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Abstract

We present Method51, a social media analysis software platform with a set of accompanying
methodologies. We discuss a series of case studies illustrating the platform’s application, and
motivating our methodological proposals.

1 Introduction

Social scientists wish to apply language processing technology on social media datasets to answer soci-
ological questions. To that end, the technology should support methodologies that allow analysts to gain
valuable insight from the datasets under examination. In previous work we have argued for the impor-
tance of agility when dealing with social media datasets (Wibberley et al., 2013). In this paper we present
a series of case studies, carried out on Twitter, that illustrate the importance of that agile paradigm, and
how they have motivated the development of several additional methodologies, including ‘Twitcident’,
‘Patterns of Use’, and ‘Russian Doll’ analysis. First, we present Method511, the technological counter-
part to our methodological paradigm.

2 Method51

Method51 uses active learning, coupled with a Naı̈ve Bayes model, to allow social scientists to construct
chains of linked, bespoke classifiers. The framework, initially an extension of DUALIST (Settles, 2011),
utilises an EM step to harness information from large amounts of unlabelled data, and allows the analyst
to expedite learning by specifying features that are highly indicative of a class. Using this approach,
a classifier can be trained within minutes (Settles, 2011). This enables analysts to evolve the way that
the data is being analysed without significant loss of effort. Method51 provides significant additional
functionality including collaborative gold standard and classifier construction, processing pipeline con-
struction, data collection and storage, data visualisation, various filtering and processing modules, and
time-based data selection. Figure 1a show the pipeline construction interface, which allows analysts to
knit together chains of bespoke classifiers.

Figure 1b shows the ‘Coding’ interface which is the primary point of contact between the analyst and
the data, where documents and features are labelled. Classifier evaluation statistics are also displayed, so
analysts can rapidly assess whether the data and technology are amenable to their analytical approach.
Method51 aims to put social science researchers at the centre of the data exploration process. Insight is
generated through the iterative interaction of the subject matter expert and the data itself.

Method51 combines two strands of existing work. The first body of work employs tailored automatic
data analysis, using supervised machine-learning approaches (Carvalho et al., 2011; Papacharissi and de
Fatima Oliveira, 2012; Meraz and Papacharissi, 2013; Hopkins and King, 2010; Burnap et al., 2013b).
A second body of work focusses on providing user interfaces that enable researchers to customise their
processing pipeline, based on the requirements of their investigation (Blessing et al., 2013; Black et al.,
2012; Burnap et al., 2013a).

1Method51 has been released under an open source license, and is available at https://github.com/simonwibberley/method51
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/
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(a) Pipeline Construction Interface

(b) Coding interface

3 Case Studies

Over the past 18 months we have conducted a wide range of studies using Method51. Three illustrative
case studies are presented here in chronological order; each investigation highlighted new analytical
challenges and therefore motivated methodological and technological development.

3.1 EU Sentiment

In the first study, we examined the attitudes of EU citizens towards the Eurozone crisis of 2013 (Bartlett et
al., textitforthcoming). We set out with a preconceived structure and methodology. We tracked 6 topics,
referencing EU institutions or prominent people, and collected Tweets in 3 languages (English, French,
and German) to create 18 distinct streams of messages. For each stream, we constructed a bespoke
classification pipeline with a common analytical architecture of three successive layers: a classifier for
relevancy, a classifier to determine whether Tweets were attitudinal, and a classifier to determine the
polarity of the sentiment being expressed.

We found that, broadly, the data did not fit the pre-conceived analytical architecture neatly and that
classifier performance was a poor fit with human judgements, particularly for the attitudinal and senti-
ment layers. Table 1 illustrates the range of performance of classifiers measured against human-annotated
gold standard. Although relevancy classifiers performed adequately, the reliability of attitudinal and sen-
timent classifiers varies widely across streams.

Investigation revealed a number of underlying issues and prompted a series of methodological re-
sponses:

Need for flexible architecture We observed that each stream presented different challenges that could
only be appropriately addressed by a bespoke architecture tailored to the anatomy of the stream. For
example, relevancy classification was only sometimes required. The ‘Euro’ stream was targeted towards
conversation about the Euro currency, but required relevancy filtering as the query ‘#euro’ matched con-
versations regarding a wide variety of other topics such as sport competitions. Conversely, the ‘Barroso’
stream, tracking messages regarding the president of the European Commission, José Manuel Barroso,
was of sufficiently high precision not to warrant relevancy filtering.

‘Twitcident’ analysis We observed that attitudes were typically only exposed when some event in the
world “provoked” a burst of reactions that was related to the topic of interest. These response bursts,
which usually occur over a matter of hours to days, have been labelled ‘Twitcidents’. We found that the
nature of the response — and how this should be mapped onto the broader topic — was unique to the
event itself. The ‘Twitcident’ analysis principle states that each event needs to be studied separately in
order to be correctly interpreted. Using a common classification architecture, or otherwise aggregating

116



results across Twitcidents, is likely to create a misleading picture of how opinions are being shaped by
events over time. As an example, a speech by the UK Prime Minister expressing a sceptical view of
the EU prompted many enthusiastic responses. Messages that commented positively on his speech were
contributing evidence of negative sentiment towards the EU. Clearly the reaction to that speech had to be
analysed separately in order to allow for this reversal of sentiment polarity.

Exploratory ‘Patterns of Use’ analysis The poor fit between the data and the imposed classification
architecture prompted us to adopt a new approach to constructing pipelines. The framework enables
analysts to ‘fail fast’: engage actively with the data and explore how it is structured, before committing
to the pipeline framework. This is feasible because Method51 enables classifiers to be built quickly.

This ‘Patterns of Use’ analysis is inspired by Grounded Theory (Glaser et al., 1968), and mandates
that classification categories should arise from an unbiased examination of the available data. Categories
arise naturally from the analyst’s engagement with the data.

3.2 Father’s Day

Our initial ideas about ‘Patterns of Use’ analysis were explored further in the Father’s Day study. Our
aim here was to identify users likely to respond positively to a targeted advertisement for Father’s Day
gift ideas, that assessment being driven by the content of a Tweet sent by the user. We collected and
analysed Tweets mentioning Father’s Day in the days leading up to the event, and our first attempts at
analysing underlying patterns prompted a revision to our methodology.

‘Russian Doll’ approach We observed that at any stage the data tends to be dominated by one pattern of
usage, obscuring other underlying patterns. We developed a ‘Russian Doll’ approach, which mandates
that at each layer a classifier is built to unpack from the data Tweets that match this most prominent
pattern of usage. With this usage pattern stripped out, new structure is typically revealed in the remaining
data, which can in turn be unpacked using simple bespoke classifiers. Chained together, this pipeline of
classifiers removes successive different patterns of usage to expose underlying structure.

In this case, our a-priori expectation was that the stream would contain marketing Tweets, general
conversation about Father’s Day, and our target subset: people expressing uncertainty about what gift to
get. Our analysis revealed, however, a significant critical class of Tweets (and Tweeters) the presence of
which was unexpected — a category for which targeted marketing Tweets would be wholly inappropriate.
The content of the Tweets matching this category (dubbed ‘Sad/Distressed’) was negative, with Tweeters
venting sad or angry feelings towards absent fathers, generally though family breakdown or bereavement.
It was only through this careful patterns of use analysis that we identified this critical subgroup.

The final architecture consisted of two layers that dealt with existing marketing Tweets, a layer that
assessed the suitability of the Tweet as a potential target for a marketing campaign, and a final layer
that identified explicit requests for gift ideas. This pipeline showed good performance as measured by
F-scores against gold-standard annotated data (see Table 2). The unexpected ‘Sad/Distressed’ category
constituted a high proportion (10%) of all Tweets in the data set. Of the remaining tweets, 50% were
classified ‘Marketing’, 36% were classified ‘Miscellaneous’ comments about Father’s Day, and 4% as
‘Gift Idea Request’, our target group.

3.3 Mark Duggan

Our final case study illustrates an analysis conducted using the ‘Twitcident’ and ‘Patterns of Use’ tech-
niques. The aim was to dissect the online reaction to developments in the Mark Duggan inquest, an
enquiry into the shooting by police in London of a young black man. Over the course of about a month,
Tweets regarding Mark Duggan were collected with a view to analysing reactions as the case progressed.
The response showed the familiar ‘Twitcident’ pattern (see Figure 2). Twitcidents were examined indi-
vidually, culminating in an analysis of the large response on Twitter to the final verdict. Four specific
categories of response were identified and analysed. These were: (i) ‘No Justice’ — where a Tweet
included accusations of institutional racism and/or claims that Duggan was unarmed; (ii) ‘Justice’ —
that Duggan “had it coming”, and/or that Duggan was armed; (iii) ‘Riot’ — warning of possible rioting,
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Range Split
Relevance 0.5 - 0.9 2-way
Attitudinal 0.3 - 0.9 2-way
Sentiment 0.1 - 0.8 3-way

Table 1: Range of F1-scores of EU Sentiment
Individual Marketing

F1 0.873 0.844
(a) Marketing level 1

Suitable Sad Marketing
F1 0.785 0.564 0.227

(c) Suitability

Individual Marketing
F1 0.834 0.490

(b) Marketing level 2

Request Other
F1 0.583 0.959

(d) Gift request

Table 2: F-scores of Russion Dolls Analysis
Justice No Justice Riot Watching

F1 0.636 0.842 0.737 0.451
Split 58% 17% 7% 18%

Table 3: Verdict classifier performance

making calls for calm; and (iv) ‘Watching’ — people neutrally expressing interest in a case. Pipeline
performance was good as measured by F-scores against gold-standard (see Table 3)

This case further illustrates how patterns of response are specific to a particular situation, greatly
limiting the usefulness of pre-defined classifiers (e.g. for sentiment) in real-world investigations.

Figure 2: Mark Duggan ‘Twitcidents’

4 Discussion

We will end with a discussion of how we have interpreted the developments in methodology described
above, and how that interpretation leads to an intuitive framework for further work.

We have presented the application of three distinct methodologies for mining insight from social me-
dia data. The insights gained from each case study are the result of three interdependent factors; (i) the
question that is being posed, (ii) the extend to which the answers to the question reside in the data, and
(iii) the extent to which the technology is capable of addressing the question given the data. We encapsu-
late this line of interpretation as ‘Question, Data, and Technology’. By considering these factors analysts
can remain plastic about how the ‘Data’ and ‘Technology’ can mutually constrain and inform the ‘Ques-
tion’. For example, if answers to the question are not represented in the data in a form the technology
can recognise, then the question should be revised. Conversely, the technology may reveal unexpected
characteristics in the data that contribute towards the analysts understanding of what the question should
be. Careful alignment between all three tend to result in valuable insights being discovered.

Crucial to this alignment is assessing the performance of the technology on the data, given the question
being posed. Method51 provides some functionality towards supporting this, such as accuracy and F-
scores. However, these measures indirectly indicate whether the classifier is behaving sensibly by virtue
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of the gold standard evaluation data being an i.i.d sample of the unlabelled data.
The behaviour of classifiers on unlabelled data forms a crucial role in how the technology supports the

analyst in their investigation. Directly exposing that behaviour and developing an informed understand-
ing of the relationship between ‘Question, Data, and Technology’ would only expedite and contribute
towards reliable insights being discovered. Incorporating technology into Method51 that exposes how
unlabelled data are effected by analytical processes is an area for further work.

In general, we have found that considering the interaction between ‘Question, Data, and Technology’
provides an intuitive framework for refining the focus of methodological and technological development
towards demonstrably useful innovations.
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