SemEval 2010 Task 8.
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