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Abstract
There is a growing interest in automatically predicting the gender and age of authors from texts.
However, most research so far ignores that language use is related to the social identity of speak-
ers, which may be different from their biological identity. In this paper, we combine insights
from sociolinguistics with data collected through an online game, to underline the importance
of approaching age and gender as social variables rather than static biological variables. In our
game, thousands of players guessed the gender and age of Twitter users based on tweets alone.
We show that more than 10% of the Twitter users do not employ language that the crowd as-
sociates with their biological sex. It is also shown that older Twitter users are often perceived
to be younger. Our findings highlight the limitations of current approaches to gender and age
prediction from texts.

1 Introduction

A major thrust of research in sociolinguistics aims to uncover the relationship between social variables
such as age and gender, and language use (Holmes and Meyerhoff, 2003; Eckert and McConnell-Ginet,
2013; Eckert, 1997; Wagner, 2012). In line with scholars from a variety of disciplines, including the so-
cial sciences and philosophy, sociolinguists consider age and gender as social and fluid variables (Eckert,
2012). Gender and age are shaped depending on the societal context, the culture of the speakers involved
in a conversation, the individual experiences and the multitude of social roles: a female teenager might
also be a high school student, a piano player, a swimmer, etc. (Eckert, 2008).

Speakers use language as a resource to construct their identity (Bucholtz and Hall, 2005). For example,
a person’s gender identity is constructed through language by using linguistic features associated with
male or female speech. These features gain social meaning in a cultural and societal context. On Twitter,
users construct their identity through interacting with other users (Marwick and boyd, 2011). Depending
on the context, they may emphasize specific aspects of their identity, which leads to linguistic variation
both within and between speakers. We illustrate this with the following three tweets:

Tweet 1: I’m walking on sunshine <3 #and don’t you feel good
Tweet 2: lalaloveya <3
Tweet 3: @USER loveyou ;D

In these tweets, we find linguistic markers usually associated with females (e.g. a heart represented
as <3). Indeed, 77% of the 181 players guessed that a female wrote these tweets in our online game.
However, this is a 16-year old biological male, whose Twitter account reveals that he mostly engages
with female friends. Therefore, he may have accommodated his style to them (Danescu-Niculescu-Mizil
et al., 2011) and as a result he employs linguistic markers associated with the opposite biological sex.
This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
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Most of the NLP research focusing on predicting gender and age has approached these variables as bi-
ological and static, rather than social and fluid. For example, current approaches use supervised machine
learning models trained on tweets from males and females. However, the resulting stereotypical models
are ineffective for Twitter users who tweet differently from what is to be expected from their biological
sex.

As explained above, language use is based on social gender and age identity, and not on biological sex
and chronological age. In other words, treating gender and age as fixed biological variables in analyzing
language use is too simplistic. By comparing the biological sex and chronological age of Twitter users
with how they are perceived by the crowd (as an indication of socially constructed identities), we shed
light on the difficulty of predicting gender and age from language use and draw attention to the inherent
limitations of current approaches.

As has been demonstrated in several studies, the crowd can be used for experimentation (e.g., Munro
et al. (2010)). Our study illustrates the value of the crowd for the study of human behavior, in particular
for the experimental study of the social dimension of language use. To collect data, we created an online
game (an example of gamification (Deterding et al., 2011)) in which thousands of players (the crowd)
guessed the biological sex and age of Twitter users based on only the users’ tweets. While variance
between annotators has traditionally been treated as noise, more recently variation is being treated as a
signal rather than noise (Aroyo and Welty, 2013). For example, Makatchev and Simmons (2011) analyze
how English utterances are perceived differently across language communities.

This paper follows this trend, treating variation as meaningful information. We assume that the crowd’s
perception (based on the distribution of the players’ guesses) is an indication of to what extent Twitter
users emphasize their gender and age identity in their tweets. For example, when a large proportion of
the players guess the same gender for a particular user, the user is assumed to employ linguistic markers
that the crowd associates with gender-specific speech (e.g. iconic hearts used by females).

Our contributions are as follows:

• We demonstrate the use of gamification to study sociolinguistic research problems (Section 3).

• We study the difficulty of predicting an author’s gender (Section 4) and age (Section 5) from text
alone by analyzing prediction performance by the crowd. We relate our results to sociolinguistic
theories and show that approaching gender and age as fixed biological variables is too simplistic.

• Based on our findings, we reflect on current approaches to predicting age and gender from text, and
draw attention to the limitations of these approaches (Section 6).

2 Related Work

Gender Within sociolinguistics, studies on gender and language have a long history (Eckert and
McConnell-Ginet, 2013). More recently, the NLP community has become increasingly interested in
this topic. Most of the work aims at predicting the gender of authors based on their text, thereby focusing
more on prediction performance than sociolinguistic insights.

A variety of datasets have been used, including Twitter (Rao et al., 2010; Bamman et al., 2014; Fink et
al., 2012; Bergsma and Van Durme, 2013; Burger et al., 2011), blogs (Mukherjee and Liu, 2010; Schler et
al., 2005), telephone conversations (Garera and Yarowsky, 2009), YouTube (Filippova, 2012) and chats
in social networks (Peersman et al., 2011). Females tend to use more pronouns, emoticons, emotion
words, and blog words (lol, omg, etc.), while males tend to use more numbers, technology words, and
links (Rao et al., 2010; Bamman et al., 2014; Nguyen et al., 2013). These differences have also been
exploited to improve sentiment classification (Volkova et al., 2013) and cyberbullying detection (Dadvar
et al., 2012).

To the best of our knowledge, the study by Bamman et al. (2014) is the only computational study that
approaches gender as a social variable. By clustering Twitter users based on their tweets, they show that
multiple gendered styles exist. Unlike their study, we use the crowd and focus on implications for gender
and age prediction.
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Figure 1: Screenshot of the game. Text is translated into English (originally in Dutch). Left shows the
interface when the user needs to make a guess. Right shows the feedback interface.

Age Eckert (1997) makes a distinction between chronological (number of years since birth), biological
(physical maturity), and social age (based on life events). Most of the studies on language and age
focus on chronological age. However, speakers with the same chronological age can have very different
positions in society, resulting in variation in language use. Computational studies on language use and
age usually focus on automatic (chronological) age prediction. This has typically been modeled as
a classification problem, although this approach often suffers from ad hoc and dataset dependent age
boundaries (Rosenthal and McKeown, 2011). In contrast, recent works also explored predicting age as a
continuous variable and predicting lifestages (Nguyen et al., 2013; Nguyen et al., 2011) .

Similar to studies on gender prediction, a variety of resources have been used for age prediction, in-
cluding Twitter (Rao et al., 2010; Nguyen et al., 2013), blogs (Rosenthal and McKeown, 2011; Goswami
et al., 2009), chats in social networks (Peersman et al., 2011) and telephone conversations (Garera and
Yarowsky, 2009). Younger people use more alphabetical lengthening, more capitalization of words,
shorter words and sentences, more self-references, more slang words, and more Internet acronyms
(Rosenthal and McKeown, 2011; Nguyen et al., 2013; Rao et al., 2010; Goswami et al., 2009; Pen-
nebaker and Stone, 2003; Barbieri, 2008).

3 Data

To study how people perceive the gender and age identity of Twitter users based on their tweets, we
created an online game. Players were asked to guess the gender and age of Twitter users from tweets.
The game was part of a website (TweetGenie, www.tweetgenie.nl) that also hosted an automatic system
that predicts the gender and age of Twitter users based on their tweets (Nguyen et al., 2014). To attract
players, a link to the game was displayed on the page with the results of the automatic prediction, and
visitors were challenged to test if they were better than the automatic system (TweetGenie).

3.1 Twitter Data

We sampled Dutch Twitter users in the fall of 2012. We employed external annotators to annotate the
biological sex and chronological age (in years) using all information available through tweets, the Twitter
profile and external social media profiles such as Facebook and Linkedin. In total over 3000 Twitter users
were annotated. For more details regarding the collection of the dataset we refer to Nguyen et al. (2013).

We divided the data into train and test sets. 200 Twitter users were randomly selected from the test
set to be included in the online game (statistics are shown in Table 1). Named entities were manually
anonymized to conceal the user’s identity. Names in tweets were replaced by ‘similar’ names (e.g. a
first name common in a certain region in the Netherlands was replaced with another common name in
that region). This was done without knowing the actual gender and age of the Twitter users. Links were
replaced with a general [LINK] token and user mentions with @USER.
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Gender and age F, <20 M, <20 F, [20-40) M, [20-40) F, ≥40 M, ≥40

Frequency 61 60 24 23 17 15

Table 1: Statistics Twitter users in our game

3.2 Online Game
Game Setup The interface of the game is shown in Figure 1. Players guessed the biological sex (male
or female) and age (years) of a Twitter user based on only the tweets. For each user, {20, 25, 30, 35,
40} tweets were randomly selected. For a particular Twitter user, the same tweets were displayed to all
players. Twitter users were randomly selected to be displayed to the players.

To include an entertainment element, players received feedback after each guess. They were shown
the correct age and gender, the age and gender guessed by the computer, and the average guessed age
and gender distribution by the other players. In addition, a score was shown of the player versus the
computer.

Collection In May 2013, the game was launched. Media attention resulted in a large number of visitors
(Nguyen et al., 2014). We use the data collected from May 13, 2013 to August 21, 2013, resulting in
a total of 46,903 manual guesses. Players tweeted positively about the game, such as ‘@USER Do you
know what is really addictive? ”Are you better than Tweetgenie” ...’ and ‘@USER Their game is quite
fun!’ (tweets translated to English).

We filter sessions that do not seem to contain genuine guesses: when the entered age is 80 years
or above, or 8 or below. These thresholds were based on manual inspection, and chosen because it is
unlikely that the shown tweets are from users of such ages. For each guess, we registered a session ID
and an IP address. A new session started after 2 hours of inactivity. To study player performance more
robustly, we excluded multiple sessions of the same player. After three or more guesses had been made
in a session, all next sessions from the same IP address were discarded.

Statistics Statistics of the data are shown in Table 2. Figure 2 shows the distribution of the number of
guesses per session. The longest sessions consisted of 18 guesses. Some of our analyses require multiple
guesses per player. In that case, we only include players having made at least 7 guesses.
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Figure 2: Number of guesses per session

# guesses 41,989
# sessions 15,724

Avg. time (sec) per guess 46
Avg. # guesses / session 2.67

Table 2: Statistics online game (after
cleaning)

We calculate the time taken for a guess by taking the time difference between two guesses (therefore,
no time for the first guess in each session could be measured). For each Twitter user, we calculate the
average time that was taken to guess the gender and age of the user. (Figure 3a). There is a significant
correlation (Pearson’s r = 0.291, p < 0.001) between the average time the players took to evaluate the
tweets of a Twitter user and the number of displayed tweets.

There is also a significant correlation between the average time taken for a user and the entropy over
gender guesses (Pearson’s r = 0.410, p < 0.001), and the average time taken for a user and the standard
deviation of the age guesses (Pearson’s r = 0.408, p < 0.001). Thus, on average, players spent more time
on Twitter users for whom it was more difficult to estimate gender and age.
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Figure 3: Time taken in game

We observe that as the game progresses, players tend to take less time to make a guess. This is shown
in Figure 3b, which shows the average time taken for a turn (restricted to players with at least 7 guesses).
There was no significant correlation between time spent on a guess and the performance of players and
we did not find trends of performance increase or decrease as players progressed in the game.

3.3 Automatic Prediction
Besides studying human performance, we also compare the predictions of humans with those of an
automatic system. We split the data into train and test sets using the same splits as used by Nguyen et al.
(2013). We train a logistic regression model to predict gender (male or female), and a linear regression
model to predict the age (in years) of a person.

More specifically, given an input vector x ∈ Rm, x1, . . . , xm represent features. In the case of gender
classification (e.g. y ∈ {−1, 1}), the model estimates a conditional distribution P (y|x, β) = 1/(1 +
exp(−y(β0 + x>β))), where β0 and β are the parameters to estimate. Age is treated as a regression
problem, and we find a prediction ŷ ∈ R for the exact age of a person y ∈ R using a linear regression
model: ŷ = β0 + x>β. We use Ridge (also called L2) regularization to prevent overfitting.

We make use of the liblinear (Fan et al., 2008) and scikit-learn (Pedregosa et al., 2011) libraries.
We only use unigram features, since they have proven to be very effective for gender (Bamman et al.,
2014; Peersman et al., 2011) and age (Nguyen et al., 2013) prediction. Parameters were tuned using
cross-validation on the training set.

4 Gender

Most of the computational work on language and gender focuses on gender classification, treating gender
as fixed and classifying speakers into females and males. However, this assumes that gender is fixed and
is something people have, instead of something people do (Butler, 1990).

In this section, we first analyze the task difficulty by studying crowd performance on inferring gender
from tweets. We observe a relatively large group of Twitter users who employ language that the crowd
associates with the opposite biological sex. This, then, raises questions about the upper bound that a
prediction system based on only text can achieve.

Next, we place Twitter users on a gender continuum based on the guesses of the players and show that
treating gender as a binary variable is too simplistic. While historically gender has been treated as binary,
researchers in fields such as sociology (Lorber, 1996) and sociolinguistics (Holmes and Meyerhoff, 2003;
Bergvall et al., 1996) find this view too limited. Instead, we assume the simplest extension beyond a
binary variable: a one-dimensional gender continuum (or scale) (Bergvall et al., 1996). For example,
Bergvall (1999) talks about a ‘continuum of humans’ gendered practices’. While these previous studies
were based on qualitative analyses, we take a quantitative approach using the crowd.
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4.1 Task Difficulty

Majority vote We study crowd performance using a system based on the majority of the players’
guesses. Majority voting has proven to be a strong baseline to aggregate votes (e.g. in crowdsourcing
systems (Snow et al., 2008; Le et al., 2010)). On average, we have 210 guesses per Twitter user, providing
substantial evidence per Twitter user. A system based on majority votes achieves an accuracy of 84%
(Table 3a shows a confusion matrix). Table 3b shows a confusion matrix of the majority predictions
versus the automatic system. We find that the biological sex was predicted incorrectly by both the
majority vote system and the automatic system for 21 out of the 200 Twitter users (10.5%, not in Table).

Automatic classification systems on English tweets achieve similar performances as our majority vote
system (e.g. Bergsma and Van Durme (2013) report an accuracy of 87%, Bamman et al. (2014) 88%).
More significantly, the results suggest that 10.5% (automatic + majority) to 16% (majority) of the Dutch
Twitter users do not employ language that the crowd associates with their biological sex. As said, this
raises the question of whether we can expect much higher performances by computational systems based
on only language use.

Biological sex
Male Female

Crowd
Male 82 16
Female 16 86

(a) Crowd (majority)

Crowd
Male Female

Automatic
Male 68 22
Female 30 80

(b) Automatic vs crowd

Table 3: Confusion matrices crowd prediction

Individual players versus an automatic system When considering players with 7 or more guesses,
the average accuracy for a player is 0.71. Our automatic system achieves an accuracy of 0.69. The small
number of tweets per Twitter user in our data (20-40) makes it more difficult to automatically predict
gender.

Entropy We characterize the difficulty of inferring a user’s gender by calculating the entropy for each
Twitter user based on the gender guesses (Figure 4a). We find that the difficulty varies widely across
users, and that there are no distinct groups of ‘easy’ and ‘difficult’ users. However, we do observe an
interaction effect between the entropy of the gender guesses and the ages of the Twitter users. At an
aggregate level, we find no significant trend. Analyzing females and males separately, we observe a
significant trend with females (Pearson’s r = 0.270, p < 0.01), suggesting that older female Twitter users
tend to emphasize other aspects than their gender in tweets (as perceived by the crowd).
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there are 25 female users for which 10 - 20% of the players
guessed they were male.

Figure 4: Gender prediction
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4.2 Binarizing Gender, a Good Approach?
Using data collected through the online game we quantitatively put speakers on a gender continuum
based on how their tweets are perceived by the crowd. For each Twitter user, we calculate the proportion
of players who guessed the users were male and female. A plot is displayed in Figure 4b. We can make
the following observations:

First, the guesses by the players are based on their expectations about what kind of behaviour and
language is used by males and females. The plot shows that for some users, almost all players guessed
the same gender, indicating that these expectations are quite strong and that there are stylistic markers
and topics that the crowd strongly associates with males or females.

Second, if treating gender as a binary variable is reasonable, we would expect to see two distinct
groups. However, we observe quite an overlap between the biological males and females. There are 1)
users who conform to what is expected based on their biological sex, 2) users who deviate from what is
expected, 3) users whose tweets do not emphasize a gender identity or whose tweets have large variation
using language associated with both genders. We investigated whether this is related to their use of
Twitter (professional, personal, or both), but the number of Twitter users in our dataset who used Twitter
professionally was small and not sufficient to draw conclusions.

We now illustrate our findings using examples. The first example is a 15-year old biological female
for who the crowd guessed most strongly that she is female (96% of n=220). Three tweets from her are
shown below. She uses language typically associated with females, talking about spending time with
her girlfriends and the use of stylistic markers such as hearts and alphabetical lengthening. Thus, she
conforms strongly to what the crowd expects from her biological sex.

Tweet 4: Gezellig bij Emily en Charlotte.
Translation: Having fun with Emily and Charlotte.

Tweet 5: Hiiiiii schatjesss!
Translation: Hiiiiii cutiesss!

Tweet 6: ♥ @USER

Below are two tweets from a 40 year old biological female who does not employ linguistic markers
strongly associated with males or females. Therefore, only 46% of the crowd (n=200) was able to guess
that she is female.

Tweet 7: Ik viel op mijn bek. En het kabinet ook. Geinig toch? #Catshuis
Translation: I went flat on my face. And the cabinet as well. Funny right? #Catshuis

Tweet 8: Jeemig. Ik kan het bijna niet volgen allemaal.
Translation: Jeez. I almost can’t follow it all.

Twitter users vary in how much they emphasize their gender in their tweets. As a result, the difficulty
of inferring gender from tweets varies across persons, and treating gender as a binary variable ignores
much of the interesting variation within and between persons.

Automatic system We now analyze whether an automatic system is capable of capturing the position
of Twitter users on the gender continuum (as perceived by the crowd). We calculate the correlation
between the proportion of male guesses (i.e. the position on the gender continuum) and the scores of
the logistic regression classifier: β0 + x>β. While the training data was binary (users were labeled as
male or female), a reasonable Spearman correlation of ρ = 0.584 (p < 0.001) was obtained between the
classifier score and the score based on the crowd’s perception. We did not observe a significant relation
between the score of the classifier (corresponding to the confidence of the gender prediction) and age.
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5 Age

We start with an analysis of task difficulty, by studying crowd performance on inferring age from tweets.
Next, we show that it is particularly hard to accurately infer the chronological age of older Twitter users
from tweets.

5.1 Task Difficulty
The crowd’s average guesses As with a system based on majority vote for gender prediction, we test
the performance of a system that predicts the ages of Twitter users based on the average of all guesses.
We find that such a system achieves a Mean Absolute Error (MAE) of 4.844 years and a Pearson’s
correlation of 0.866. Although the correlation is high, the absolute errors are quite large. We find that the
crowd has difficulty predicting the ages of older Twitter users. There is a positive correlation (Pearson’s
ρ = 0.789) between the absolute errors and the actual age of Twitter users. There is a negative correlation
between the errors (predicted - actual age) and the actual age of Twitter users (Pearson’s ρ = -0.872).

We calculate the standard deviation over all the age guesses for a user (Figure 5a) to measure the
difficulty of inferring a user’s age. There is a positive correlation between age and standard deviation of
the guesses (ρ = 0.691), which indicates that players have more difficulty in guessing the ages of older
Twitter users.

Individual players versus an Automatic System To estimate the performance of individual players,
we restrict our attention to players with at least 7 guesses. We find that individual players are, on average,
5.754 years off. A linear regression system achieves a MAE of 6.149 years and a Pearson correlation of
0.812. The small number of tweets in our data (20-40) increases the difficulty of the task for automatic
systems.
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Figure 5: Age prediction

5.2 Inferring the Age of Older Twitter Users
Figure 5b shows the average player predictions with the actual age of the Twitter users. The red line is
the ‘perfect’ line, i.e. the line when the predictions would match the exact age. Black represents a fitted
LOESS curve (Cleveland et al., 1992) based on the human predictions. We find that the players tend
to overpredict the age of younger Twitter users, but even more strikingly, on average they consistently
underpredict the age of older Twitter users. The prediction errors already start at the end of the 20s, and
the gap between actual and predicted age increases with age.

This could be explained by sociolinguistic studies that have found that people between 30 and 55 years
use standard forms the most, because they experience the maximum societal pressure in the workplace to
conform (Holmes, 2013). On Twitter, this has been observed as well: Nguyen et al. (2013) found fewer
linguistic differences between older age groups than between younger age groups. This makes it difficult
for the crowd to accurately estimate the ages of older Twitter users. Younger people and retired people
use more non-standard forms (Holmes, 2013). Unfortunately, our dataset does not contain enough retired
users to analyze whether this trend is also present on Twitter.
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6 Discussion

We now discuss the implications of our findings for research on automatically predicting the gender and
age of authors from their texts.

Age and gender as social variables Most computational research has treated gender and age as fixed,
biological variables. The dominant approach is to use supervised machine learning methods to generalize
across a large number of examples (e.g. texts written by females and males). While the learned models
so far are effective at predicting age and gender of most people, they learn stereotypical behaviour and
therefore provide a simplistic view.

First, by using the crowd we have shown that Twitter users emphasize their gender and age in varying
degrees and in different ways, so that for example, treating gender as a binary variable is too simplistic
(Butler, 1990; Eckert and McConnell-Ginet, 2013). Many users do not employ the stereotypical language
associated with their biological sex, making models that take a static view of gender ineffective for such
users. More detailed error analyses of the prediction systems will increase understanding of the reasons
for incorrect predictions, and shed light on the relation between language use and social variables.

Second, models that assume static variables will not be able to model the interesting variation (Eisen-
stein, 2013). Models that build on recent developments in sociolinguistics will be more meaningful and
will also have the potential to contribute to new sociolinguistic insights. For example, modeling what
influences speakers to show more or less of their identity through language, or jointly modeling varia-
tion between and within speakers, are in our opinion interesting research directions. The ever increasing
amounts of social media data offer opportunities to explore these research directions.

Sampling We have shown that the difficulty of tasks such as gender and age prediction varies across
persons. Therefore, creating datasets for such tasks requires maximum attention. For example, when
a dataset is biased towards people who show a strong gender identity (e.g. by sampling followers of
accounts highly associated with males or females, such as sororities (Rao et al., 2010)), the results
obtained on such a set may not be representative of a more random set (as observed when classifying
political affiliation (Cohen and Ruths, 2013)).

Task difficulty Our study also raises the question of what level of performance can be obtained for
tasks such as predicting gender and age from only language use. Since we often form an impression
based on someone’s writing, crowd performance is a good indicator of the task difficulty. While the
crowd performance does not need to be the upper bound, it does indicate that it is difficult to predict
gender and age of a large number of Twitter users.

When taking the majority label, only 84% of the users were correctly classified according to their
biological sex. This suggests that about 16% of the Dutch Twitter users do not use language that the
crowd associates with their biological sex.

We also found that it is hard to accurately estimate the ages of older Twitter users, and we related
this to sociolinguistics studies who found less linguistic differences in older age groups due to societal
pressure in the workplace.

Limitations A limitation of our work is that we focused on language variation between persons, and not
on variation within persons. However, speakers vary their language depending on the context and their
conversation partners (e.g. accommodation effects were found in social media (Danescu-Niculescu-Mizil
et al., 2011)). For example, we assigned Twitter users an overall ‘score’ by placing them on a gender
continuum, ignoring the variation we find within users.

Crowdsourcing as a tool to understand NLP tasks Most research on crowdsourcing within the NLP
community has focused on how the crowd can be used to obtain fast and large amounts of annotations.
This study is an example of how the crowd can be used to obtain a deeper understanding of an NLP task.
We expect that other tasks where disagreement between annotators is meaningful (i.e. it is not only due
to noise), could potentially benefit from crowdsourcing experiments as well.
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7 Conclusion

In this paper, we demonstrated the successful use of the crowd to study the relation between language
use and social variables. In particular, we took a closer look at inferring gender and age from language
using data collected through an online game. We showed that treating gender and age as fixed variables
ignores the variety of ways people construct their identity through language.

Approaching age and gender as social variables will allow for richer analyses and more robust systems.
It has implications ranging from how datasets are created to how results are interpreted. We expect that
our findings also apply to other social variables, such as ethnicity and status. Instead of only focusing on
performance improvement, we encourage NLP researchers to also focus on what we can learn about the
relation between language use and social variables using computational methods.
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Dong Nguyen, Noah A Smith, and Carolyn P. Rosé. 2011. Author age prediction from text using linear regression.
In Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences,
and Humanities, pages 115–123.

Dong Nguyen, Rilana Gravel, Dolf Trieschnigg, and Theo Meder. 2013. “How old do you think I am?”: A study
of language and age in Twitter. In Proceedings of the Seventh International AAAI Conference on Weblogs and
Social Media, pages 439–448.

1960



Dong Nguyen, Dolf Trieschnigg, and Theo Meder. 2014. Tweetgenie: Development, evaluation, and lessons
learned. In Proceedings of COLING 2014.
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