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Abstract

Previous models in syntax-based statistical machine translation usually resort to some kinds
of synchronous procedures, few of these works are based on the analysis-transfer-generation
methodology. In this paper, we present a statistical implementation of the analysis-transfer-
generation methodology in rule-based translation. The procedures of syntax analysis, syntax
transfer and language generation are modeled independently in order to break the synchronous
constraint, resorting to dependency structures with dependency edges as atomic manipulating
units. Large-scale experiments on Chinese to English translation show that our model exhibits
state-of-the-art performance by significantly outperforming the phrase-based model. The statis-
tical transfer-generation method results in significantly better performance with much smaller
models.

1 Introduction

Researches in statistical machine translation have been flourishing in recent years. Statistical translation
methods can be divided into word-based (Brown et al., 1993), phrase-based (Marcu and Wong, 2002;
Koehn et al., 2003) and syntax-based models (Yamada and Knight, 2001; Graehl and Knight, 2004;
Chiang, 2005; Liu et al., 2006; Mi et al., 2008; Huang et al., 2006; Lin, 2004; Ding and Palmer, 2004;
Quirk et al., 2005; Shen et al., 2008; Xie et al., 2011; Meng et al., 2013). Compared with word-based and
phrase-based methods, syntax-based models perform better in long distance reordering and enjoy higher
generalization capability by leveraging the hierarchical structures in natural languages, and achieve the
state-of-the-art performance in these years.

Most syntax-based models (except for Lin (2004) ) utilize some kinds of synchronous generation
procedures which directly model the structural correspondence between two languages. In contrast,
the analysis-transfer-generation methodology in rule-based translation solves the machine translation
problem in a more divided scheme, where the processing procedures of analysis, structural transfer and
language generation are modeled separately. The analysis-transfer-generation strategy can tolerate higher
non-isomorphism between languages if with a more general transformation unit and it can facilitate
elaborating engineering of each processing procedure, however, there isn’t a statistical transfer model
that shows the comparable performance with the current state-of-the-art SMT model so far.

In this paper, we propose a novel statistical analysis-transfer-generation model for machine transla-
tion, to integrate the advantages of the transfer-generation scheme and the statistical modeling. The
procedures of transfer and generation are modeled on dependency structures with dependency edges
as atomic manipulating units. First, the source sentence is parsed by a dependency parser. Then, the
source dependency structure is transferred into a target structure by translation rules, which composed
of the source and target edges. Last, the target sentence is finally generated from the target edges which
are used as intermediate syntactic structures. By directly modeling the edge, the most basic unit in the
dependency tree, which definitely describe the modifying relationship and positional relation between
words, our model alleviates the non-isomorphic problem and shows the flexibility of reordering.
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Figure 1: (a)An example of labeled Chinese dependency tree aligned with the corresponding English
sentence. (b) Examples of the transfer rules extracted from the tree. “*” denotes a variable. All the inner
nodes are treated as variables. The label on the target side of a rule denotes whether the head and the
dependent are adjacent or not.

The rest of the paper is organized as follows, we first describe the dependency edge-based transfer
model (Section 2). Then, we present our rule acquisition algorithm (Section 3), the decoding and target
sentence generation process (Section 4). Finally, large-scale experiments (Section 5) on Chinese-to-
English translation show that our edge-based transfer model gains state-of-the-art performance by sig-
nificantly outperforming the phrase-based model (Koehn et al., 2003) by averaged +1.34 BLEU points on
three test sets. To the best of our knowledge, this is the first transfer-generation-based statistical machine
translation model that achieves the state-of-the-art performance.

2 Dependency Edge-based Transfer Model

2.1 Edges in Dependency Trees

Given a sentence, its dependency tree is a directed acyclic graph with words in the sentence as nodes.
An example dependency tree is shown in Figure 1 (a). An edge in the tree represents a dependency
relationship between a pair of words, a head and a dependent. When a nominal dependent acts as a
subject and modifies a verbal head, they usually have a fixed relative position. In Figure 1 (a), “àobāmă”
modifies “fābù”. The grammatical relation label nsubj (Chang et al., 2009) between them denotes that a
noun phrase acts as the subject of a clause. “àobāmă” is on the left of “fābù”.

Based on the above observations, we take the edge as the elementary structure of a dependency tree
and regard a dependency tree to be a set of edges.

Definition 1. An source side edge is a 4-tuple e = ⟨H, D,P, R⟩, where H is the head, D is the depen-
dent, P denotes the relative position between H and D, left or right, R is the grammatical relation label
.

In Figure 1 (b), the upper sides of transfer rules are source side edges extracted from the dependency
tree.
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Figure 2: An example partial generation of translation. The same set of rules generate two target hy-
potheses with the same words and different word order. Assume the sub-tree rooted at “shēngmı́ng” has
been translated to the corresponding target sentence fragment.

2.2 Transfer Rules

A transfer rule of our model represents the reordering and relative positions of edges between language
pairs. For example, in Figure 1 (b), the first rule shows that when a nominal subject modifies a verb, the
target side keeps the same position relations. “obama” is also on the left of “issue”, the same with the
source side relative position. The 5-th and 6-th rules show the inversion relations between the source and
the target. Formally, a transfer rule can be defined as a triple ⟨e, f,∼⟩, where e is an edge extracted from
the source dependency tree, f is a target edge. ∼ denotes one-to-one correspondence between variables
in e and f .

Figure 1 (b) are part of transfer rules extracted from the word aligned sentence in Figure 1 (a). The
target edge denotes whether the target dependent is on the left or the right side of the target head, the
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label on the edge indicates whether the target head and the target dependent are adjacent or not. If
the dependent is an internal node(contrast with the leaf nodes in the dependency tree), then it will be
regarded as a substitution node. The dependent in the 4-th transfer rule is an internal node and the its
corresponding target side is a substitution variable.

Figure 2 shows a partial transfer-generation of our model which involves three phases. First, analysis.
Given a source language sentence, we obtain its dependency tree using a dependency parser. We assume
that the sub-tree of the substitution node has been translated. Second, transfer. For each internal node,
we transfer the source side edges between the head and all its dependents into the target sides. In the
second block of Figure 2, we transfer four edges into the target sides. Third, generation, corresponding
to the third block of Figure 2. We generate the target sentence with the target side edges starting from the
target head, “issue”. We first try to concatenate the edges to the left. First, we select a target side edge
that is on the left side of “issue” and adjacent to it to form a consecutive phrase. Edge 3 is selected and “to
issue” is generated. Then, we enumerate all possible left concatenations of the other edges that are not
adjacent to “issue”. The two sequences(1,2,3 and 2,1,3) of the edges are generated, corresponding to the
two hypotheses. After that, we extend the two hypotheses to the right. The internal node “shēngmı́ng” is
a substitution node, so the candidate translation of the sub-tree rooted at “shēngmı́ng” is concatenated to
the two hypotheses. Finally, we generate the two candidate translations of the input sentence.

3 Acquisition of Transfer Rules

Transfer rules can be extracted automatically from a word-aligned corpus, which is a set of triples
⟨T, S,A⟩, where T is a source dependency tree, S is a target side sentence and A is an alignment relation
between T and S. Following the dependency-to-string model (Xie et al., 2011), we extract transfer rules
from each triple ⟨T, S, A⟩ by three steps:

1. Tree Annotation: Label each node in the dependency tree with the alignment information

2. Edges Identification: Identify acceptable edges from the annotated dependency tree

3. Rule induction: Induce a set of lexicalized and un-lexicalized transfer rules from the acceptable
edges.

3.1 Tree Annotation

Given a triple ⟨T, S, A⟩ as Figure 3 shows, we define two attributes for every node in T: node span and
sub-tree span:

Definition 2. Given a node n, its node span nsp(n) is a set of consecutive indexes of the target words
aligned with the node n.

For example, nsp(ānquán)={7-8}, which corresponds to the target word “of” and “security”.

Definition 3. A node span nsp(n) is consistent if for any other node n′ in the dependency tree, nsp(n)
and nsp(n′) are not overlapping.

For example, nsp(zhànluè) is consistent, while nsp(ānquán) is not consistent for it corresponds to the
same word “of” with nsp(shēngmı́ng).

Definition 4. Given a sub-tree T
′

rooted at n, the sub-tree span tsp(n) of n is a consecutive target word
indexes from the lower bound of the nsp of all the nodes in T

′
to the upper bound of those spans.

For example, tsp(shēngmı́ng)={5-9},which corresponds to the target phrase “a statement of security
strategy”.

Definition 5. A sub-tree span tsp(n) is consistent if for any other node n′ that is not in the sub-tree
rooted at n in the dependency tree, tsp(n) and nsp(n′) are not overlapping.

For example, tsp(shēngmı́ng) is consistent, even though nsp(shēngmı́ng) is not consistent, while
tsp(ānquán) is not consistent for “shēngmı́ng” is not a node in sub-tree rooted at “ānquán” and “ānquán”
corresponds to the same word “of ” with nsp(shēngmı́ng) .
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Figure 3: An example of annotated dependency tree. Each node is annotated with two spans, the former
is node span and the latter is sub-tree span. The gray edge is not acceptable. It is different from Figure
1, because “ānquán” aligned with two words in Figure 3. “of” in the target side is aligned with both
“ānquán” and “shēngmı́ng” which makes the gray edge un-acceptable.

3.2 Acceptable Edges Identification
We identify the edges from the annotated dependency tree that are acceptable for rule induction.
For an acceptable edge, its node span of the head nsp(head) and the sub-tree span of the dependent
tsp(dependent) satisfy the following properties:

1. nsp(head) and tsp(dependent) are consistent.

2. nsp(head) and tsp(dependent) are non-overlapping.

For example, tsp(ānquán) and nsp(shēngmı́ng) are neither consistent nor non-overlapping. So the
gray edge between head “shēngmı́ng” and dependent “ānquán” is not an acceptable edge. nsp(fābù)
and tsp(shēngmı́ng) are consistent and the two spans are non-overlapping. Thus, the edge between head
“fābù” and dependent “shēngmı́ng” is an acceptable edge.

3.3 Transfer Rule Induction
From each acceptable source side edge, we induce a set of lexicalized and un-lexicalized transfer rules.
We induce a lexicalized transfer rule from an acceptable edge by the following procedures:

1. extract the source side edge and mark the internal nodes as substitution sites. This form the input of
a transfer rule.

2. extract the position information according to nsp(head) and tsp(dependent), whether they are adja-
cent or not and whether tsp(dependent) is on the left side or the right side of nsp(head).

In Figure 4, the first transfer rule is lexicalized rule, it is induced from the edge between “fābù” and
“àobāmǎ”.

In addition to the lexicalized rules described above, we also generalized the rules by replacing the
word in an source side edge with a wild card and the part of speech of the word. For example, the rule
in Figure 4 can be generalized in two ways. The generalized versions of the rule apply to “àobāmǎ”
modifying any verb and “fābù” modifying any noun, respectively. The generalized rules are also called
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Figure 4: Generalization of transfer rule.

un-lexicalized rules for the loss of word information. The single node translations of the generalized
words are also extracted.

The unaligned words of the target side is handled by extending nsp(head) and tsp(dependent) on both
left and right directions. We do this process similar with the method of Och and Ney (2004). We might
obtain m(m ≥ 1) extended rules from an acceptable edge. The frequency of each rule is divided by m.
We take the extracted rule set as observed data and make use of relative frequency estimator to obtain
the translation probabilities P (t|s) and P (s|t).
4 Decoding and Generation

We follow Och and Ney (2002), using a general log-linear model to score the sentence generated by each
concatenation of the target edges. Let c be concatenations that concatenate the target edges to generate
the target sentence e. The probability of e is defined as：

P (c) ∝
∏
i

ϕi(c)λi (1)

where ϕi(c) are features defined on concatenations and λi are feature weights. In our experiments of
this paper, thirteen features are used as follows:

• Transfer rules translation probabilities P (t|s) and P (s|t), and lexical translation probabilities
Plex(t|s) and Plex(s|t);

• Bilingual phrases probabilities Pbp(t|s) and Pbp(s|t), and bilingual phrases lexical translation prob-
abilities Pbplex(t|s) and Pbplex(s|t);

• Transfer rule penalty exp(−1);

• Bilingual phrase penalty exp(−1);

• Pseudo translation rule penalty exp(−1);

• Target word penalty exp(|e|);
• Language model Plm(e).

Our decoder is based on a bottom-up chart-based beam-search algorithm. We regard the decoding
process as the composition of the target side edges. For a given source language sentence, we obtain its
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Figure 5: Two examples of the phrases incorporated in our model.

dependency tree T with an external dependency parser. Each node in T is traversed in post-order. For
each internal node and root node n, we do the transfer-generation translation as the following procedures:

1. Extract all the source side edges including the lexicalized and generalized edges between n and all
its dependents using the same way we extract the source side edges of the transfer rules.

2. Transfer the source side edges into target side edges. For a generalized rule, we restore it to a lex-
icalized rule by combining it with the single word translation. For no matched edges, we construct
the pseudo translation rule according to the word order of the source head-dependent relation.

3. Generate the target sentence by bi-directional extension from an adjacent target edge. We first
group all the target edges by their heads. For each group, we generate translation hypotheses with
the following procedures:

(a) Select an adjacent target edge as the starting position;
(b) Extend to the left side and enumerate all possible permutations of the target edges directing

left;
(c) Extend to the right side and enumerate all possible permutations of the target edges directing

right.

Considering that in dependency trees, a head may relate to more than 4 edges which results in
massive search space. We reduce the time complexity by using the maximum distortion limit. The
distortion is defined as (ai − bi−1 − 1), where ai denotes the start position of the source side edge
that is translated into the ith target side edge and bi−1 denotes the end position of the source side
edge translated into the (i − 1)th target side edge.

When we reach the root node, the candidate translations of the input sentence are generated.
In our model, only the adjacent target edge of a transfer rule can be regarded as a consecutive phrase

and its corresponding source side length is only 2. As we start extending the target sentence from
the target head, it is quite natural to incorporate the bilingual phrases to make the target sentences be
extended from the phrases as well as the single target head word. Due to the flexibility of our model,
we can incorporate not only the syntactic phrases which are phrases covering a whole sub-tree, but also
the non-syntactic phrases as the fixed dependency structures in Shen et al. (2008) which are consecutive
phrases covering the head. Figure 5 shows two examples of the phrases incorporated in our model.

We prune the search space in several ways. First, beam threshold β, items with a score worse than β
times of the best score in the same span will be discarded; second, beam size b, items with a score worse
than the bth best item will be discarded. For our experiments, we set β = 10−3 and b = 300; Third,
we also prune rules for the same edge with a fixed rule limit (r = 200), which denotes the maximum
number of rules we keep.

5 Experiments

In this section, the performance of our model is evaluated by comparing with phrase-based model (Koehn
et al., 2003), on the NIST Chinese-to-English translation tasks. We also present the influence of the
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Figure 6: Effect of different maximum distortion limits on development
set (mt02) and three tests(mt03,04,05). The performance of all the sets
are consistent.

maximum distortion limit to our model. We take open source phrase-based system Moses (with default
configuration)1 as our baseline system.

5.1 Experimental Setting

Our training corpus consists of 1.25M sentence pairs from LDC data, including LDC2002E18, LD-
C2003E07, LDC2003E14, Hansards portion of LDC2004T07, LDC2004T08 and LDC2005T06.

To obtain the dependency trees of the source side, we parse the source sentences with Stanford Parser
(Klein and Manning, 2003) into projective dependency structures with nodes annotated by POS tags and
edges by dependency labels.

To obtain the word alignments, we run GIZA++ (Och and Ney, 2003) on the corpus in both directions
and apply “grow-diag-and” refinement (Koehn et al., 2003). We extract the phrases covering no more
than 10 nodes of the fixed structures.

We use SRILM (Stolcke, 2002) to train a 4-gram language model with modified Kneser-Ney smooth-
ing on the Xinhua portion of the Gigaword corpus.

We use NIST MT Evaluation test set 2002 as our development set, 2003-2005 NIST datasets as testsets.
The quality of translations is evaluated by the case insensitive NIST BLEU-4 metric2.

We make use of the minimum error rate training algorithm (Och, 2003) in order to maximize the
BLEU score of the development set.

The statistical significance test is performed by sign-test (Collins et al., 2005).

5.2 Influence of Maximum Distortion Limit

Figure 6 gives the performance of our system with different maximum distortion limits in terms of
uncased BLEU of three NIST test sets. The performance of different distortion limit are consistent on
both development set and three test sets. Maximum distortion limit 2 gets the best performances. A low
distortion limit may cause the target sentence been translated more close to the sequence of the source,
especially when the distortion limit equals to 0, none of the reordering is allowed, while a high distortion
limit may lead the good translations be flooded by too many ambiguities when enumerating the possible
sequences of the target non-adjacent dependents. We choose 2 as the maximum distortion limit in the
next experiments.

1http://www.statmt.org/moses/
2ftp://jaguar.ncsl.nist.glv/mt/resources/mteval-v11b.pl.
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System Rule # MT03 MT04 MT05 Average
Moses 44.49M 32.03 32.83 31.81 32.22
DEBT 30.7M 32.7* 35.4* 32.59* 33.56

Table 1: Statistics of the extracted rules on training data and the BLEU scores (%) on the test sets.
“DEBT” denotes our edge-based transfer model. The “*” denotes that the results are significantly better
than the baseline system (p<0.01).

5.3 Performance of Our Model

Tabel 1 illustrates the translation results of our experiments. We (DEBT) surpass the baseline over +1.34
BLEU points on average. Our model significant outperforms the baseline phrase-based model, with
p < 0.01 on statistical significance test sign-test (Collins et al., 2005).

We also list the statistical number of rules extracted from the training corpus. The number of our
transfer rules is only 69.0% of the rules extracted by Moses, thus, the total rules in our model is 31%
smaller than Moses.

6 Related Work

Transfer-based MT systems usually take a parse tree in the source language and translate it into a parse
tree in the target language with transfer rules. Both our model and some of those previous works ac-
quired transfer rules automatically from word-aligned corpus (Richardson et al., 2001; Carbonell et al.,
2002; Lavoie et al., 2002; Lin, 2004). Gimpel and Smith (2009) and Gimpel and Smith (2014) used
quasi-synchronous dependency grammar for MT and they are similar to our idea of doing transfer of
dependency syntax in a non-synchronous setting. They do the translation as monolingual lattice parsing.

As dependency-based system, Lin (2004) used path as the transfer unit and regarded the translation
problem with minimal path covering. Quirk et al. (2005) and Xiong et al. (2007) used treelets to model
the source dependency tree using synchronous grammars. Quirk et al. (2005) projected the source depen-
dency structure into target side by word alignment and faced the problem of non-isomorphism between
languages. Xiong et al. (2007) directly modeled the treelet to the corresponding target string to alleviate
the problem. Xie et al. (2011) directly specified the ordering information in head-dependents rules that
represent the source side as head-dependents relations and the target side as string.

Differently, our model uses a much simpler elementary structure, edge, which consist of only a head
and a dependent. As a transfer-generation model, we transfer an edge in the source dependency tree into
target side and incorporate the position information on the target edge , which alleviate non-isomorphism
problem and incorporate ordering among different target edges simultaneously. Moreover, our decoding
method is quite different from previous dependency tree-based works. After parsing a given source
language sentence, we transfer and generate the target sentence fragments recursively on each internal
node of the dependency tree bottom-up.

7 Conclusions and Future Work

In this paper, we present a novel dependency edge-based transfer model using dependency trees on the
source side for machine translation. We directly transfer the edges in source dependency tree into the
target sides and then generate the target sentences by beam-search. With the concise transfer rules,
our model is compatible with both the syntactic and non-syntactic phrases. Although the generation
process of our model seems relatively simple, it still exhibits a good performance and outperforms the
phrase-based model on large scale experiments. For the first time, a statistical transfer model shows a
comparable performance with the state-of-the-art translation models.

Since the translation procedure is divided into three phases and each phase can be modeled indepen-
dently, we would like to take further steps focusing on modeling the target language generation process
specifically to ensure a better grammatical translation with the help of natural language generation meth-
ods.
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